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ABSTRACT

Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting
thermodynamic properties such as the enthalpy of vaporization at standard condition (AH vap
kJ mol-1) and normal temperature of boiling points (T°bp K) of 57 mono and Polycyclic
Aromatic Hydrocarbons (PAHSs) have been investigated. The PAHs were randomly separated
into 2 groups: training and test sets. A set of molecular descriptors was calculated for selected
compounds using the Dragon software. The Genetic Algorithm (GA) method and backward
stepwise regression were used to select the suitable descriptors. Multiple Linear Regression
(MLR) technique was used to obtain a linear relationship between descriptors and chemical
properties. The predictive ability of the GA-MLR models was implemented using squared
cross-validation and external validation methods. The aforementioned results and discussion
lead us to conclude that the training set models established by GA-MLR method have good
correlation of thermodynamic properties, which means QSPR models could be efficiently
used for estimating and predicting of the above mentioned properties of the mono and PAHSs.

Keywords: polycyclic aromatic hydrocarbons (PAHS); quantitative structure-property
relationships (QSPR); normal temperature of boiling points; first Zagreb index

INTRODUCTION
Polycyclic  aromatics hydrocarbons Some PAHs are well known as

(PAHS) are a class of chemicals that occur
naturally in coal, crude oil, and gasoline.
They also are produced when coal, oil, gas,
wood, garbage, and tobacco are burned.
Cigarette smoke contains many PAHSs. The
major source of PAHSs is the incomplete
combustion of organic material such as
coal, oil and wood [1, 2].
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carcinogens, mutagens, and teratogens and
therefore pose a serious threat to the health
and the well-being of humans. The most
significant health effect to be expected
from inhalation exposure to PAHSs is an
excess risk of lung cancer [3-5].
Quantitative structure-property
relationships  (QSPR)  models are
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mathematical  equations that relate
properties such as the various physical and
physicochemical properties of compounds
to a wide range of molecular descriptors
[6-8].

Molecular descriptors are of
outstanding importance in the research
fields of QSPR/QSAR, where they are the
independent chemical information used to
predict the  properties/activities  of
compounds [9].

It is well known that a single molecular
descriptor is unable to carry all the
information of the molecular structure and
thus sets of suitable and relevant
descriptors for a particular response must
be selected [10,11].

Relationship between vapor pressure
and molecular descriptor of PAHSs has been
investigated [12].

QSPR model has been investigation for
predicting the vapor pressure of typical
PAHs such as benzo(a)pyrene with the
lowest vapor pressure and naphthalene
with the highest vapor pressure using
molecular weight descriptor [13,14].

The multiple linear regression (MLR),
artificial neural network (ANN), and
support vector machine (SVM) were
applied to study the relationship between
adsorption  coefficients and physico-
chemical properties of 39 aromatic
compounds [15].

Quantitative structure-activity
relationship (QSAR) models have been
used to determine activity of PAHs using
information indices [16].

QSAR method has been applied to
predict mutagenicity of 48 nitrated
polycyclic aromatic hydrocarbons (nitro-
PAHS) [17].

Several activities of PAHs, such as
carcinogenesis, mutagenicity,
phototoxicity, and biocatalytic oxidation,
have been studied using QSAR analyses
and molecular descriptors [18].
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2D and 3D QSAR models have been
used to study relationship between
biological activities (antidepressants and
antipsychotics) and chemical structures of
PAHSs [19].

A QSPR study to predict polarizability
of 40 PAHSs and fullerenes using molecular
descriptor has been researched [20].

QSAR model to correlate the photolysis
half-lives of PAHs with their quantum
chemical descriptors by partial least
squares (PLS) method has been developed
[21].

MLR method has been used to construct
QSPR model for the prediction of boiling
point of 61 PAHSs [22].

Physicochemical and thermodynamic
properties of organic pollutant play an
important key role to understand their
behavior in environment. However, the
information behind the property-behavior
phenomena of chemical compounds is less
found in the literature. Therefore,
computational methods had to be applied
for process optimization. In the present
study the applicability of the QSPR models
based on molecular descriptors derived
from molecular structures have been
developed for the prediction of
thermodynamic properties of 57 mono and
PAHSs such as the enthalpy of vaporization
at standard condition (AH"\s, kJ mol™) and
normal temperature of boiling points (T yp
K). For this purpose genetic algorithm -
multiple linear regressions (GA-MLR)
were used to select the suitable descriptors
for construct QSPR models.

