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Abstract 

One of the major strengths resulting from hyperspectral imaging is target detection, specifically 
subpixel detection, which is generally carried out without full knowledge of the targets to be detected. 
The aim of this study is to design and develope a hyperspectral camera and then testing its results in 
hidden target detection domain. For this purpose, a coin was hidden under a cloth in a laboratory 
environment and then was take hyperspectral imaging of the hidden target. Initially, the images were 
labeled in terms of wavelength and band and geometric corrections and used for final processing. In 
order to detect image anomalies, the RX algorithm was used locally to identify pixels that are spectrally 
different from other pixels. To identify hidden target material, spectra of extracted as anomalies pixels 
were extracted and by using of the spectral library, hidden target material was identified. The accuracy 
of the extracted spectra was evaluated by the spectral angle, ACE , Likelihood and FP  correlation 
methods and the results showed high accuracy of the target material identification process. 
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1. Introduction 

 Hyperspectral imagers enable the collection of a series of contiguous, very narrow spectral bands, 
providing a near-continuous spectrum of an object, commonly referred to as the spectral signature 
(Alejandra et al., 2019 & Stuart et al., 2019). The spectral signature of a material in the Vis-NIR spectral 
domain is characterized by its general forms, the intensity of its reflectance, and specific absorption bands 
(Gomez & Lagacherie, 2016). The hyperspectral camera can be more sensitive and capable to transfer this 
information into qualitative or quantitative data (Baur et al., 2019). Hyperspectral system initially samples 
the light, it passes through a slit which disperse it (Mahajan & Kamalapur., 2016). Pushbroom imaging 
systems are based on using slit aperture to scan the image in a line by line fashion (Xu et al., 2018), which 
is faster and more efficient, since it requires scanning across only one spatial dimension of the image (Abdo 
et al., 2019 & Huber et al., 2018). Target detection is one of the most important applications of hyperspectral 
images (Zhang et al., 2019), that extracted by using many algorithms in the field of hyperspectral signature 
analysis (Bitar et al., 2019). 

Gutierrez et al. (2019), proposed a custom scanning hyperspectral imaging system for biomedical 
applications, modeling, benchmarking, and specification. This article described a rotating mirror scanning 
hyperspectral imaging device, its multiparametric model, as well as design and calibration protocols. This 
study used general explanations to develop the imaging system and imaging modality. 

Reza et al. (2019), proposed a simplified methodology to enable accurate and reliable characterization of 
a commercial hyperspectral camera and spectral calibration of its output data. A calibration coefficient 
determined for the spectral acquisition range (400- 1000 nm), and native resolution (2.7 nm), to transfer raw 
hyperspectral data into spectral radiance in the SL unit. Different spectral resolutions were also tested in 
this study to minimize data size and maintain spectral accuracy. The spectral were validated under LED 
fluorescent. 

Vemuri et al. (2019), proposed a generic framework for quantitative and application- specific 
performance assessment of HIS camera and optical subsystem without the need for any physical setup. This 
framework quantifies the performance of the given camera configuration using a large amount of simulated 
data and user-defined metrics. The advantage of being able to test the desired configuration without the need 
for purchasing expensive components may save system engineers valuable resources. 

Yang et al. (2019), proposed a novel anomaly detection algorithm via dictionary construction based low 
rand representation and adaptive weighting. The results of this study showed that he anomaly pixel is more 
easily distinguished from the background. Accuracy assessments demonstrate the superiority of our 
proposed method over other AD detectors. 

In this study, a VNIR1 hyperspectral camera was designed and developed and was tested in the lab 
situation for hidden target detection.

 

 

 

 

 

 

 

 

 
1.  Visible-NIR 
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 2. Material and Methods 

 

Figure1. Flowchart of research phases    

2.1. Hyperspectral Camera 

Pushbroom HSI1  has been used in many areas from air to land. However, its inherent operational 
drawback of the bulky slit leads to a limited FOV2 and high energy consumption (Dong et al., 2019). 
Hyperspectral pushbroom imaging system usually consists of five major parts: illumination unit, 
spectrograph, camera (detector), translation stage, and image processing unit. Figure (2), shows a schematic 
of hyperspectral data acquisition. 

