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Abstract 

A land cover map is a crucial tool for urban planning as it provides essential 

insights into the landscape's composition and distribution. However, traditional 

techniques for creating and maintaining maps often require significant temporal 

and financial investments. Embracing deep-learning-based approaches offers a 

promising way to revolutionize aerial map generation, providing efficiencies 

that were previously unattainable. The present study aims to harness the power 

of neural networks rooted in deep learning to craft a comprehensive land cover 

map. Focusing on Shiraz City, this study aimed to delineate urban land uses into 

four categories: Almond, Pistachio, Bare soil, and Shadow of trees. Leveraging 

imagery captured by a Phantom DJI 4 drone, the research scrutinizes ground 

features to facilitate accurate classification. The convolutional neural network 

(CNN) emerges as a pivotal component of the methodology, serving as the 

bedrock for the automated classification process. Preliminary findings 

underscore the efficacy of the CNN approach, yielding an impressive overall 

accuracy rate of approximately 86.56%. Such results underscore the viability of 

deep-learning-based methodologies in land cover mapping. They also 

demonstrate its potential for scalability and applicability in various urban 

landscapes. By reducing the resource-intensive nature of traditional mapping 

techniques, this study paves the way for more agile and cost-effective urban 

planning attempts, poised to accommodate the dynamic nature of modern cities. 

 
 
 
 
 
 

 

 



 

 

1. Introduction 

Earth Observation (EO) is an invaluable tool for acquiring insights into the dynamics of our 
planet through remote sensing techniques. Satellites Positioned in space constitute pivotal platforms 
for capturing a wealth of data about Earth's surface, atmosphere, and oceans. This vantage point 
enables the collection of a diverse array of information crucial for monitoring environmental changes, 
managing natural resources, and informing various fields ranging from agriculture to disaster 
management. Deep learning, a subset of machine learning, has emerged as a potent framework for 
analyzing EO data with unprecedented accuracy and efficiency. At its core, deep learning harnesses 
neural networks and their variants to process and interpret vast volumes of Earth observation imagery. 
Unlike traditional machine learning approaches, where manual feature extraction and classification are 
commonplace, deep learning techniques automate these processes, endowing the system with the 
capability to discern complex patterns and features directly from the raw data [1-4]. 

The integration of deep learning neural networks into EO analysis holds immense promise for 
enhancing the identification and characterization of features within satellite and aerial imagery. By 
enabling automated feature extraction and classification, deep learning algorithms streamline the 
analysis pipeline, reducing the need for laborious manual intervention and accelerating decision-
making processes. Moreover, the adaptability of deep learning models allows them to continuously 
improve their performance through iterative learning, ensuring their efficacy in handling diverse and 
evolving Earth observation datasets [5-8]. 

Furthermore, the synergy between EO and deep learning extends beyond mere data analysis, 
encompassing wide applications such as land cover classification, object detection, and change 
detection. From monitoring deforestation patterns in the Amazon rainforest to tracking urban 
expansion in rapidly growing cities, the marriage of EO and deep learning technologies empowers 
researchers, policymakers, and stakeholders with actionable insights for addressing pressing 
environmental and societal challenges on a global scale. As advancements in both fields continue to 
unfold, the potential for unlocking new frontiers in Earth observation and environmental monitoring 
remains boundless, promising a future where our understanding of the planet is more profound and 
comprehensive than before. 

In the contemporary landscape, the relentless march of technological progress has ushered in an 
unprecedented era of data collection. At the forefront of this data revolution stands the utilization of 
uncrewed aerial vehicles (UAVs) to meticulously survey and map vast expanses of land, with a 
particular emphasis on agricultural areas. Indeed, the production of high-resolution maps has swiftly 
emerged as an indispensable requirement of our times, driven by the burgeoning needs of industries, 
enterprises, and governmental bodies alike. As companies proliferate and organizations diversify, the 
demand for accurate and up-to-date spatial information continues to surge, amplifying the imperative 
for advanced data acquisition methodologies. This surge signals not merely a phase but the 
culmination of a data collection revolution, underscoring the pivotal role that spatial data infrastructure 
plays in shaping contemporary decision-making processes. However, as we stand on the cusp of this 
data-intensive era, it becomes increasingly apparent that the sheer volume of collected data 
necessitates a commensurate shift towards the era of data processing. In essence, the forthcoming 
epoch will be defined by our capacity to extract meaningful insights from the deluge of raw 
information amassed through remote sensing and aerial imaging endeavors. 