MATERIALS AND MATHEMATICAL
METHODS

Mono and PAHs are used in the
manufacture of cellulose esters, fibers,
plastics, lacquers, drugs, disinfectants,
cosmetics, dyestuffs, anti-icers, corrosion
inhibitors, etc [23]. The name and
chemical structure of the mono and PAHSs
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discussed in this study are shown in Table
1. Thermodynamic properties such as the
enthalpy of vaporization at standard
condition (AH’vap kJ mol™) and normal
temperature of boiling points (T ,, K) of 57
mono and Polycyclic Aromatic
Hydrocarbons (PAHs) are taken from
national institute of standards and
technology  (NIST)  chemistry  and
chemspider web book, respectively. These
properties are listed in Table 2. The 57
datasets were randomly divided into 2
groups: training and test sets consisting of
47, 10 data point, respectively.

The chemical structures of molecules
were drawn by Gauss View 05 program
and then they were optimized with

Gaussian09 using Hartree—Fock (HF) level
of theory and 6-311G* basis set method.

A set of descriptors was calculated for
selected compound using the Talete srl,
Dragon for Windows Version 5.4- 2006
package. A lot of descriptors include
different categories like topological,
Getaway, 3D-MoRSE, constitutional, and
molecular properties which have been used
[24].

The genetic algorithm (GA) is written
in MATLAB (version 2010a) environment
and backward stepwise regressions have
been used to decrease the number of
descriptors. The software package SPSS
21.0 for Windows is used to implement
multilinear regression [25].

Table 1. lupac Name and chemical structure of 57 mono and PAHSs used in present study

NO lupac Name Structure NO lupac Name StructureH
1 Acenaphthylene 30 6-Ethylchrysene
2 Anthanthrene 31 9-Ethylfluorene
3 Benzo(C)picene 32 2-Ethyl-9H-fluorene
4 Benzo[t?]tlrbazole 33 Fluorene
5 | Benzo[K]fluoranthene 34 9H-carbazole
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6 Benzene 35 2-Methylanthracene
5-Methyl-1,3- 2,4-Dimethylbenzoic
7 d 36 .
benzodioxole acid
Benzo[b] 7-Metylbenzo[A]
8 - 37
triphenylene pyrene
4-[(Dimethylamino)
9 Benzo[e] pyrene 38 methylJaniline
Benzo|[c] 11-Methylbenzo(a)
10 39
phenanthrene fluorene
11 Benzo[a] pyrene 40 | 3-Methylbenzylamine
12 Benzo[G] chrysene oo 41 | 3-Methylcholanthrene
(NG ”‘/\:‘;’:;,A::b H
13 | Benzo[ghi] perylene 42 3-Methylchrysene
14 | Benzo[h] pentaphene 43 1- Methylfluorene
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15 1-(2-Bromoethyl)-4- 45 (4—Methylphe_ny|)
methylbenzene methyl chloride
16 1-Butylpyrene 46 4'(2'Mpe;2r‘]’;‘|yethy')
17 | Alphabromomxylene 2-Methylphenanthrene
18 Chlorobenzene 47 m-Tolunitrile
19 Chrysene 48 Naphthalene
20 Coronene 49 9-Phenylanthracene
21 Coumarin 50 Phenanthrene
2 | Orimgent® | o XX
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23 Cyclopenta[cd] 52 1-Phenylnaphthalene { \Kx]i
pyrene e
4H-

24 | Cyclopenta[def]phen 53 Picene
anthrene

i
Dibenzo[a,c] i o . " "
25 naphthacene 54 | 2-(Propan-2- yl) aniline
Dibenzo[b,g]

26 phenanthrene 55 Pyrene

27 | 1,2-Dihydrochrysene 56 Triphenylene " QQQ "

