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ABSTRACT 

The relationship between the Randic , Wiener, Hosoya , Balaban, Schultz indices, Harary numbers and 

Distance matrix to enthalpies of formation (Airf), heat capacity, (Cp) , enthalpies of combustion (AH °c ), 

enthalpy of vaporization (AH °vap) and normal boiling points (bpK)of C2  C10  normal alkanes is 

represented. 
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INTRODUCTION 
Chemical graph Theory is a branch of 
mathematical chemistry, and consequently of 
theoretical chemistry. It is concerned with 
handling chemical graphs, that is, graphs that 
represent chemical systems. Hence, chemical 
graph theory deals with analyses of all 
consequences of connectivity in a chemical 
system. In other words, chemical graph theory 
is concerned with all aspects of the application 
of graph theory to chemistry. 

Quantitative Structure- Activity Relationship 
(QSAR) research field has been widely 
developed, from its very beginnings when, in 
1865, Crum-Brown and Fraser postulated a 
relationship between any physiological 
activity and the corresponding chemical 
structure [1].Later, Richet[2] correlated 
toxicities with their solubility in water and, in 
1900, Meyer and Overton [3,4] found linear 
relationships between the toxicity of organic 
compounds and their lipophilicity. Hereinafter, 
Hammett also reported the Linear Free Energy 
Relationship, applied to the description of 
electronic properties of aromatic systems [5]. 
However, the currently used QSAR 
methodology did not evolve since, in the 60s, 
Hansch and Fujita published a free-energy 
related model to correlate biological activities 
with physicochemical properties [6]. The main 
assumption underlying in theoretical 
foundation [7-11] consists in considering that 
chemical structure contains information about 
activities. Assuming this very first premise, 
QSAR models quantify the connection 
between the structure and molecular properties 
by means of a mathematical model. More 
recently, other widely developed field in 
QSAR studies is the inclusion of three-
dimensional parameters in the description of 
compounds to predict biological properties 
[12-16]. 

In this paper, a variant of QSAR studies, the 
so-called Quantitative Structure-Property 
Relationships (QSPR), using topological 
indices as molecular descriptors [21-25], is 
studied. The incredibly great number of works 
devoted to this has led to the appearance of 
hundreds of new indices, which are useful to  

describe with more or less accuracy specific 
properties of given compounds. 

In the last few years, also the necessity of 
describing the three — dimensional character of 
molecular structures has contributed to the 
development of three — dimensional indices 
[26]. The main application of topological 
descriptors is to quantitatively correlate 
structures and properties of biologically active 
compounds [27]. But it has to be taken into 
account that, whereas chemical structures are 
discrete entities, their properties show a 
continuous variation, expressed with in a 
certain numerical range. 

The classical topological approach [28, 29] 
relates the chemical structure constitution (the 
two — dimensional model of a molecule, which 
is represented by a structural formulae) with a 
non — dimensional numerical entity, the so — 
called 	topological 	index. 	In 	this 
correspondence, each structure has a single 
descriptor associated, but not vice versa; one 
index may correspond to more than a graph. 
Here arises the problem of the degeneracy; so 
it is desirable that the indices present low 
degeneracy. 

To translate chemical structures into a single 
number, the graph theory visualizes chemical 
structures as mathematical object sets 
consisting of vertices or points , which 
symbolize atoms , and vertices or lines , 
linking a pair of edges , which represent 
covalent bonds or shared electron pairs . In 
this notation, adjacent vertices stand for pairs 
of covalently linked atoms situated at a 
topological distance equal to one. 

