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ABSTRACT
Essential Qils are highly concentrated substances the subtle, aromatic and volatile liquids. The
use of essential oils is largely widespread in foods, deodorants, pharmaceuticals, drinks,
cosmetics, medicine and embalming antiseptics especially with aromatherapy becoming
increasingly popular. The lipophilicity of an organic compound can be described by a
partition coefficient, logP, which plays a significant role in drug discovery and compound
design. A data set of 40 compounds in the essential oil of kesum was randomly divided into 3
groups: training, test and validation sets consisting of 70%, 15% and 15% of data point,
respectively. A large number of molecular descriptors were calculated with Dragon software.
The Genetic Algorithm - Multiple Linear Regressions (GA-MLR) and genetic algorithm -
artificial neural network (GA-ANN) were employed to design the Quantitative Structure-
Property Relationship (QSPR) models. The predictive powers of the QSPR model was
discussed using Coefficient of determination (R?), Absolute Average Deviation (AAD) and
the Mean Squared Error (MSE). The R? and MSE values of the MLR model were calculated
to be 0.734 and 0.194 respectively. The R? and MSE values for the training set of the ANN
model were calculated to be 0.9905 and 2x10™ respectively. Comparison of the results
revealed that the application the GA-ANN method gave better results than GA-MLR method.

Keywords: QSPR; multiple linear regressions; artificial neural network; genetic algorithm;
essential oils; octanol- water partition coefficient

INTRODUCTION

Essential Oils are highly concentrated
substances the subtle, aromatic and volatile
liquids extracted from the flowers, leaves,
stems, seeds, bark and roots of herbs,
bushes, shrubs and trees through
distillation. Natural essential oils are
usually mixtures of terpenoids, aromatic

“Corresponding author: t. momeni@iau-arak.ac

and aliphatic compounds such as alcohols,
aldehydes, ketones, carboxylic acids,
esters, lactones and sulfides. The use of
essential oils is largely widespread in
foods, deodorants, pharmaceuticals, drinks,
cosmetics, medicine and embalming
antiseptics especially with aromatherapy
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becoming increasingly popular.

Essential oils and their constituents are
commonly known for their antibacterial,
antifungal and

antiparasitic activity, and there are also
reports on  the  antimycobacterial
properties[1].

Kesum (Polygonum minus) is an

aromatic plant commonly used in Malay
delicacies. This plant produces essential oil
containing high levels of aliphatic
aldehydes [2]. Kesum leaves is applied to
hair to remove dandruff, used in aroma
therapy [3] and in the perfume industry [4].
This plant has also been reported to
possess several pharmacological properties
like antimicrobial activity [5], cytotoxic
activity [6], antioxidant activity [7] and
anticancer activity [8,9].

Lipophilicity, as the ability of a
molecule to mix with an oily phase rather
than with water, is usually measured as
partition coefficient, P, between the two
phases and is often expressed as the
logarithm of the partition coefficient
between n-octanol and water (logP,w). This
coefficient is inversely related to the
solubility of a compound in water. LOgP
is commonly wused in Quantitative
structure-property/ activity relationships
(QSPRs/QSARs) studies and drug design
[10-13] since this property is related to

absorption  [14], distribution  [15],
metabolism [16], excretion [17], and
toxicity [18].

The QSAR models included the

octanol-water partition coefficient as the
molecular  property and  quantum
mechanical descriptors such as the
energies of the highest occupied molecular
orbital and the lowest unoccupied
molecular orbital, Eqomo and ELumo have
been applied to predict the
antimycobacterial activity of Twenty-five
constituents of essential oils [19]

The relationship between the molecular
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structures of the essential oil compounds
and their antifungal activity have been
done using the partial least squares (PLS)
method ,10gPow, Exomo, and the number of
hydrogen-bond donor atoms in the
molecules of the compounds studied
(Donor) as molecular descriptors [20].

The QSAR studies have been widely
used to understand the relationship
between the chemical structure and
biological activity of the molecules [19,
21].

The antibacterial activity of phenolic
compounds in essential oils has been
investigated by QSAR studies. These
studies have been shown the importance of
the contribution of the octanol-water
partition coefficient (Poy) in relation with
the hydrophobic and amphiphilic character
of the molecule [1].

Properties such as the n-octanol-water
partition coefficient, Vapor pressures (Py)
and aqueous solubility (Sw,) are important
in predicting the environmental fate of
organic compounds[22,23].

The objective of this study was to
develop QSAR models for prediction the
log Pow Of 40 compounds in kesum
essential oil.