28 | Dimethylchrysene 57 | 9-Vinylanthracene : \][

29 2-Ethylanthracene

Table 2. The observed, predicted and residuals values for training and test sets of mono and PAHs
using Equations 8,9 (*Compounds selected for test set in external validation procedure)

Observed

Observed

NO (T, K) Predicted Residual (AH' g KJ mol) Predicted Residual
1 572.05 566.574 5.476 51.70 51.99 -0.29
2 770.25 774.249 -3.999 73.60 76.61 -3.01
3 *877.25 *869.383 *7.867 86.50 90.71 -4.21
4 729.15 721.283 4.523 *68.90 *65.07 *3.83
5 753.15 748.627 8.792 71.60 73.31489 -1.71
6 *351.95 *359.916 *.7.966 *30.70 *29.63 *1.07
7 *745.85 *753.816 *1.8 54.90 49.62 5.28
8 791.15 792.95 1.479 76.10 72.70 3.39

122




F. Dialamehpour & F. Shafiei /J. Phys. Theor. Chem. IAU Iran, 16 (3, 4) 117-131: Fall 2019 & Winter 2020

NO ?gf’:nr\lf)d Predicted Residual ( AH?,?jiSV?;jol'l) Predicted Residual
9 740.65 744.357 -3.707 70.20 69.62 0.57
10 709.85 707.612 2.238 66.70 63.64 3.05
11 768.15 765.912 2.379 73.40 69.90 3.50
12 *797.85 *795.471 *-2.776 76.90 76.24 0.66
13 774.15 776.926 -2.709 74.10 73.39 0.71
14 877.25 880.026 1.199 86.50 81.94 4.56
15 499.15 495.416 3.734 *44.40 *44.81 *-0.41
16 693.65 691.023 2.627 64.80 63.59 1.21
17 484.65 481.654 2.996 43.00 41.43 1.56
18 *405.15 *400.163 * 4,987 *35.20 *37.05 *-1.85
19 721.15 717.782 3.368 67.90 69.27 -1.37
20 798.15 804.149 -5.999 77.00 80.76 -3.76
21 570.15 576.548 -6.398 *53.80 *53.69 *0.11
22 800.15 801.248 -1.098 77.2 73.49 3.71
23 711.45 712.356 -0.906 66.8 68.93 -2.13
24 626.15 630.576 -4.42599 57.4 55.78 1.62
25 877.25 876.051 1.199 *86.5 *84.83 *1.67
26 797.85 795.701 2.149 76.90 80.87 -3.97
27 692.95 690.624 2.326 64.70 64.51 0.19
28 733.35 731.607 1.743 69.30 67.56 1.74
29 637.15 635.426 1.724 58.60 60.92 -2.32
30 730.35 728.196 2.154 69.00 64.63 4.37
31 594.85 591.464 3.386 54.10 52.20 1.90
32 *598.15 *595.881 *2.269 54.20 55.02 -0.82
33 568.15 573.685 -5.535 51.20 49.89 1.31
34 628.15 624.837 3.313 57.60 53.26 4.33
35 626.65 625.265 1.385 *57.50 *56.60 *0.90
36 541.95 536.233 5.717 53.60 47.90 5.69
37 752.55 758.58 -6.03 71.50 69.15 2.35
38 504.95 506.134 -1.184 46.80 48.27 -1.47
39 673.45 673.245 0.205 *62.60 *65.96 *-3.36
40 473.35 470.571 2.779 43.60 48.47 -4.87
41 779.55 775.676 3.874 74.70 68.52 6.18
42 722.55 724.375 -1.825 68.10 68.52 -0.42
43 471.75 472.911 -1.161 41.70 50.40 -8.70
44 471.75 470.14 1.61 41.70 46.87 -5.17
45 513.05 518.757 -5.707 *49.6 *47.90 *1.70
46 611.95 612.797 -0.847 55.90 60.48 -4.58
47 486.95 490.29 -3.34 45.00 43.53 1.47
48 494.65 496.153 -1.503 43.90 50.34 -6.44
49 690.15 693.082 -2.932 64.60 60.77 3.83
50 610.55 609.353 1.197 55.80 57.14 -1.34
51 *454.95 *458.479 *.3.529 43.50 45.35 -1.854
52 609.55 611.652 -2.102 55.70 59.40 -3.70
53 792.15 790.571 1.579 76.20 78.50 -2.30
54 498.75 500.859 -2.109 46.20 44.84 1.36
55 677.15 674.982 2.168 63.00 61.53 1.47
56 *698.15 *696.869 *1.281 *65.30 *68.96 *-3.66
57 *650.15 649.164 *0.986 60.00 59.61 0.38
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RESULTS
Statistical coefficients

