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ABSTRACT 

Monte Carlo and Multiple Linear Regression (MLR) and Imperialist Competitive Algorithm 

(ICA) were used to select the most appropriate descriptors. Examining the quality of the 

model by comparing the mean squared error (MSE) and correlation coefficient (R
2
), indicated 

that 140 is the most appropriate number of empires for the gas phase. In the Monte Carlo 

method, CORAL software was used and the data were randomly divided into training, 

calibration, and test subsets in three splits. The correlation coefficient (R
2
), cross-validated 

correlation coefficient (Q
2
) and standard error of the model were calculated to be respectively 

0.9301, 0.7377, and 0.595 for the test set with an optimum threshold of 4. It was concluded 

that simultaneous utilization of MLR-ICA and Monte Carlo method can lead to a more 

comprehensive understanding of the relationship between physico-chemical, structural or 

theoretical molecular descriptors of drugs to their biological activities and facilitate designing 

of new drugs. 
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1. INTRODUCTION

Etoposide
1
 is an anti-cancer drug that 

belongs to topoisomerase inhibitor family 

of medication that is used for treatments of 

testicular, bladder, prostate, lung, stomach, 

and uterine, cancers [1]. Quantitative 

structure–activity relationships (QSAR) 

are mathematical methods that correlate 

physicochemical and molecular descriptors 

to the biological activity of chemicals and 
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are widely used for providing insights into 

the key structural features that affect the 

biological responses (e.g., half maximal 

inhibitory concentration (IC50)) of drugs 

[2,3]. A QSAR approach includes two 

main parts; modelling and optimization. 

The former part correlates the descriptors 

to the response, while the latter’s duty is to 

probe for the most significant descriptors.  
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Many linear and non-linear models 

coupled with variety of optimization 

algorithms have been employed in QSAR 

studies [4, 5]. Imperialist Competitive 

Algorithm (ICA) is a new population-

based optimization algorithm that was 

proposed by Atashpaz-Gargari and Lucas 

in 2007 [6] and since then it was employed 

in solving a variety of optimization 

problems [7-9]. The algorithm starts with 

an initial population. The individuals 

(countries) are two type: imperialists and 

colonies. The most powerful countries are 

selected as imperialists and the rest as the 

colonies of these imperialists. The total 

power of an empire depends on both power 

of the imperialist country and power of its 

colonies [7]. 

The most powerful empires tend to 

increase their power while weak empires 

collapse. All empires try to take possession 

of colonies of other empires and control 

them. This is modeled by just picking 

some of the weakest colonies of the 

weakest empires and making a competition 

among all empires to create these colonies.  

Recently, CORAL has been proposed as 

competent software for the QSAR studies. 

It uses Monte Carlo method  to find the 

most important simplified molecular input-

line entry system (SMILES )-based 

descriptors and calculate their correlation 

weights to predict an endpoint (e.g., -

log(IC50)). SMILES are lines of symbols, 

representing the molecular structure [12-

14]. 

In the present study, CORAL software 

and a MLR-ICA approach were used to 

investigate the QSAR in 25 Etoposide 

anticancer drugs. 

2. Theory and Computational Methods 

2.1. Selection of Descriptors Using MLR-

ICA Approach 

Details of geometry optimizations of 

compounds were described in our previous 

work [10]. Geometries of 25 Etoposide 

anti-cancer drugs were optimized using 

B3lyp/6-311g at Gaussian 03W. Modeling 

and optimizing calculations for QSAR 

were performed by MATLAB 2014a 

software [19, 20]. The 1092 and 977 SPSS 

screened descriptors [11] were used as the 

feed to ICA-MLR approach as the 

population matrix in order to find the best 

descriptors for the gas and solution phases. 

The numbers of the most effective 

descriptors (i.e., 4 for the gas) chosen by a 

stepwise multiple linear regression 

procedure in our previous work was used 

as a basis for the number of descriptors in 

this work.   