The QSPR model was constructed using
the genetic algorithm (GA) variable
selection, multiple linear regression and
the Back-Propagation artificial neural
network (BPANN) methods.

MATERIALS AND MATHEMATICAL
METHODS

The chemical compounds in Essential
Oils are compounds with a wide range of
biological activities and they are the basis
of several groups of drugs. A data set
containing 40 compounds in kesum
essential oil was used in this study. The
chemical structure of molecules was drawn
with the Gauss view program and
optimized with the Gaussian 09W program
based on the B3LYP functional and a 6-
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31G* basis set. The name, structure,
formula and logP,, of the studied
compounds in kesum, such as Nerolidol,
Xanthorrhizol, Valencene, Farnesol and
Drimenol are listed in Table 1. The logPow
values were taken from the literature [24].
The molecular descriptor is the final
result of logic and mathematical procedure
which transforms chemical information
encoded within a symbolic representation
of a molecule into a useful number [25]
and they are the independent chemical
information used to predict the
properties/activities of compounds in the
research fields of QSPR/QSAR [26-28].
1489 molecular  descriptors  were
calculated for selected compounds using
the software DRAGON Version - 2006
package [29]. This software provides more
than 4000 molecular descriptors that are
divided into 20 logical blocks such as
geometrical, getaway, WHIM, RDF,

topological,  functional  group  and
constitutional descriptors [30, 31].

The genetic algorithm (GA) is written
in MATLAB (version 2010a) environment
has been used to reduce the number of
descriptors derived from output Dragon
software.  Also  backward stepwise
regressions have been used to decrease the
number of descriptors. The present back
step program uses a backward variable-
selection algorithm that starts with a set of
n variables and, on the basis of a statistical
usefulness criterion, selectively deletes one
variable at a time to form progressively
smaller subsets of predictors. After
remove the predictor with the highest p-
value greater than 0.05. Then Refit the
model and go to the Previous step. Stop
when all p-values are less than 0.05. The
software package SPSS 21.0 for Windows
is used to implement multilinear regression
[32].

Table 1. The name, chemical structure of 40 compounds in kesum essential oils and their logP,,, used in the
present study

No. Name Formula Log Pow Chemical structure

H
1 1-Decanol CioH20 3.12 ”WOH

H

HO. H
2 1-Dodecanol CioHas0 3.9 HWH
H H
H OH
3 1-Hexanol CgH140 1.56 HXW
H
OH
H
4 1-Nonanol CoHao0 2.73 HW
H

5 Alloaromadendrene oxid- C1sHO 3.48 o

(1)
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No. Name Formula Log Pow Chemical structure
6 Alloaromadendrene CisHas 4.27

7 a-Bisabolol Ci5H20 3.65

8 o-Caryophyllene CisHos 4.89

9 o-Curcumene CisHa 4.84

10 (-)-o-Panasinsene CisHoy 411

11 a-Pinene CioH16 3

12 a-Selinene CisHos 4.73

13 S-Carvophyllene oxide Cy5H240 3.94

14 S-Cubebene CisHos 4.27

15 cis-Lanceol CisH2,0 4.01 : S ~on
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No. Name Formula Log Pow Chemical structure
o)
16 Decanal C1oH200 3.33 HMH
" H
H
17 Dodecanal CioH20 411 H °
H
H
18 Dodecanoic acid C12H240, 3.99 /\/\/\A/\)L
HiC OH
o
19 Drimenin Ci5H»0, 3.32
O, H
20 Drimenol Ci5H20 3.78
21 (E)-Caryophyllene CisHos 4.73
H H H
"
22 Farnesene CisHzs 5.2 H AN AN Y4
H
¥
CHs CH, CHy
23 Farnesol Ci5H20 4.4
157126 \ \ \
HsC OH
H
0 H
24 Hexanal CsH1,0 1.77 H
H
25 Humulene CisHoa 6.59 A
"
26 Isobornyl acetate C1oH500, 2.76
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Chemical structure

No. Name Formula Log Pow
27 iso-Caryophyllene CisHas 3.94
28 n-Decanoic acid C1oH200, 3.21
29 Nerolidol CisH,60 4.4
30 Nonanal CqH450 2.94
31 o-Cadinine C15H24 4,74
32 Tetradecanal C14H20 4.89
33 trans-a-bergamotene CisHoa 473
34 trans-a-(Z)-bergamotol Cy5H240 473
35 trans-Longipinocarveol Cy5H24,0 3.53
36 Undecanal C11H2,0 3.72
H
H
37 Undecane Ci1Hoa 4.54 '
H
H H
38 Valencene CisHoa 4,73 :
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No. Name Formula Log Pow Chemical structure
. P
39 Xanthorrhizol Cy5H2,0 4,55 HO
W
40 S-Himachalene CisHas 4.08
RESULTS AND DISCUSSION EEig05x  (EigenvalueO5 from edge

Multiple Linear Regressions

The data set of 40 compounds was
randomly separated into two groups, a
training set of 30 compounds (75%) that
was applied to create model and a test set
of 10 compounds (25%) that was used to
assess the performance of the made model.