In order to build and test models, a data
set of 57 compounds was randomly
separated into a training set of 47
compounds, which was used to build the
model and a test set of 10 compounds,
which was used to evaluate the built
model. The obtained models were
evaluated by statistical parameters, such as
squared multiple correlation coefficient
(R?) adjusted correlation coefficient
(R?%dj), Fisher ratio (F), Root Mean
Square Error (RMSE), Durbin-Watson
statistic (D) and significance (Sig).

The squared multiple correlation
coefficient (R? [26] is defined by the
following equation:

Y i =9)?
RZ — _ 4i=1\Vi |2
Xt —yi)?

RSS
~Tss )
where TSS is Total Sum of Squares; RSS:
Residual Sum of Squares; y;is the
observed property, §; is the property
predicted by the model, and y;is the
average property.

The R? value increases when the
number of variables in the model
increases, while the adjusted R? value
increases only if the new variables improve
the model more than expected by chance.
Therefore, the adjusted R? which is
defined below, was also used [27]:

p(1—R?)

IR

2
Radj

(2)
where p is the total number of regressors in
the model, n is the sample size, and R? is
the correlation coefficient.

The RMSE [28] for the training or
prediction sets was calculated as follows:

— 2
RMSE = ’Z(ZVObs nJ’pred)

©)
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In Equation (3), ypreq and y,p, indicate
predicted and observed property values
respectively.

A linear regression equation
significancy is drawn from Fisher’s
coefficient (F) [27]. It obtains by the
following equation:

n-p-—1 ESS
P RSS

F= @)

In Equation (4), n is number of
molecules; p is number of explanatory
variables.

QSPR models

The GA-MLR analysis led to the
derivation of 4 models for the enthalpy of
vaporization at standard condition (AH’yap
kJ mol™), with 7-10 descriptors (Table 3).
The statistical parameters of the models are
almost the same; so, the model 4, which
has the lowest number of descriptors, has
been chosen. This model includes the
seven descriptors namely: R7v, RDF080u,
EEig13r, SP20, 1C0, GGI5 and Mor08p.
With the selected descriptors, we have
built the linear model using the training set
data, and obtained the following equation:

AH'yyp = -19.244 + 439.881 (R7v)-0.349
(RDF0O80u) +6.550 (EEigl3r) + 1.293
(SP20) +13.913 (ICO) +7.185 (GGI5) -6.370
(Mor08p) (5)

N=47, R=0.991, R®=0.981, R%; =0.975,
F=147.592, DW=1.688, Sig=0.000,
RMSE=1.992

The linear models for the normal
temperature of boiling points (Tnbp K)
contain 8 -10 descriptors. Table 4 shows
the regression parameters and statistical
parameters models for the thermal energy
of 47 mono and PAHs. The best linear
model for Typ includes eight descriptors
which is: Jhetp, EEigl5x, E2m, EEig13r,
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nCh, ZM1V, EEigl3x andATS2e,. The
model is presented below:

Tep = 202.122 + 53.092 (Jhetp) + 0.744
(ZM1V) + 128541 (EEigl5x) -91.724
(EEig13x) + 34.289 (EEigl3r)+ 217.075
(ATS2e,) - 456.520 (E2m) - 15.897 (nCh)

(6)
N=47, R=0.985, R®=0.971, R?’adj
=0.964, F=152.577, DW=1.797,

Sig=0.000, RMSE=4.781

DISCUSSION
In this paper, we have carried out a
QSPR analysis to derive a quantitative

relationship between chemical structure of
57 mono and PAHs and their
thermodynamic properties. In this step, to
find the best model for predicting the
mentioned properties, we will use the
following sections.