The employed ICA of this work is 

depicted in Figure 1. In this algorithm, the 

initial countries, which are equivalent to 

chromosomes in the genetic algorithm are 

indices of the descriptors matrix. They are 

set of values of a candidate solution for the 

optimization problem. Empires are sub-

populations of countries. Assimilation, 

which can be considered as a primitive 

form of Particle Swarm Optimization 

moves all non-best countries (called 

colonies) in an empire toward the best 

country (called imperialist) in the same 

empire [15] to find the colonies with 

lowest error (RMSE of predicted –

log(IC50) using MLR versus empirical 

values).  

Different number of decision variables 

(nDes) and different number of empires 

(nEmp) were investigated to obtain the 

least RMSE and highest R
2
 using ICA.  

 

2.2. Monte Carlo Method 

CORAL [17] software was used for 

calculation of descriptor correlation weight 

(DCW) of the 25 Etoposide compounds 

with a hybrid optimization scheme 

including hydrogen-suppressed molecular 

graph (HSG) and SMILES representation 

of molecular structures. Modelling using 

CORAL software was carried out for 

thresholds of 1 up to 5 and 100 epochs 

(i.e., an overall number of 1500 runs were 
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performed). Each sequence of 

computations for finding a new set of 

modified correlation weights of the model 

is named an epoch [16]. The SMILES-

based and Graph -based optimal 

descriptors are achieved using the 

following equations [12, 16]:  

 
 

 

Fig. 1. Flowchart of the Imperialist Competitive Algorithm. 
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Where, Sk, SSk, and SSSk denote 

SMILES attributes. The NOSP (nitrogen, 

oxygen, sulfur, and phosphorus) and 

HALO (fluorine, chlorine, and bromine) 

are demonstrated the presence or absence 

of chemical elements. Also “BOND” are 

shown double (=), triple (#), or stereo 

chemical bonds (@ or @@). Ak in 

equation (2) indicates the occurrence of the 

C, N, O atoms in the HSG and HFG 

molecular graphs. The α, β, γ, and δ 

coefficients and combinations of their 

values are used to define various versions 

of the graph-based optimal descriptor and 

can be 1 or 0. The hybrid objective 

function for finding the optimal descriptors 

is defined as [14]:  

(3) 

   (        )
      

    (        )
       

     (        )
      

 

3. RESULTS and DISCUSSION 

3.3. Molecular Descriptors Generation 

with MLR-ICA Approach 

All studied Etoposide compounds have 

been presented in table 1 [10].  

 
Table 1. Optimized structure of the Etoposides derivatives used to build QSAR models with B3lyp/6-31g in gas 

phase [10] 

 

1 

 

pIC50=2.7064 

 
2 

 

pIC50=0.3573 

 
3 

 

pIC50=0.2025 

 
4 

 

pIC50=0.0855 

 
5 

 

pIC50=0.1771 

 
6 

 

pIC50=0.0829 
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7 

 

pIC50=-0.3808 

 
8 

 

pIC50=3.9873 

 
9 

pIC50=3.3039 

 
10 

pIC50=3.2292 

 
11 

pIC50=3.2405 

12 

pIC50=2.29381 

 
13 

pIC50=2.1841 

 
14 

pIC50=3.4392 

 
15 

pIC50=3.3008 

 
16 

pIC50=3.2098 
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17 

pIC50=3.2081 

 

 
18 

pIC50=3.2060 
 

 
19 

pIC50=3.2559 

 

 
20 

pIC50=2.6637 

 

 
21 

pIC50=3.2063 

 

 
22 

pIC50=3.2125 
 

 
23 

pIC50=3.2068 

 

 
24 

pIC50=2.5969 

 

 
25 

pIC50=3.3063 
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As a first trial, 5000 iterations were 

performed to find the most powerful 

empires and, subsequently, the best 

descriptors. A plot of the Best Cost values 

versus the number of iterations is 

represented in Fig. 2. The figure implies 

that there is no variation in the best cost 

after about 100 iterations. However, in 

order to ensure that the best descriptors are 

captured, the number of iterations for the 

rest of computations was set to 500.  

