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ABSTRACT 
The interaction between proteins and membranes has an important role in biological pro-cesses. 
We have calculated energies of interaction between Melittin and DMPC bilayer in different 
temperatures. We have used the CHARMM software for MD simulation under the canonical (N, 
V, E) ensemble at different temperatures. The computations have shown that water molecules 
have more penetration into the bilayer around the transition temperature of DMPC bilayer. 
Phosalone, malathion and diazinon were analyzed in corn oil using solid phase extraction (SPE) 
with lanthanum silicate as a new solid sorbent followed by gas chromatography with nitrogen the 
detector. 
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INTRODUCTION 
Interaction between cell membranes and proteins is very 
important and interesting form molecular biology point of 
view. DMPC is one of the most important phospholipids in 
cell bilayers. Then, investigation of interaction between 
peptides and DMPC Bilayer is very important. Melittin 
which includes 26 residues (1): 

Gly1-Ile2-Gly3-Ala4-Val5-Leu6-Lys7-Val8-Leu9-
Thr10-Thr11-Gly12-Leu13-Pro14-Ala15-Leu16-Ile17-Ser18-
Trp19-Ile20-Lys21-Arg22-Lys23-Arg24-Gln25-Gln26, is the 
major protein component of the bee venom (Apis 
mellifera), which is known to cause hemolysis (2-4).  
Melittin’s secondary structure is well established to be 
highly α-helical in its crystalline state (5) and may form 
some type of tetrameric aggregate in high ionic strength 
aqueous solutions (6-7). Each of peptides, in the core of 
tetrameric form, consists of an amphipathic curved helix 
which is included hydrophobic residues. It seems, position 
and orientation of melittin in phospholipids bilayer is 
depend on the experiment conditions. Whereas, the  

 
 

NMR structures were determined in detergent 
Micelles and in nonpolar solvent, in which the protein is 
present as a monomeric form (8-9). In accord with its 
amphipathic amino acid sequence, in α-helical form, the 
helix was oriented parallel to the membrane-solution 
interface such that the apolar residues are facing the 
hydrophobic core of the membrane and the polar 
residues are facing the water bulk phase (10-12). Other 
investigations, however, give a transbilayer (13-15) form 
and some of these give both of them (16-17). 

In fact melittin, in α-helical form, has two segments: 
hydrophobic segment (from Gly1 to Leu 13) and 
amphiphilic segment (from residue Ala15 to Gln26). The 
proline residue at position 14 is responsible for a bend 
separating two segments. This residue as well as the 
polar residues 23-26 at the C-terminus of melittin has 
been shown to be essential for the lysis activity (19-20, 
23-25).  

Orientation of melittin in lipidbilayer depends on 
PH, this presents N-terminus protonation condition
 

 
 

and actually its interaction with membrane (18). In 
the present work we report the results of molecular 

dynamics trajectories for a fully hydrated DMPC 
bilayer in different temperatures. 
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METHODS 
The microscopic system consist of one melittin 
monomer (N-terminus unprotonated), 41 DMPC (17 
in the upper layer and 24 in the lower layer), and 1888 
water molecules, for a total 10935 atoms. Each fully 
hydrated DMPC monomers were constructed by the 
HF level of theory and the basis-set, 6-31g (d). 
Because in fact, the average cross-sectional area of a 
single DMPC molecule is 64 A°2 (21), this 
corresponds to a total of 24 DMPC molecules (low 
layer), or to one melittin and 17 DMPC molecules 
(upper layer). To determine the initial position of each 
lipid, the DMPC polar heads were first represented by 
effective spheres with a cross-sectional area of 64 A°. 
Center of the system was assigned in Z=0 and the 
phospholipid head groups were constrained at Z=17 
A° and Z=-17 A° for the upper and lower layers, 
respectively. Boundary conditions (cutoff, cuton, 
cutim) in all steps were constant. Dimensions of the 
system were chosen as: 48×32×71 A°3. Total charge 
of protein with unprotonated N-terminus was 
assigned +4e and normal of bilayer was put in Z 
direction. For illustrating an unlimited planer layer, 
periodic rectangular boundary conditions were 
applied. In simulation cell melittin is deeply inserted 
into the top layer and its axis was assumed roughly 
parallel to Y axis. The system was then fully hydrated 
by overlaying preequilibrated water box of the 
appropriate dimension in X and Y. 