Collinearity and Multicollinearity

It can be seen that the correlation
coefficient of each of the models near to 1,
but in regression analysis collinearity and
multicollinearity should be checked.
Collinearity and multicollinearity occur
when two or more than two independent
variables (molecular descriptors) are inter-
correlated.

Table 3. Statistical parameters of the models calculated with the SPSS software for AH"yqp

(kJ.mol™)
Model Independent Variable R R° R%;i RMSE F Sig
Morl12p, R7v, RDF080u, EEig13r, SP20, I1CO,
1 Mor14p, GGI5, Mor08p, ITH, 0.992 0.984 0.977 1910 128.781 0.000
Morl12p, R7v, RDF080u, EEig13r, SP20, I1CO,
2 Mor14p, GGI5, Mor08p 0.992 0.983 0.976 1935 134.329 0.000
g Morl2p, R7v, RDFOBOU, EEIGL3r, SP20, 1CO. 991 982 0.975 1.953 141875 0.000
GGI5, Mor08p,
R7v (R autocorrelation of lag 7 / weighted by
van der Waals volume), RDF080u (Radial
Distribution Function - 080 / unweighted),
4 EEig13r (Edge adjacency indices), SP20 (shape 0991 0981 0975 1992 147592 0000

profile no. 20), ICO (Information Content index
(neighborhood symmetry of 0-order)), GGI5
(topological charge index of order 5), Mor08p
(signal 08 / weighted by polarizability)

Table 4. Statistical parameters of the models calculated with the SPSS software for T°bp (K)

Model Independent Variable

R R* R%; RMSE F Sig

! EEig13x, ATS2e,

Jhetp, EEig15x, E2m, BELp6, EEig13r, nCar, nCb, ZM1V,

0.987 0.974 0966 4.249 128.641 0.000

2 EEig13x, ATS2e,

Jhetp, EEig15x, E2m, BELp6, EEig13r, nCbh, ZM1V,

0.986 0.972 0.964 4.696 136.830 0.000

Jhetp (2D matrix-based descriptors

Barysz matrix weighted by polarizability (Dz(p)), EEig15x
(Edge adjacency indices), E2m (2nd component
accessibility directional WHIM index / weighted by mass),
3 EEig13r (Edge adjacency indices), nCb (humber of
substituted benzene C (sp2), ZM1V (first Zagreb index by

valence vertex degrees), EEig13x (Edge adjacency indices),

ATS2eu (Broto-Moreau autocorrelation of lag 2 (log
function)

0.985 0.971 0.964

4.781

152.577  0.000
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Good regression model should not exist
in a correlation between the independent
variables or should not have happened
multicollinearity.

To study the correlation between the
molecular descriptors in the models 5, 6,
we used SPSS program to obtain the
variance inflation factor (VIF), Pearson
coefficient  correlation (PCC) and
collinearity statistics in ANOVA table.

If the VIF value lies between 1 and 10,
there is no multicollinearity; if VIF<1 or
>10, there is multicollinearity and a
recheck is necessary [29-31]. The VIF is
calculated as follows:

VIF = —— (7)

From Table 5, we can infer that, the
multicollinearity has existed, because the
Pearson correlation between 1COand
GGl5descriptors are  bigger than0.5,
therefore there is a linearity between these
descriptors. After removing GGI5 and then
in the next step ICO and RDF080u
descriptors we corrected Equation (5) as
follows:

AH"\op= 41.944 + 678.635 (R7v) + 1.784
(SP20) -10.041 (Mor08p) +9.327(Mor12p)

(8)
N = 47, R =0.961, R? = 0.923, R%y;

0.914, F = 98.618, DW = 1.688, Sig
0.000, RMSE = 2.691

The suitable linear model for QSPR
study of the thermal energy (Equation 6)
includes eight molecular descriptors. The
results of the correlation between these
descriptors are listed in Table 6. Based on
these results, there are high correlations
between EEig13x and EEig13r descriptors
that  indicate  possible  collinearity
problems.  After removing EEigl3r
descriptor, and the next steps ATSZe,,
nCb, EEigl3r and E2m from this model,
we corrected Equation (6) as follows:

T bp = 324.787 + 1.778 (ZM1V) ©)