Remote sensing techniques, augmented by cutting-edge aerial image processing 
methodologies, will serve as the linchpin of this transformative phase, facilitating the parsing, analysis, 
and interpretation of vast datasets with unprecedented precision and efficiency. From identifying crop 
health trends to monitoring environmental changes, the amalgamation of remote sensing and data 
processing technologies promises to unlock new frontiers in our knowledge about the world. Indeed, as 
we navigate the complexities of the data-driven age, the ability to harness the power of spatial data 
analytics will emerge as a defining factor in driving innovation, fostering sustainability, and addressing 
pressing societal challenges. By leveraging the insights gleaned from remote sensing and aerial image 
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processing, we stand poised to usher in a future where data isn't merely collected but transformed into 
actionable intelligence, shaping a world more informed, interconnected, and resilient than before.Text:  

Numerous studies have been conducted on land classification, each with its own set of 
challenges. These challenges include the high cost of acquiring images, particularly SAR images [9], 
the unavailability of ground control points, and the increased cost and time required to obtain ground 
data for training purposes [10]. Overall, one of the major obstacles is accessing the necessary data.In 
2016 a study was conducted on car extraction from UAV aerial images. The results revealed the 
importance of pre-processing and processing [11]. Another study in China focused on the classification 
of UAV images and used the AlexNet network [12]. However, as mentioned earlier, we are in the late 
era of data collection. The selected images, which serve as the primary data for our issue, are collected 
by the photogrammetry team, while the control points are managed by the land surveyor team. UAV 
images have a high spatial resolution, and if we have georeferenced UAV images, we can easily design 
neural networks and achieve optimal accuracy [13]. The area studied in this research is an area on the 
border between Shiraz and Firozabad in Fars province. The deep neural network used in this study is 
Convolutional Neural Network (CNN), which the Keras library implements. 

2. METHODOLOGY 

Keras is a powerful and user-friendly open-source library for developing and evaluating deep 
learning models. Keras covers two numerical machine learning libraries, Theano and TensorFlow, and 
lets you determine and train neural network models in just a few lines of code. Keras is written based 
on different libraries, and because the TensorFlow library is newer, stronger, and more universal, we 
will install the Keras based on this library [6].In Machine Learning, models are created to predict the 
results of certain events. The accuracy of these models can be measured using a train/test method to 
measure if the model is well enough. Train/Test is a method for measuring the accuracy of a model. 
The model is trained using the train set, and the model's accuracy will be calculated using the test set. 
This study used a Convolutional Neural Network (CNN) for the abovementioned purpose [7].  Figure 
1 illustrates The algorithm of methodology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1- Flowchart of the proposed method 



H. Yazdanparast et al. Journal of Radar and Optical Remote Sensing and GIS (2023) 3(2), 7–14 

 

10 

 

Initially, the original image and the test and training data should be normalized. For this 
purpose, the available data is divided by 256. Then, the model's parameter should be defined using two 
dense layers. The model has ten nodes in the first layer and, in the second layer, four nodes that 
indicate the number of our classes. The compilation is the final step in creating a model. Once the 
collection is done, we can move on to the training phase. Finally, the model was trained by using 60% 
of the data and was tested by using 40% of the test data in 150 epochs. To evaluate the model's 
accuracy, we can form the confusion matrix. 

A confusion matrix (or the error matrix) [9] is usually used to characterize image classification 
accuracy quantitatively. A table shows the similarity between the classification output and a reference 
image. Also, to create the confusion matrix, we require the ground truth data, such as cartographic 
information, manually digitizing an image, and fieldwork/ground survey results recorded with a GPS 
receiver. The structure of the confusion matrix is shown in Table 1. 