Structural-activity model was generated
using the backward multiple linear
regression (BW-MLR) procedure of SPSS.
The octanol-water partition coefficient
(logPow) as the dependent variable and
dragon molecular descriptors as the
independent variable was used. Quality of
the models was indicated by statistics
parameters: correlation coefficient (R),
squared regression coefficient (R?), the
Root Mean Squared Error (RMSE), Fisher
ratio (F), Durbin- Watson (DW) and
Significance (Sig) [33, 34].

The BW-MLR analysis led to the
derivation of 6 models for the logPq, with
3-8 descriptors (Table 2). As can be seen,
the three descriptors are useful to predict
the logP, which are: Mor09u (signal 09 /

adj,matrix weighted edge degrees). These
descriptors are classified as 3D-MoRSE
descriptors, molecular properties and
Eigenvalues indices respectively.

With the selected descriptors, we have
built the linear model using the training set
data, (30 compounds) and obtained the
following equation:

log Pow = 1.156 + 0.670 ALOGP + 0.493
EEig05x — 0.643 Mor09u Q

N=30, R=0.857, R*=0.734, R%; =0.704,

F=23.944, DW=1.808, Sig=0.000, MSE=
0.192

The MSE of this model was 0.192 and
the R? value was 0.734. If squared
regression coefficient is higher than 0.75
(R? >0.75), it indicates that there is a linear
regression relationship between variables.
But the MSE value indicated that the
statistical results are not very satisfactory
and there is no suitable linear relationship

: . between molecular  descriptors and
unweighted), AL.QGP (Ghose-Crippen octanol-water partition coefficient.
octanol-water partition coeff. (logP)) and

Table 2. Statistical parameters of the models calculated with the SPSS software for the log Pow
models Indepdndent Variables R R’ R’adj RMSE F Sig
1 Mor25v,Mor09u,Mor31e,IDDE,ALOGP,X0AvV,EEig05x,VEp1 0.893 0.798 0.721 0.438 10.350 0.000
2 Mor25v,Mor09u,Mor31e,IDDE,ALOGP,EEig05x,VEpl 0.892 0.796 0.731 0.438 12.257 0.000
3 Mor09u,Mor31e,IDDE,ALOGP, EEig05x,VEp1 0887 0787 0731 0.438 14140 0.000
4 Mor09u,Mor31e, ALOGP, EEig05x,VEp1 0876 0.767 0718 0.438 15801 0.000
5 Mor09u, ALOGP, EEig05x,VEp1 0863 0.746 0.705 0.438 18309 0.000
6 Mor09u, ALOGP, EEig05x 0857 0734 0704 0.438 23944 0.000
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Artificial Neural Network (ANN)

Because of the poor statistical results of
the linear model, a non-linear model was
also constructed in this study.

Acrtificial Neural Network (ANN) is an
intelligence model and it imitates the
working method of the human brain. A
typical ANN system consists of a number
of simple processing elements called
neurons or nodes. These neurons are
organized into different groups which are
called layers. ANN contains three different
layers: an input layer, one or more hidden
layer, and an output layer of neurons [35].

In the ANN study, for the learning
process, the data sets were randomly
divided into 3 groups: training, test and
validation sets consisting of 70%, 15% and
15% of the data point, respectively. The
software would use the training data to
build a basic model. The best algorithm
based on minimum absolute error was
selected when simulation trainings were
completed [36, 37].

Among the ANN learning algorithms,
the backpropagation (BP) method is one of
the most generally used methods.

In this study, the BP algorithm strategy
was used to develop and optimize the
biases and the weights. The artificial

Input layer

Hidden layer

neural network model is presented with
Neural Network Toolbox techniques in
MATLAB R2010b [38].