The effects of number of selected 

descriptors on the chosen descriptors and 

the prediction quality (according to R
2
 and 

RMSE) were investigated and the results 

are plotted in Fig. 3. As it is expected, the 

model's accuracy regarding to R
2
 and RMS 

increases by increasing the number of 

model parameters (descriptors in this case).  

In order to choose the most suitable 

number of empires, the model was run 

using different number of empires and the 

results are demonstrated in Fig. 4. 

According to this figure, the optimum 

number of empires was chosen as 140. 

A plot of the predicted versus empirical 

values of –logIC50 is depicted. The figure 

implies that the developed model possesses 

a high correlation coefficient, indicating 

that the experimental and predicted values 

are well correlated (Fig. 5). 

The chosen descriptors using MLR-ICA 

approach are presented in Table 2.  

 

 
Fig. 2. Plot between Best Cost values compared to the variation of Iteration. 

 

 
Fig. 3. variation of R

2
 and MSE by varying the number of empires for the gas phase 

R
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R
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Fig. 4. Variation of R

2
 and MSE by varying the number of empires for the gas phase 

 

 

Fig. 5. Plots of predicted versus Goal values of log(ICP50)". 

 
Table 2. Selected descriptors using MLR-ICA Method with nDes=4 and nEmp=140 in the gas phase 

 

Descriptor Definition Type 

H5p H autocorrelation of lag 5/weighted by atomic polarizabilities GETAWAY descriptors 

nBnz Number of benzene like rings Constitutional descriptors 

JGI5 Mean topological charge index of order 5 Topological charge indices 

VEA2 Average eigenvector coefficient sum from adjacency matrix Eigenvalue based indices 

 

The presented information in table 2 

show that polarizabilities, number of 

Benzene like rings, JGI5 (Topological 

charge indices) and VEA2 (Eigenvalue-

based indices) in gas phase are the most 

important descriptors for designing this 

class of drugs. Eigenvalue-based indices 

descriptors are computed from weighted 

distance matrices of a hydrogen-depleted 

molecular graph. The following weighted 

distance matrices are required for the 

computation of eigenvalue-based indices 

descriptors. Topology charge index has 

been proposed to evaluate the charge 

R
M
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E
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2
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transfer between pairs of atoms and the 

global charge transfer in the molecule [11]. 

The graphs of H5p,nBnz, JGI5 and 

VEA2 descriptors in the gas phase versus 

the empirical negative logarithm half 

maximal inhibitory concentration  

(–logIC50) were plotted by using the 

Matlab program (Fig. 6 ).  

The charts show that the empirical 

negative logarithm half maximal inhibitory 

concentration (-logIC50) value increases 

with increasing H5p and nBnz descriptors, 

and thus the half maximal inhibitory 

concentration (IC50) value is reduced.  

As the JGI5 and VEA2 descriptors 

increased the empirical negative logarithm 

half maximal inhibitory concentration (-log 

IC50) value decreased, and then the 

increase in these descriptors increased the 

half maximal inhibitory concentration 

value. 

 

3.2. Result of the Monte Carlo Method 

The statistical parameters of the models 

obtained using molecular graphs (HSG) 

and SMILES are shown in Table 3. 

Performance of the models were compared 

with each other by the criterion of the 

predictability in test set  (Rm
2
) which 

should be larger than 0.5 [18], correlation 

coefficient (R
2
) in each set, cross-validated 

correlation coefficient (Q
2
) and standard 

error of estimation (s). The difference 

between R
2
m and R'

2
m values 

(ΔRmTEST) was used as another criterion 

in this issue. The depicted results in table 3 

disclose that for all of the three splits, 

threshold of 4 gives the best results. The 

results with threshold of 4 for the three 

Monte Carlo probes are presented in table 

3, 4.  