Table 1- The structure of the confusion matrix. 
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We can get two sorts of information from the confusion matrix. Firstly, we can get the overall 
accuracy by using the diagonal elements of the matrix. Diagonal cells include the number of correctly 
identified pixels. If we divide the sum of these pixels by the total number, we will get the 
classification's overall accuracy. This index will be equal to the following: 
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 In this formula, po indicates the overall accuracy.  

Another accuracy indicator is the kappa coefficient [10]. It measures how the classification 
results compare to values assigned by chance. It can take matters from 0 to 1. If the kappa coefficient 
equals 0, there is no agreement between the classified image and the reference image. If the kappa 
coefficient equals 1, then the classified and ground truth images are identical. So, the higher the kappa 
coefficient, the more accurate the classification is. The formula for estimation of the kappa coefficient 
is: 
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3. CASE STUDY AND DATA 

The case study in our study is an area on the border between Shiraz and Firozabad in Fars province in Iran. The 
investigated image is a georeferenced image shown in Fig.2. 

This area is located in zone 39 and the northern hemisphere of the UTM map projection. General information on 
this area is shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Image of area 

 

Table 2 - general information on the study area 

Map projection Pixel size Datum UL-Geo UL-Map 

UTM, Zone 39 0.25 m WGS-84 
52⸰37'37.69"E, 

29⸰7'33.43"N 

658301.682, 

3223034.397 
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4. Results and Discussion 

After the implementation, the confusion matrix of the model will be as follows: 

 
Table 3- Confusion matrix of the model. 
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Pistachio 0 2349 0 236 2585 

Almond 2 1421 76 3 1502 

Shadow of 

trees 
6 216 1 23097 23320 

Total 31 4143 77 25262 29513 

 
Overall accuracy and kappa coefficient can be extracted from the above matrix. 
 

 
Table 4- Final Result 

 

Model Architecture 
Number of 

Class 
Epoch 

Kappa 
Coefficient 

Overall 
Accuracy 

CNN DenseNets 4 150 59.80% 86.56% 

 

The model's accuracy was increased during the training, which means the model's movement 

was successful.  Figure 3 illustrates the model's accuracy and loss trend. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3- Accuracy and Loss for the train and test set. 
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As Figure 3 shows, the model's accuracy increases and the loss decreases for each train and test 

set. 

 

Figure 4- illustrates the original image and the classified image 

5. Conclusion 

In today's data-driven landscape, the emphasis on data collection reigns supreme, with aerial 
imagery assuming a pivotal role in creating accurate and comprehensive maps. Unmanned Aerial 
Vehicles (UAVs) have emerged as indispensable tools in this endeavor, offering a cost-effective 
alternative to ground surveying while delivering superior resolution compared to satellite images. 
Consequently, the processing of UAV-derived imagery has garnered heightened significance, 
presenting a gateway to unlocking actionable insights from vast swathes of aerial data. 

This study delves into the world of UAV image classification, leveraging the capabilities of 
deep learning-based methodologies to extract meaningful information from aerial datasets. Focusing 
on a targeted area straddling Shiraz and Firozabad in the Fars province of Iran, the study meticulously 
categorizes the imagery into four distinct classes: pistachio tree, almond tree, bare ground, and tree 
shade, achieving an impressive accuracy rate of 86.55%. Central to the methodology employed is the 
utilization of convolutional neural networks (CNNs), a cornerstone of deep learning frameworks 
renowned for their ability to discern intricate patterns and features within complex datasets. Through 
iterative training and optimization, the CNN model attains peak performance, enabling precise 
classification of aerial imagery with remarkable efficiency and accuracy. 

The findings of this study underscore the efficacy of CNN-based approaches in aerial image 
classification, affirming the suitability of deep learning techniques for extracting actionable 
intelligence from UAV-derived datasets. Through the use of advanced algorithms, researchers and 
practitioners can streamline the analysis pipeline, expedite decision-making processes, and discover 
valuable insights for a variety of applications, such as agriculture, environmental monitoring, and 
urban planning. As data collection continues to evolve, incorporating deep learning techniques into 
UAV image processing is a significant step toward fully leveraging aerial data analytics.  
With the continuous advancement in technology and methodology, we are on the verge of a future 
where the seamless integration of UAV imagery and deep learning is key to understanding the 
complexities of our ever-changing world. 
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