The number of input neurons was equal
to that of the selected molecular
descriptors. The GA-MLR selection
procedure selected 3 descriptors for use as
the input layers for ANN. The number of
hidden neurons is an important parameter
influencing the performances of the ANN
model. In this work, we constructed
BPANN model with 2-10 neurons in the
hidden layer, individually and one node in
the output layer. The input and output data
were normalized between 0.1 and 0.9 using
the following equation to avoid numerical
overflows due to very large or very small
weights.
y=0.8x% (

Xj — Xmin

) +0.1 2)

Xmax — Xmin

The mean squared error (MSE) and
squared regression coefficient (R%) were
calculated and recorded after every 10
cycles. The hidden layer with 6 neurons
was produced the lowest MSE and the
highest R®.

(Fig. 1) shows the structure of a Back-
Propagation Artificial Neural Network
(BPANN).

Out layer

Fig. 1. Structure of a back-propagation artificial neural network.
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To evaluate the ANN performance, the
squared regression coefficients (R®) Root
Mean Square Error (RMSE) and Absolute
Average Deviation (AAD) were used as
criteria.

These parameters are defined as
follows: The coefficient of determination
(R?) represents the fraction of the variance
of Y "explained" by the correlation of Y
with X. It gives the proportion of the
variance (fluctuation) of one variable that
is predictable from other variables [39].

n 2
RZ2=1-— Z{ (Yi.pred - Yi,exp) ]
i=1

(Yavg,exp - Yi,exp)2

The mean squared error (MSE) is
defined as the average of the squares of the
errors and the difference between the
attribute which is to be estimated and
the estimator [40], Root Mean Square
Error (RMSE) is known to between
observed and predicted estimated data is
evaluated. Also, it is supposed that the
indices with less estimated errors are more
important [41].
MSE = %ZET(Yi,pred - Yi,exp)2

(3)

(4)

N (v )
RMSE=\/ZI=1(Yl,pred YI,exp) (5)

n

The absolute average deviation (AAD
(%)) indicates the relative absolute
deviation in percent from the calculation
values.

1

N 2
ADD% = {_ (Yi,pred - Yi,exp)

Yi,pred

"2

( )} x 100 (6)
i=1

In the above equations, n is the number
of experimental data; Yipred and VYiexp are
the predicted and experimental responses,
respectively, and Yayg, exp IS the average of
experimental values.

The R?, MSE, RMSE and ADD values
of total, training, testing and validation are
listed in Table 3.

Comparison of the values of MSE and
other statistical parameters in Table 3
clearly indicates that the superiority of the
GA-BPANN model over the GA-MLR
model. The mean square error of 0.192 for
the total set by the GA-MLR model should
be compared with the value of 2x10™ for
the GA-BPANN model. Based on these
results, there is the non-linear relationship
between logP,, of the studied essential
oils.

The experimental (observed) and
predicted (calculated) values of the
octanol-water partition coefficient of

constituents of essential oils using BPANN
and MLR models are listed in Table 4.

Comparison of the residual values for
logP,w Oof compounds in kesum essential
oil versus the experimental values has been
demonstrated in Fig.3. As can be seen the
propagation of errors in both sides of zero
are random shown in Fig. 3.

Table 3. Performances of MLR and BPANN, QSAR Models

BPANN
SET R? MSE RMSE ADD
Total 0.9910 0.0002 0.0141 2.7358
Training 0.9905 0.0002 0.0151 2.7178
Test 0.9931 0.0043 0.0658 3.5902
Validation 0.9922 0.0002 0.0153 1.9652
MLR
SET R’ MSE RMSE F
Total 0.734 0.192 0.438 23.94
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Fig. 2. Plot of the calculated logP against the experimental values for the training (a), test(b) and validation(c)
sets.
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Table 4. The experimental, predicted and residual values of the logP,, by GA-BPANN and GA-MLR methods

BPANN(normalized) MLR

Predicted Residual Predicted Residual

No. Experimental log Pow log Pow log Pow Experimental log Pow log Pow log Pow

1 0.348 0.344 0.004 3.12 3.24639  -0.07895
2 0.472 0.462 0.010 3.9 3.74955 0.21975
3 0.100 0.114 -0.014 1.56 1.92783 0.00833
4 0.286 0.270 0.017 2.73 2.9486 -0.10925
5 0.405 0.406 -0.001 3.48 3.7262 -0.0434
6 0.531 0.557 -0.026 4.27 4.50305 0.09479
7 0.432 0.453 -0.021 3.65 432806  -0.09437
8 0.630 0.632 -0.003 4.89 451683  -0.05244
9 0.622 0.610 0.012 4.84 5.10338 0.06127
10 0.506 0.506 0.000 4.11 3.64512  -0.00592
11 0.329 0.329 0.000 3 293139  -0.00963
12 0.604 0.606 -0.002 4.73 4.51584 0.02276
13 0.479 0.481 -0.003 3.94 4.30821 0.01768
14 0.531 0.522 0.009 4.27 4.42634 0.06972
15 0.490 0.492 -0.002 4.01 4.09353  -0.03001
16 0.382 0.400 -0.018 3.33 3.37956  -0.02512
17 0.506 0.497 0.009 411 3.93631 -0.0684
18 0.486 0.492 -0.005 3.99 3.96594 0.00042
19 0.380 0.397 -0.017 3.32 3.54487  -0.07211
20 0.453 0.450 0.003 3.78 3.76043  -0.01019
21 0.604 0.611 -0.007 4.73 4.82554 0.2373