The Langevin dynamics was used for this study; 
in this manner following Langevin equation were 
applied. The Langevin equation is stochastic 
differential equation for a Brownian particle given by: 
mν⋅ + ∂Φ(x, t)/∂x = -αν +ξ (t)        (1) 

Where α is the friction coefficient and ζ (t) a 
randomly fluctuating with noise term, with <ζ (t)> = 
0, and <ζ (t) ζ (t′)> = 2αkBTδ (t-t′). The left-hand side 
in Eq.1 represents the deterministic, conservation part 
of particle dynamics, while the right-hand side 
accounts for the effects of thermal environment. The 
friction coefficient α and the thermal noise ζ (t) are 
connected through the Einstein relation 
D = kBT/α           (2) 

where D is the diffusion coefficient.     
All of stages were mentioned above, repeated for 

the five temperatures (266, 276, 296, 316 and 336K). 
Before every dynamics step, the system was minimized 
for removing all of bad contacts. After that, 250 Ps was 
done to reach the system in equilibrium, then the 
system minimized in during 610 Ps dynamics until 
making a good correlation coefficient.  

RESULTS AND DISCUSSION 
According to the investigations before, degree of 
freedom of acyl chains of lipidbilayers are increased 
due to increasing in temperature (22). Results 
illustrate, because of this effect, many different kinds 
of conformation can be created to stabilize the 
lipidbilayer and the protein immersed (Fig. 1). In this 
manner, due to increasing in temperature, there are 

many possibilities for construction of several 
Vanderwalss bonds between hydrophobic segments 
of proteins and phospholipid acyl chains for 
optimizing of the system. The ensemble for this 
investigation was (N V E), for each of temperatures. 
The change of energy of the system goes down when 
the temperature approaches to 296K, the temperature 
of phase transition of DMPC bilayer, and 
Vanderwalss repulsive energy decreased, too (table 
1). It is obvious, the system approaches to stability 
with increase in degree of freedom of acyl chains of 
each single DMPC molecules, when the system 
changes from gel phase to liquid crystal phase (Fig. 
2).But with more increasing in temperature and 
degree of freedoms of acyl chains of lipidbilayer 
monomers, change in energy of the system increased 
whereas stability of the system decreased.  

In this investigation it is obvious that 
perturbation in acyl chains of core of the 
lipidbilayer, due to increasing of temperature, 
increased. In this position, it is obvious from 
trajectories, penetration of water molecules into the 
lipidbilayer core, especially in region of Lys23, is 
increased (Fig. 2). When temperature increased to 
Tt, perturbation decreased in core of lipidbilayer 
where hydrophobic segment of melittin is there, 
and after that increased. 

In Tt, the hydrophobic segment approaches to 
normal of lipidbilayers and, the more approach, the 
energy of the system more minimized (Fig. 3). 
When temperature goes up from 266 K to 336 K, 
the curve passes through a minimum around 276 K 
(when acyl side chains of DMPC monomers 
achieve more degree of freedom and changes from 
totally trans form to partially gush).  

 Then as temperature increased the curve passes 
through another minimum about 296 K (when the 
system riches Tt). Since a biological system works 
better around normal temperature (298 K), this 
minimum has the most important role in this 
diagram. And then with increasing in temperature 
stability of the system decreased (Fig.3). These 
changes come from tow kind of energies,   
Electrostatic and Vanderwalss. As it is overused 
from (Fig.4), Electrostatic portion has the most 
important role in changes of stabilization energy of 
the system. While temperature increased form 266 
K to 336 K, Electrostatic energy deeply increased 
(when polar end of melittin diffuse into polar head 
groups of DMPC monomers) and at the same time 
Vanderwalss repulsions between acyl chains of 
DMPCs increased. With more increase in 
temperature degree of freedom of acyl chains goes 
up and while temperature rich around 296 K, 
system access another stable state.  