N = 47, R = 0.966, R? = 0.932, R%y

0.929, F = 573.406, DW = 1.839, Sig
0.000, RMSE = 3.086

Table 5. Correlation between the molecular descriptors (Eq.(5))

Pearson Correlation for AH’vsp Collinearity Statistical Cc::]’gzt;tled
. VIF VIF VIF VIF
Descriptor Mor12 R7v RDFO080u SP20 1C0 GGI5 Mor08
P P P @ @ @) (4)
Mor12p 1.000 5.546 4.408 3.553 1.177
R7v 0.367 1.000 2.920 2.653 2.310 1.459
RDF080u -0.254 -0.265 1.000 3.935 3337 e e
SP20 0.377 0.273 -0.156 1.000 3.159 3.015 1.742 1.554
ICo 0.411 0.104 0.079 -0.062 1.000 5.487 4.290 3076 -
GGI5 0.046 0.064 -0.335 0.197 -0.683 1.000 7.680 - e e
Mor08p -0.453 -0.408 -0.120 -0.405  -0.060 -0.218 1.000 9.066 8.048 3.553 1.667
Table 6. Correlation between the molecular descriptors (Eq.(6))
. . . - g Correcte
Pearson Correlation for T°yp Collinearity Statistical d model
Descriptor Jhetp EEig15x E2m EEigl13r nCh ZM1V EEigl3x  ATS2e, VIF VIF VIF VIF
Jhetp 1.000 5.134 3.951 2720
EEig15x -0.075 1.000 44.555 5.967
E2m -0.321  -0.089 1.000 111174  3.447  2.802
EEig13r 0.464 -0.266 0.097 1.000 76.795
nCb 0510  -0.321 0.182 0.235 1.000 10.328 23264 -
ZM1V 0.366 -0.379 0.198 0.018 -0.042 1.000 73.891 42102  5.080 1.000
EEig13x -0.479 0.065 0.171 -0.949 0.241 -0.091 1.000 3.718 2.123
ATS2e, 0.466 0.325 0.288 0.596 -0.670  -0.448 -0.59 1.000 24711 46971
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Validation

The success of any QSAR/ QSPR
models depends on the accuracy of the
input data, selection of appropriate
descriptors, statistical tools and validation
of the developed model. In this section, for
verification, the validity of the regression
models and the predictive ability and
statistical significance of the QSPR
models, squared cross-validation
coefficient for leave-one-out (Q* 00) and
external validation through test set were
used [32,34]. The Q%0 value (Eg. 10)
computed from 20 % of randomly chosen
data was found to be positive and smaller
than one.

o - XN
Y o
PRESS
~ 753 Q*<1 (10)

In Equation (10), the notation i|i
indicates that the quantity is predicted by a
model estimated when the i-th sample was
left out from the training set.

The QZLOO values of the enthalpy of
vaporization at standard condition (AH’yap

kd mol™) and the normal temperature of
boiling points (T, K) of the mono and
PAHs were calculated 0.929 and 0.959
respectively. Another method for judgment
of reliability of predictions of models has
been checked by 10 compounds as external
validation test set.

The external prediction accuracy of the
mentioned models was examined using R?,
R%4j, RMSE, DW, F and Sig values. These
statistical results for training and test sets
of studied properties are listed in Table 7.

Figs (1, 2) show the linear correlation
between the observed values versus
predicted values of AH’yap and Ty, Were
obtained using Equations (8,9).

Regular Residuals

The residual is the difference between
the observed (experimental) value of the
dependent variable (y) and the predicted
(calculated) value (§). The residual of the
GA-MLR calculated values of AH"y,p and
T »p Show a relatively random pattern (see
Figs. 3, 4). This relatively random pattern
shows that a linear model provides a
decent fit to the data.