Classical topological indices 
A large number of topological indices have 
been defined and used. The majority of the 
topological indices are derived from the 
various matrices corresponding to the 
molecular graphs. The Adjacency matrix (A) 
and the Distance matrix (D) of the molecular 
graph have been most widely used in the 
definition of topological indices. Although a 
number of topological indices have been 
reported but only a handful of them have been 
successfully employed in QSAR/QSPR 
studies. 
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In computing, a graph is stored by means of 
matrices that account for adjacency and 
distance. Particularly , the most commonly 
used indices in graph theoretical representation 
can be coded by means of an attached 
Adjacency matrix (A), whose elements are 
composed by one if the associated atoms are 
considered directly connected , and by zero 
otherwise . From the adjacency matrix 
elements, 	topological 	indices 	are 
mathematically derived in a direct and 
unambiguous manner. These indices account 
for molecular size and shape at the same time 
and, depending on the case, they can also 
include a simple kind of three — dimensional 
information. Also, the Distance matrix (D) , 
which accounts for the topological length of 
the shortest path between two atoms , and the 
valence vector , calculated as the sum of 
entries in i — th row or j — th column of 
topological matrix , which indicates if an atom 
is primary, secondary, tertiary or quaternary, 
are essentially used. Table 1 shows the 
definition of the above — mentioned matrices, 
being n the number of atoms in the molecule 
and nb  the length of the shortest path between 

the vertices i and j. 

Table 1. Classical matrices used in chemical graph 
theory 

1 if atoms i and j 	are 	bonded 	A(n* n) 

A( j= 
0 if atoms i and j 	are not 	bonded 

{0 if i = j 	 D(n 

Di, = 
nb if i j 

From these basic definitions, a large number 
of Topological Indices has been formulated 
(30-36). Various definitions of topological 
indices have been used in order to obtain 
molecular descriptors. The most used one are 
presented below: 

Wiener index: In 1947, Wiener introduced 
the Wiener Path Number [30], which can be 
defined as the total number of bonds among all 
the Paris of atoms in a graph. The number of 
path can be calculated from the topological 
distance matrix as the half — sum of the 
elements of this matrix: 

1 N N 

W=—ZEDu  
2 i=1 j=1  

(1)  

Hosoya index: The Hosoya index, Z = Z(G) , 
Was defined in 1971[31], for non — directed 
graphs , as follows: 

N/2 
Z = E P(G'i)  

i=0 

where ./3(G'`)  is the number of selections of i 
mutually non — adjacent edges in G. 

By definition, p(G.0) = 1, and p(G1)  is the 
number of edges in G. 
The Hosoya index was firsty used to correlate 
with several of the thermodynamic quantities 
of saturated hydrocarbons, such as the boiling 
point. 

Randic index: The Randic / index was 

introduced by Randic / in 1975, as the 
connectivity index [32]. Based in the 
Classification of bonds in molecular graphs, is 
one of the most widely used topological 
indices in quantitative structure — reactivity 

relationship (QSAR) analysis. Randle 
classified the kind of bond between atoms, 
depending on the number of atoms bonded to 
each terminal vertex. 

The Randic / index is defined as: 

X = 	(d (i) d (j) 
all 
edges 

where d(i) and d(j) are the valencies 
vertices i and j that define the edge ij. 

(2)  

(3)  

of the 
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Balaban index: Balaban index, J = J(G) of G 
was introduced in 1982 [33] as one of the less 
degenerated indices. It calculates the average 
distance sum connectivity index, according to 
the equation: 

( 
J = 	(D), (D)1  

edges 

where M is the number of edges in G ; p is 
the 	cyclomatic 	number 	of 
G ; and (D)1  is the distance sum where i = 

1,2,...,N. 
The cyclomatic number p= ,u(G) of a 
polycyclic graph G is equal to the minimum 
number of edges that must be removed from G 
to transform it to the related acyclic graph. For 
trees, p= o ; for monocycles, p =1. 

The distance sum (D)1  for a vertex i of G 

represents a sum of all entries in the 
corresponding row of the distance matrix. 

= L(D) 
	

(i =1,2,..., N) (5) 
J=1 

Clearly the Wiener number can also be 
expressed in terms of the distance sums. 

N 

(6)  

Schultz index:The Schultz index (MTI) was 
introduced by Schultz in 1989 , as the 
molecular topological index [34]. It takes into 
account the effect of adjacency and distance 
matrices and the valence vector, and it is 
computed as: 

MTI =lei  
r.i 

where the ei's (i = 1,2,...,N) represent the 
elements of the following row matrix of order 
N. 

V[A+ D]= [eie2...eN l  

where V is the valency row matrix , A is the 
adjacency matrix , and D is the distance 
matrix. 