While amphiphilic segment of melittin diffuses in 
polar head groups of phospholipids, water molecules 
diffuse in lipidbilayer system, simultaneously (Fig. 2), 
and it is especially because of residue Lys23, so at the 
same time tow water molecules diffuse into the 
nonpolar core of lipid bilayer.  
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In this time, increasing in electrostatic energy 
illustrates a potent evidence for this phenomenon 
(table 1). This is in an evidence for decreasing in 
Vanderwalss attractive forces between acyl chains of 
lipidbilayers in core and hydrophobic segment of 
melittin (table 1). Then it is obvious that the 
penetration of water molecules into the phospholipid 
bilayer system and melittin configuration are depend 
on temperature and position of residue Lys in 
position 23.  

Interpretation of Ramachandran plots 
It is assumed, melittin has a α-helical structure (5). 
For such structures, Phi and Psi have values about -
60 and -40 degree respectively. As it is illustrated 
in (Fig.5) there are three areas for degrees of Phi 
and Psi with critical alterations. Some residues like 
Ala4, Thr11, Gly12, Arg22, Lys23 and Arg24 are in 
these areas. Perhaps, existence of these areas is 
depending on Gly and Thr and their inconstancy 
 

effect on α-helix structure. It is observed as well as 
relative increase in temperature the residues from Val5 
to Thr11 and also from Pro14 to Arg22 which are 
depend on tow segments of melittin (hydrophobic 
segment and hydrophilic segment, respectively) have 
unchanged configurations, it means, these residues are 
in acceptable regions of Phi and Psi degrees. 
However, Conformation of melittin, with increasing 
in temperature, returns to roughly ordered 
configuration of α-helix, as it is observed in results of 
Ramachandran plots (Fig.5). While temperature 
increasing from 276K to 336K, relative percent of 
residues in acceptable regions of Phi and Psi is 
decreased (Table 2). There a significant relation, 
around 316 K, in increasing of attraction forces 
between penetrated water molecules and hydrophilic 
segment of melittin. In addition it is obvious that 
residue Lys 23 when temperature increased from 276 
K to 336 K, transfers from unaccepted region to 
accepted region of Phi and Psi. This illustrates, while 
increasing temperature to 296 K, fully helical 
structure formed around Lys23, so that melittin access 
a more stable structure.  

 
 

Table 1. Difference of energies of the system from initial states. All results are in terms of (kcal/mol) 
 

Temperature (K) ∆E ∆Vanderwalss ∆Electrostatic 
266 -30.83664 11.76545 207.76248 

276 -6203.53489 178.6523 -4356.77173 

296 -5518.42187 -30.6223 -3363.67711 

316 -5029.76783 -37.43318 -2942.16116 

336 -190.07075 70.41362 -521.37697 
 

Table 2. Relative abundance of residues of melittin in acceptable regions of Ramachandran plots.  
Total results of energies are in term of (kcal/mol)  

 

Temperature (K) 276 296 316 336 
Rational percent of residues in 
acceptable regions 69.2 50 61.5 46.1 

 

 
 
 
 
 
 
 

 
 
 
 

Fig.1. A sample conformation of Melittin in DMPC bilayer in 296 K. 
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Fig.2. A sample conformation of the system of melittin immersed into DMPC bilayer 
in 296 K. In this picture melittin is into the top layer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Changes of total energy of the system of Melittin immersed in DMPC lipid bilayer in  

different temperatures, A to E is related to 266, 276, 296, 316 and 336 K respectively.  
Total results of energies are in terms of (kcal/mol). 

 

changes of Total energy

-8000
-6000
-4000
-2000

0
260 310

Temperature (K)

ch
an

ge
s 

of
 

en
er

gy
 (K

ca
l/m

ol
)



J.Phys. & Theo.Chem.I.A.U. Iran                      M. Monajjemi et al.                                  Vol. 2, No. 2, Summer 2005 

 67

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Electrostatic and Vanderwalss portion of energy of the system. Top curve is related to Vanderwalss 

and below curve is the Electrostatic portion. Total results of energies are in terms of (kcal/mol) 
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Fig.5. Fluctuations of Phi and Psi angles, accessed from Ramachandran Plots in different temperatures.  

(A) and (B) are related to Phi and Psi, respectively. 
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