  

 

Figure2. Schematic diagram of a pushbroom hyperspectral imaging system (Lu & Fei, 2014) 

A tungsten lamp has been used as a light source of the constructed hyperspectral imager. The advantage 
of the used tungsten lamp is its wide spectral range starting at approximately 420 nm and continues to more 
than 1000 nm. At the beginning of spectrograph, an objective lens (with a focal length of 75 mm) was 
located and then, a slit respectively with 7mm and 200𝜇m length and width was embedded before the 
collimating lens. The diffraction grating was applied as a dispersive element and a 25mm focal length 

 

 
1  . hyperspectral imaging 

2. field of view 
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focusing lens was used at the end before the CCD1 detector. A Stepper Motor-based translation stage was 
used  to scan the target completely, and finally, a computer was processed acquired images. 

The hyperspectral imaging system is capable of imaging objects in the spectral range of 420 to 900 nm 
in 480 bands and having a spectral resolution of 1 nm. NI Labview software also was used to control and 
process all imaging steps.  

2.2. Image Processing 

Usually, a hyperspectral image contains thousands of spectral pixels. The image files generated are large 
and multidimensional, which makes visual interpretation difficult at best. Many digital image processing 
techniques are capable of analyzing multidimensional images  (Nagadi & Liu., 2010). 

 Generally, these are adequate and relevant for hyperspectral image processing.  Several classic 
target detection algorithms for multispectral and hyperspectral data have been proposed, such as ACE, 
CEM2, GLRT3, ASD4, OSP5, SAM6 and etc. (Liu & Li., 2018). The processing methods developed for 
environmental classification are not applicable to target detection for two reasons: First, the number of 
targets in a scene is typically too small to support the estimation of statistical properties of the target class 
from the scene. Second, depending upon the spatial resolution of the sensors, targets of interest may not be 
clearly resolved, and hence they appear in only a few pixels or even a single pixel (Manolakis et al., 2013). 

2.2.1. Anomaly Detection 

 Anomaly detection involves modeling the background and using the difference between the pixels and 
the background to detect anomalous pixels (Tan et al., 2019). Many algorithms have been developed for 
anomaly detection over the years and can be roughly categorized into two classes, second-order statistics 
methods and high order statistics methods. The detector in the first class can be considered as either 
mahalanobis distance-based filters which are variants of algorithm, refer as RX7 detector (RXD), or matched 
filter based detectors derived from R-RXD (Chang, 2016 & Basora et al., 2019).  

2.2.1.1. RX Anomaly Detection Algorithm 

The RX algorithm includes global and local RX. Since the local RX algorithm is more effective in 
detecting small targets. The local RX algorithm is usually used. The algorithm is assumed that the 
background distribution satisfied the local Gaussian distribution model, thereby calculating the mean and 
covariance matrix of the background pixels. Under the background model, the double window sliding 
method is used for detection, as shown in figure (3): 

 
  

 

 
1. Charge Coupled Device 

2 constrained energy minimization 

3 generalized likelihood ratio test 

4 Autism spectrum disorder 

5 Orthogonal subspace projection 

6 Spectral Angle Mapper 

7 Reed-Xiaoli  

https://www.sciencedirect.com/topics/engineering/detection-algorithm
https://www.sciencedirect.com/topics/engineering/hyperspectral-data
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Figure3. Hyperspectral anomaly target local detection model (Zhang et al., 2019) 

The specific implementation process of RX algorithm is as follows: define XR as a background matrix of 
L x N, L is the number of bands, N is the number of pixels, and the detected pixels Xi can be expressed as: 

1 2 3[ , , ,..., ]i i i i iLX x x x x=                                                                                                         (1) 