Harary number: The Harary number (H) 

was introduced in 1991 by Plavsic et al , 
[35] in honor of professor Frank Harary, due 
to his influence in the development of graph 
theory and , especially , to its' application in 
chemistry . This index is defined from the 
inverse of the squared elements of the distance 
matrix according to the expression: 

H = —EI(Dij) 
(8) 2 i„, j„, 

where D-2  is the matrix whose elements are 
the squares of the reciprocal distances. 

Mathematical methods 
The value of the determinants of Distance 
matrixes (D) and six molecular top?logical 
indices discussed in this report (equs1L8) were 
shown in Table 2. The determinants cocem 
with the above matrixes solved by using 
MAPLE — 9.01 package implemented to a PC 
— computer. 

For drawing the graphs of results, we used 
the Microsoft Office Excel — 2003 program. 

The boiling Points (K) of the alkanes are 
taken from the CRC Hand book of Chemistry 
and Physics [36] and Beilstein 

The thermodynamic values in Table 2 are 
from The NBS Tables of Chemical 
Thermodynamic Properties (1982), and NIST 
Chemistry Web Book. 

The QSPR model is built using a multilineal 
regression technique. (7)  

Discussion and Designing QSPR Models 
1 

A graph —theoretical approach to QSPR is 
based on the use of topological indices for 
encoding the structure information. HThe term 

(4) 

(7)  
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topological index indicates a characterization of 
a molecule (or a corresponding molecular graph 
by a single number .The need to represent 
molecular structure by a single number arises 
from the fact that most molecular properties are 
recorded as single numbers. Therefore, QSPR 
modeling reduces to a correlation between the 
two sets of numbers via an algebraic expression. 
(One set of numbers represents the properties, 
and the other set represents the structures of 
molecules under study.) 

A novel method for computing new descriptors 
to construct QSPR is presented. First, a brief 
review on the classical graph theory is presented 
and, then, the link with molecular similarity is 
drawn. In the applications section, molecular 
topological indices are calculated. After wards, 
the molecular descriptors, which include the 
structural information necessary to properly 
describe the system, are employed to derive 
numerical correlation with property. 
The values of the determinant of the Distance 

matrixes of the alkanes 
(C2  — C10 ) in Crease with the number of carbon. 

According to the data of Table 2&3 the 
logarithmic values of Distance matrixes and six 
topological indices increase by increasing values 

of Cp , AR; and bp (k) while the values Alif°  

and AH: decrease by increasing the above 

topological indices. 
In Figs. 1-6, it is attempted to show two 

dimensional diagrams of the relationship 
between the Randle index (X), Harary number 
(H), and the values of ATI: , 
Airvap ,AH; ,Cp,bP(K) for the (C2  — C10 ) 
alkanes. In those curves, there are high 
correlation between the values, but the curves 
Distance matrix (D), Wiener index (W), Hosoya 
index (Z), Balaban index (J), and the values of 
AH , Al-Pvap ,AH ,Cp,bP(K) for the 

(C2  — C10 ) alkanes are nonlinear correlation. 
Those nonlineary curves are not show and 
considered in this paper. 

Figs. 7-12 show the relation of log Z, log 
(D) and AH-co , AH- fo A  H  voop  Cp,bP(K). In 
those curves, there are good correlation 
between the values. 

Topological indices (TIS) such as X, H, Log 
( D), Log ( Z) with AH°  f ' 	c 5 
Ali :ap ,bP(K) and Cp , respectively. 

The QSPR model is built using a 
multilineal regression technique. 

There are several ways to design QSPR 
models. Here we outline one 	possible 
strategy which contains six steps: 

Step 1. Get a reliable source of experimental 
data for a given set of molecules. This initial set of 
molecules is sometimes called the training set[38]. 
The data in this set must be reliable and accurate. 
The quality of the selected data is important 
because it will affect all the following steps. 

Step 2. The topological index is selected and 
computed. This is also an important step because 
selecting the appropriate topological index (or 
indices) can facilitate finding the most accurate 
model. 

Step 3. The two sets of numbers are then 
statistically analyzed using a suitable algebraic 
expression. 