Table 7. Statistical parameters of models for training and test sets based on Equations 8,9

Data set property N R R? R%di RMSE DW F sig
training AH’yap a7 0.961 0.923 0.914 2.691 1.688 98.618 0.000
test AHyp 10 0.990 0.980 0.974 2.190 1.802 168.207 0.000
training T a7 0.966 0.932 0.929 3.086 1.839 573.406 0.000
test T 10 0.973 0.947 0.912 2.885 1.791 686.321 0.010
100 -+
[ ]
=80 ° : 4 *
3> T o * L
é | L ‘Q" L . :‘ ‘. : t ‘ :; : .z
cn . .
i60 . ¢ e B ‘.,.:‘.._ _.o_t!
[ ] (] *
§40 | L .‘ * o0 e §
T . # Observed AHvap kJ mol-1
<20 -
= Predicted AH"vap kJ mol-1
O T T T T T 1
0 10 20 30 40 50 60

Number of compounds

Fig. 1. Comparison between predicted and observed values of the enthalpy of vaporization at
standard condition (AH"yap kJ mol™) of the mono and PAHSs by the GA-MLR method.
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Fig. 2. Comparison between predicted and observed values of the normal temperature of
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Fig. 3. Plot of residuals against the observed values of the enthalpy of vaporization at standard
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Interpretation of the best descriptors

The obtained results and discussion lead
us to conclude that the four
descriptors(Mor08p, Morl12p, SP20 and
R7v) have been classified into topological
index, 3D-MoRSE and GETAWAY
descriptors can be used successfully for
modeling and predicting the enthalpy of
vaporization at standard condition of the
studied compounds (see Table 8).

Topological indices are designed by
transforming a molecular graph into a
number. Topological indices possess the
remarkable ability of being able to
correlate and predict a very wide spectrum
of properties for a vast range of molecular
species [35].

GETAWAY descriptor calculated from
the leverage matrix obtained by the
centered atomic coordinates [36].This
descriptor could be used for satisfactory
prediction of the thermal energy.

3D-MoRSE descriptor incorporates the
information about the whole molecule
structure, and it is a very flexible 3D
structure  encoding  framework  for
chemoinformatics and  QSAR/QSPR
purposes [37, 38].

As can be seen, only the one descriptor
(ZM1V) in topological block is useful to
predict the normal temperature of boiling
points (T pp K) of the mono and PAHSs than
the other descriptors (Table 8).

The first Zagreb index (ZM1) is the sum
of the square vertex degrees of all the non-

hydrogen atoms. First Zagreb index by
valence vertex degrees (ZM1V) is obtained
in the same way as the ZM1 index by
substituting the simple vertex degree by
the valence vertex degree [38].

CONCLUSIONS

QSPR  studies are  mathematical
correlations between molecular property
and molecular descriptors. In  this
investigation, QSPR models have been
developed to predict the normal
temperature of boiling points (T, K) and
the enthalpy of vaporization at standard
condition (AH"yap kJ mol™) of 54 mono and
PAHs. Multiple linear models were
connected for modeling and predicting
properties which are used in present study.
Molecular descriptors calculated by the
DRAGON  software.  The  suitable
descriptors were selected with the aid of
the genetic algorithm (GA) technique and
multiple linear regression (MLR) method.
To assess the vigor and prescient capacity
of the built models, leave-one-out cross-
validation, internal and external validation
methods were implemented.

Our results suggest that combining the
four descriptors (Mor08p, Morl2p, SP20
and R7v) can be used for satisfactory
prediction of AH’ys Of mono and PAHS.
These descriptors are classified as
Topological, 3D-MoRSE descriptors, and
GETAWAY descriptors.

Table 8. Molecular descriptors used for AH"ap and T

Property Symbol Description Block
T p ZM1V first Zagreb index by valence vertex degrees Topological indices
Mor08p signal 8 / weighted by polarizability 3D-MoRSE descriptors
Mor12p signal 12 / weighted by polarizability 3D-MoRSE descriptors

AH'vp  gp20

R7v

shape profile no. 20

R autocorrelation of lag 7 / weighted by van der Waals
volume

Randic molecular profiles

GETAWAY descriptors
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The results and discussion lead us to
conclude that the models established by
GA-MLR method have good correlation of
thermodynamic properties, which means
QSPR models could be efficiently used for
predicting of the above mentioned
properties of the mono and PAHs.

The QSPR model involving one
descriptor (ZM1V) provides a useful tool
in predicting the normal temperature of
boiling points (T°bp K) of mono and
PAHs. This descriptor is classified as
topological index.
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