22 0.679 0.669 0.010 5.2 4.97812 0.10529
23 0.552 0.542 0.010 4.4 4.66123 -0.0708
24 0.133 0.146 -0.013 1.77 1.56476 0.04152
25 0.900 0.894 0.006 6.59 5.13554 0.02776
26 0.291 0.311 -0.020 2.76 2.55556  -0.01416
27 0.479 0.497 -0.018 3.94 4.86771 -0.3496
28 0.362 0.374 -0.011 3.21 3.34192 0.0673

29 0.552 0.555 -0.004 4.4 440545  -0.02304
30 0.319 0.318 0.001 2.94 2.92504 0.1459

31 0.606 0.599 0.007 4.74 4.32982 0.11172
32 0.630 0.632 -0.002 4.89 4.88552 0.04703
33 0.604 0.567 0.037 4.73 450621  -0.13859
34 0.604 0.595 0.009 4.73 3.97178 0.1654

35 0.413 0.402 0.012 3.53 3.47266  -0.00497
36 0.444 0.452 -0.009 3.72 3.77199 0.00185
37 0.574 0.546 0.028 4.54 417879  -0.16619
38 0.604 0.639 -0.035 4.73 4.65904 0.01669
39 0.576 0.570 0.006 4.55 517134  -0.11187
40 0.501 0.513 -0.012 4.08 4.44454 0.01655
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Fig.3. Plot of the residual values for logP,,, of compounds versus the experimental values.

Interpretation of the best descriptors

The results and discussion lead us to
conclude that combining of the three
descriptors selected by GA, namely
MorO9u, ALOGP and EEig05x can be
used successfully for modeling and
predicting the logP,, of compounds in
kesum essential oil. These descriptors have
been classified in 3D-MoRSE descriptor,
molecular properties and Eigenvalues
indices respectively. 3D-MoRSE
descriptor derived from the knowledge of
the 3D structure of the molecule and it
plays a significant role in
chemoinformatics and  QSAR/QSPR
purposes [42, 43]. Molecular properties
indices have been improved such as

Moriguchi logP, Ghose-Crippen logP,
Lipinski rule-of-five, etc.

The GhoseCrippen octanol  water
coefficient (ALOGP) is a group

contribution model for the octanolwater
partition coefficient [44,45,46].

One of eigenvalue descriptor is the so-
called  eigenvalue-based  topological
molecular indices (EIl). A descriptor from
this set is defined using eigenvalues that
come from one of the graph matrices (e.g.
adjacency matrix). The EIl introduced by

46

Ernesto Estrada (therefore named as
Estrada index) It has been successfully
applied in modeling the folding in
biomolecules. These indices can be
classified into several groups by the nature
of graph parameters used in their
definitions [47-50].

CONCLUSIONS

In the present study, QSAR models
have been developed to predict the logPow
of 40 compounds in kesum essential oil by
genetic  algorithm  -multiple  linear
regression  GA-MLR) and  genetic
algorithm - Back-Propagation Artificial
Neural Network (GA-BPANN). Molecular
descriptors were calculated with Dragon
software and The Genetic Algorithm (GA)
and backward Multiple Linear Regression
(MLR) methods were used to select the
suitable descriptors and to generate the
correlation models that relate the chemical
structural features to the biological
activities.

The squared correlation coefficient (R?),
and mean square errors (MSE) have been
designed to evaluate the quality and
predictive ability of the linear and
nonlinear models. Also other statistical
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Parameters such as root mean squared
error (RMSE), and absolute average
deviation (AAD(%)) were used as a
criterion. The R? and MSE values of the
MLR and ANN models were calculated
0.734, 0.192and 0.9910, 2x10™
respectively. The obtained results showed
that the BPANN model with three selected
descriptors  (Mor09ul, ALOGP and
EEig05x) could be used to predict logPow
of compounds in kesum essential oil.
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