The QSPR model is thus a regression model, 
and one must be careful about its statistical 
stability. Chance factors could yield spuriously 
accurate correlations[39]. The quality of the 
QSPR models can be conveniently measured 
by the correlation coefficient r and the 
standard deviation s. A good QSPR model 
must have r > 0.99, while s depends on the 
property. For example, for boiling point, s < 

5 ° C. Therefore, Step 3 is a central step in the 

design of the structure-property models. 
Step 4. Predictions are made for the values 

of the molecular property for species that are 
not part of the training set via the obtained 
initial QSPR model. The unknown molecules 
are structurally related to the initial set of 
compounds. 
Step 5. The predictions are tested with 

unknown molecules by experimental 
determination of the predicted properties. This 
step is rather involved because it requires 
acquiring or preparing the test molecules. 

We will apply the procedure from the 
preceding section, to give an instructive 
example of the design of the QSPR model for 
predicting the boiling point of alkanes. As the 

0 
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initial set we will consider alkanes with up to 5 
carbon atoms (8 molecules). The 
thermodynamic properties of these alkanes are 
taken , from [37,38], and the molecular 
topolOgical indices such as the Randic index 
(X), Harary number (H), logarithmic values of 
Hosoya indices (Z), Distance matrixes (D) of 

The following structure-property models are 
.  

the most successful for the Randle index (X), 
Harary number (H), logarithmic values of 
Distance matrixes (D) and Hosoya index (Z) 
considered: 

the above 	mentioned are calculated (see 
table4). 

M1= 0.1214X3  -1.6506X2  +12.266X + 4.1897 R2=0.9998 (9)  

Cp--- 0.0208X -0.2257X2  + 0.8138X - 0.5852 R2=0.9786 (10)  

0.2895X1 	I .8424X +39.796X + 44.09 R2=0.9990 (11)  

AH=1.0793X1  -10.848X ± 157.11X -2.5201 R2 =0.9999 (12)  

bp=1.6968X' - 22.507X" +149.01X +57.896 R2  =0 .9999 (13)  

A/1:v=0.0049113 	0.1754112  +3.626511+11.397 R' =0.9999 (14)  

1Cp=0.014711' - 0.43151/ 2  +18.96511+33.848 R2=0.9999 (15)  

Ha, 	- 0.0127H3 +0.1014112  +15.02511 + 69.893 R2 =0.9999 (16)  

A1:=0.03771/1  -1.1226112  +51.26711+93.353 R2  =1 (17)  

bpO.0689H3 - 2.36431/ 2 	42.9511/ +144.61 R2=0.9794 (18)  

=-0.1785(logD)3  + 0.805(1ogD)2  + 6.494logD +14.75 R2 =0.9999 (19)  

Cp. -1.0745(10 D)1  + 9.935(log D)2  + 32.449 log D + 52.181 R‘ =0 .9999 (20)  

-1.9472(log D)3  +13.781(log D)2  + 24.695 log D + 84.791 R2  =0 .9999 (21)  

= 	2.7455(logD)' + 26.147(log D): 	89.376 log D +142.54 R2 =1 (22)  

bp = -1.745(Iog 	+ 6.0289(log D)2  + 77.554 log D + 183.99 R 2=0.9999 (23)  
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=1.3369(log Z)3 	7.5926(logZ)2  + 25.698 log Z + 7.851 rap R2 =0.9998 (24)  

Cp=3.9687(log Z)3  —15.025(log Z)2  +125.47 log Z +16.393 R2=1 (25)  

= — 5.4193(log Z)3  +153(log Z)" + 89.4781oe Z + 57.328 R2 =0.9990 (26)  

= 9.9035(log Z)3  — 37.437(log Z)2  + 337.45 log Z + 46.562 R" =0.9999 (27)  

bp=19.423(logZ)3  —105.91(logZ)2  + 310.111ogZ +101.9 R-=0.9999 (28)  

We used eqs 9-28 to predict AH: , 	; , 

AH°vap Cp bP(K) of the said alkanes for 
which the results of boiling points based on 
eqs 13, 18, 23 and 28 are shown in table 5. 