The binary hypothesis test of the RX algorithm can be expressed as: 
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Where r is the spectral information of the measured pixel, n is the background spectral information, a is 
the signal abundance, and s is the target spectral information. When a=0, the assumption H0 is established 
as the background pixel; When a>0 the assumption H1is established as a target pixel. The discriminant of 
the RX algorithm based on GLRT is: 
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Where  is the discriminant threshold, the set value is related to the false alarm rate and the signal to 
noise ratio;   and K are the background mean and the covariance matrix, respectively expressed as: 
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The RX algorithm has several shortcomings: First, the background hypothesis is a local Gaussian 
distribution model. However, the distribution of features, in reality, is complex and variable. In many cases, 

the distribution of hyperspectral image data cannot be fully described. Second, the RX algorithm cannot 
fully utilize high order data of hyperspectral ignoring the nonlinear data of the image, resulting in poor 
detection performance (Zhang et al., 2019).  
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3. Results and discussion 

In order to implement the algorithms, firstly, an image of a coin hidden beneath the cloth was captured 
by use of designed hyperspectral camera. Figure (4), shows the captured image. 

 

Figure4. Image of coin beneath cloth captured by hyperspectral camera. 

RX algorithm was used to detect image anomalies and coin extraction. Pixels from the image known as 
anomalies were extracted and selected for material identification. Figure(5), shows anomaly pixels. 

 

Figure5. Anomaly pixels of image 

Selected pixels, was tested using a pre-prepared spectral library to identify the most similar spectrum to 
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the anomaly pixels spectral. Based on the spectral library, the extracted spectrum was a combination of 
copper metal and aluminum metal spectra. Figure(6), shows the spectra of material identification. 

 
 

Figure6. Spectral of Aluminum metal (left) and copper metal (right) 

Spectral angle, ACE, Likelihood, and FP correlation methods were used to evaluate the accuracy of the 
extracted spectra. Table (1), shows the accuracy assessment of spectrals. 

Table1. Accuracy Assessment of Extracted Spectral. 

 Spectral Angle ACE Likelihood FP correlation 

Copper metal 

 
0.06 0.85 0.88 0.84 

Aluminum metal 0.09 0.83 0.81 0.88 

 
Spectral Angle: Indicates the separation of reference and extracted spectra. Smaller spectral angles are 

better matches. 
ACE: ACE measures if a reference spectrum is a good match for the spectrum in the selected image. 

ACE values range from -1 to 1 with scores close to 1 indicating a best match. 
Likelihood: Likelihood measures how good a spectrum is in comparison to the other spectrum in the 

library. If the likelihood for spectra A is twice that of spectra B, then the probability of spectra A is twice 
that of the probability for B. The likelihoods will all sum to 1. 

FP correlation: Full Pixel Correlation measures how good the pixel spectrum matches each library 
spectrum. Correlation values range from -1 to 1 with scores close to 1 indicating the best match. 

In this study, images of the designed hyper-spectral camera were used to identify hidden targets. 
Identifying the hidden target beneath the cloth required the precision processing methods used for this 
purpose. The use of anomaly detection methods led to the whole area under study for spectral anomalies 
searches. The under-purpose spectral library helped us to classify the detected anomalies accordingly. Using 
this type of verification resources makes it possible to identify targets with high accuracy. 

The results of this study is in consistency with (Dong et al., 2018 & Gao et al., 2015). In comparison to 
(Wolfgange et al., 2015), that only used shape information of targets, this study used spectral and texture 
information together for hidden target detection. (Puttonen et al., 2015), used Hyperspectral and Lidar data 
integration for artificial target detection. In comparison of this study, we only used Hyperspectral data and 
don’t integrate with other data set. Designing a hyperspectral camera, using hidden targets, identifying 
hidden target material and spectral library development, are the innovations and advantages of this study 
depending on those of the present study. 
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4. Conclusions 

In this study, firstly, a hyperspectral camera was designed that has a very high spectral resolution and is 
suitable for multiple studies. To evaluate the camera's performance, a hidden target was used and then 
imaged. The use of the RX anomaly detection algorithm gave a very good performance due to its 
performance in both local and global domains. Because the hidden target had very few fingerprints in the 
cloth area, the local method was used to detect the target anomaly, while identifying changes in target and 
background spectra more thoroughly, target identification is performed with high accuracy. Target material 
identification was one of the limitations of similar work, with the use of a pre-made spectral library to 
identify target material with high accuracy. In the following, it is recommended to identify hidden targets 
using different thicknesses of clothes. 
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