We have compared the predicted and 
experimental values of the alkanes boiling 
points (see table 5). This comparison showed 
that the eqs 18 and 23 are not suitable for 
predicting the bp (K) of these alkanes. In this 
connection, though the models 13 and 28 
having problems with some members of the 
alkanes series, but model 13 proved to have 
less problems. However, when Step 3 is 
repeated using the boiling points of all alkanes 
with up to 9 carbon atoms, we see that the 
QSPR models based on log (Z) and X did not 
improve. The slight improvement happened 
only when a biparametric model with X and N 
(N is the number of carbon atoms in alkanes) 
was used. 

Conclusions 
Graph theory has provided the chemist with a 
variety of very useful tools. In this report we 
presented a strategy for designing the 
quantitative structure — property relationships 
based on topological indices. The instructive 
example was directed to the design of the 
structure — property model for predicting the 
enthalpies of formation, heat capacity, 
enthalpies of combustion, enthalpy of 
vaporization and the boiling points of alkanes. 
Six selected topological indices and distance 
matrix were tested. The correlation of the 

Randic' index (X) , Harary number (H) , 
logarithmic values Distance matrix (D) and 
Hosoya 	index 	(Z) 	with 
AH°AH° AH° Cp and bP(K) can f 	yap 	c 

show better results , in the comparison of 
using other indices for prediction the same of 
the properties of alkanes. A characteristic 
polynomial is constructed for the reference 
structure with the graphs for the 
given molecule taken into account. 

Fig.I.The curve of the Randic indices(X) versus 

AH; , AH: for the C2  C10  normal 

alkanes 

Fig.2.The curve of the Randic indices(X) versus 

normal boiling point(K0 for the C2  — CIO normal 

alkanes 
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T(k) 

5 10 	15 

Fig.3.The curve of the Randic indices(X) versus Cp 

for the C2  — C10  normal alkanes. 

Fig.4. The curve of the Harary number (H) versus 

AH° ap ,AH° All: for the C, —C10  normal v 	f 
alkanes. 

Fig.5. The curve of the Harary number (H) versus 

Cp forthe C2  — C10  normal alkanes. 

Fig.6. The curve of the Harary number (H) versus 

normal boiling point for the C2  — C10 normal 

alkanes 

Fig.7. The curve of the log (D) versus AH:ap , 

, AH: for the C2  — C10  normal alkanes. 

Fig.8. The curve of the log (D) versus normal 

boiling point for the C2  — C10  normal alkanes 

Fig.9.The curve of the log (D) versus Cp for the 

C2  — C10  normal alkanes 

Fig.1 O. The curve of the log (Z) versus AH,°,p , 

AH , All: for the C2  — C10  normal alkanes. 
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Fig.I I.The curve of the log (Z) versus Cp for the 

C2 - C10 normal alkanes 

Fig.12. The curve of the log (Z) versus normal 

boiling point for the C2  - C10  normal alkanes 

Table 2. The Randic indices (X), Distance matrixs (D), Wiener numbers (W) Hosoya indices(Z), Balaban indiccs(J), Schultz indices (MTH, 

Harary numbers (B) and M1 ,,Aff",,C7p, AK', ,and the normal Boiling points 

(bp inK) of Alkanes -C10 )( In Pressure 1 bar and 298 K) 

Alkane X D W .1 MI! H 
Air, Cp,,, Ai,, r,,, hp(K) 

All", 
kimot ' 

k.  1 	rnal"' Jinni K' ki .mor 

Ethane I I 1 2 1 4 1 -84.738 52.63 14.79 184.55 -1428.51 

Propane 1.4142 4 4 3 1.6330 16 2.2500 -103.890 73.60 18.80 231.05 -2044.97 

Butane 1.9142 12 10 5 1.9747 38 3,6111 -126,190 98.49 22.49 272.65 -2659.60 

Pentane 2.4142 32 20 8 2.1906 74 5.0347 -146.490 120.07 25.83 309.25 -3273.50 

Hexane 2.9142 80 35 13 2.3391 128 6.4983 -167.290 142.60 28.82 342.15 -3888.50 

Heptan 3.4142 192 56 21 2.4475 204 7.9897 -187.890 165.20 31.59 371.55 -4503.50 

Octane 3.9142 448 84 34 2.5301 306 9.5015 -214.780 187.80 34.29 398.85 -5118.5 

Nonatie 4.4142 1024 120 55 2.5951 438 11.0289 -229.190 210.40 36,71 423.92 -5733.55 

Decane 4.9142 2304 165 89 2.6476 604 12.3687 -249.790 233.10 38.93 447.27 -6348.60 
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Table 3. Logarithmic values of Randle /  indices (X) Distance matrixes (0) , Wiener numbers (W) Hosoya indices (Z) , Balaban indices (I) , 

Schultz indices (MT1) , Harary numbers (H) 

Alkane Log X Log D Log W Log Z Log J LogMTII Log 14 

Ethane 0 0 0 0.3010 0 0.6020 

Propane 0.1505 0.6020 0.6020 0.4771 0.2130 1.2041 0.3522 

Butane 0.2820 1. 0792 1 0.6990 0.2955 1.5798 0.5576 

Pentane 0.3828 1.5051 1.3010 0.9031 0.3406 1.8692 0.7020 

Hexane 0.4645 1.9031 1.5441 1.1139 0.3690 2.1072 0.8128 

Heptan 0.5333 2.2833 1.7482 1.3222 0.3887 2.3096 0.9025 

Octane 0.5926 2.6513 1.9243 1.5315 0.4031 2.4857 0.9778 

Nonane 0.6448 3.0103 2.0792 1.7404 0.4141 2.6415 1.0425 

Decane 0.6914 3.3625 2.2175 1.9494 0.4228 2.7810 1.0993 



UT
iJ

•f
ry

'r
u

ia
to

*o
oq

i  'g
  S

ic
q

j  
90

0Z
 I P

A
 ̀£

 ' 9
N

 ̀E
 .19

/1
 

Table 4. The Randie indices (X), Harary numbers (H), logarithmic values of Hosoya indices (Z), Distance matrixes of alkanes with up to 

5 carbon atoms 

Alkalies X H Z Log (Z) D Log (D) 

2,2,4-wimethylhexane .9545 12.0853 33 1.5185 5120 3.7093 

2,2,5-trimett ylhexane 3.9165 11.9692 32 1.5051 5120 3.7093 

2,4,4-trinuthylhexane 3.9772 12.1564 34 1.5315 4608 3.6635 

2-methyl propane 1.7321 3.7500 4 0.6021 12 1.0792 

3,3- dimethylpentane 3.1213 8.7292 16 1.2041 208 2.3181 

2,3- dimethylbutane 2.6427 6.9444 10 1 80 1.9031 

3-ethylheptan 4.3461 11.4794 52 1.7160 1024 3.0103  

4-ethyl-2-methyliexane 4.2019 11.7364 44 1.6434 5120 3.7093 
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Table 5. Comparison between predicted (four model) and experimental values of the normal boiling point (K) of alkanes with  

up to 5 carbon atoms 

Alkanes bp(exp)/K 

mod(..1 
(13) 

bp(cal)/K 

	

model 	model 

	

(18) 	(23) 
model 
(28) 

model 
(13) 

- bp 	)1 

model 	model 
(18) 	(23) 

model 
(28) 

2,2,4-tri methyl hexane 399.65 400.121 439.99 471.66 396.55 -1.61 -40.34 -72.01 3.10 

2,2,544 methyl hexane 397.15 398.195 438.13 471.66 394.95 -1.045 -40.98 -74.51 2.20 

2,4,4-tri methyl hexane 399.65 401.26 441.12 468.11 398.19 -1.62 -.41.47 -68.46 1.46 

2-methyl propane 261.45 257.288 276.06 272.51 254.46 4.162 -14.61 -11.06 6.99 

3,3- di methyl pentane 359.25 355.324 385.21 363.77 355.66 3.926 -25.96 -4.52 3.59 

2,3-di methyl butane 331.15 325.81 351.94 331.58 325.52 5.34 -20.79 -0.43 5.63 

3-ethyl heptan 416.15 419.676 430.33 472.08 420.33 -3.526 -14.18 -55.93 -4.18 

4-ethy1-2-methyl hexane 406.95 412.521 434.42 471.66 411.70 -5.570 -27.47 -64.71 -4.75 
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