The SMILES-based models are the 

following: 

 
 

  
Fig. 6. Variations of -logIC50 in terrms of the MLR-ICA chosen descriptors. 

 

Split 1: (T=4) 

-logIC50 = -15.7728463 (± 0.1282099) + 0.1338664 (± 0.0010600) * DCW(4,100) 
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n=12, R
2
= 0.9526, Q

2
=0.9423, s = 0.294 (training set) 

n=8, R
2 

= 0.9772, Q
2 
= 0.9673, s = 0.54 (calibration set) 

n=5, R
2 

= 0.9301, Q
2
=0.7377, s = 0.595  (test set), R

2
m TEST= 0.6033 

 

Spit 2: (T=4) 

-logIC50 = -7.6317696 (± 0.4240583) + 0.0907350 (± 0.0035242) * DCW(4,100) 

n=13, R
2 

= 0.7324, Q
2
=0.6585, s = 0.709 (training set) 

n=6, R
2 

= 0.9995, Q
2 
= 0.9984, s = 0.318 (calibration set) 

n=6, R
2 

= 0.8030, Q
2 
= 0.6188, s = 0.842  (test set), R

2
m TEST= 0.5034 

 

Spit 3: (T=4) 

-logIC50 = -8.3928675 (± 0.1542551) + 0.0706452 (± 0.0012585) * DCW(4,100) 

 

n=10, R
2 

= 0.9629, Q
2 
= 0.9483, s = 0.290 (training set) 

n=8, R
2 

= 0.9997, Q
2 
= 0.9995, s = 0.441 (calibration set) 

n=7, R
2 

= 0.5187, Q
2 
= 0.4634, s = 1.55 (test set), R

2
m TEST = 0.4843 

The prediction for Split 1 and probe 1 is better than the others. 

 
Table 3. Statistical data calculated with both HSG for three random splits into test set . Best model are indicated 

by bold 
 

Threshold 
R

2 
test 

Probe 1 

R
2 
test 

Probe 2 

R
2 
test 

Probe 3 

R
2 
test 

Average 
Dispersion 

SPLIT 1      

1 0.7567 0.7666 0.7771 0.7668 0.0084 

2 0.8054 0.7927 0.8065 0.8015 0.0063 

3 0.9259 0.9234 0.9129 0.9207 0.0056 

4 0.9301 0.9171 0.9190 0.9221 0.0058 

5 0.7528 0.7933 0.8158 0.7873 0.0261 

SPLIT2      

1 0.7908 0.8066 0.8067 0.8014 0.0075 

2 0.7882 0.8043 0.7897 0.7941 0.0073 

3 0.8538 0.8353 0.8680 0.8524 0.0134 

4 0.9026 0.8601 0.8739 0.8789 0.0177 

5 0.8553 0.8849 0.8535 0.8646 0.0144 

SPLIT3      

1 0.6572 0.6506 0.6387 0.6488 0.0076 

2 0.6621 0.6659 0.6565 0.6615 0.0039 

3 0.6529 0.6725 0.6564 0.6606 0.0085 

4 0.7546 0.7308 0.7560 0.7471 0.0115 

5 0.7210 0.7241 0.6995 0.7149 0.0109 
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The variation of correlation coefficient 

(test set) with respect to threshold and the 

number of epochs are plotted in figure 7. 

This figure confirms that 4 and 70 are the 

most appropriate values for threshold and 

number of epochs, respectively.  

The distribution of SMILES notations 

in the train, calibration and test sets are 

reported in table 5.  

The corresponding values of DCW, 

experimental and calculated activities (-log 

IC50) for the sequence of compounds of 

table 5 are given in table 6. The given 

experimental and predicted in table 6 are 

plotted against each other in figure 8. A 

good correlation between the calculated 

and empirical values of –log IC50 can be 

observed in this figure that approves the 

appropriateness of the developed model.  

 
Table 4. Statistical quality of models calculated with both HSG and SMILES for Training, calibration and test 

 

Threshold-probe R
2
 Q

2
 S 

R
2
m 

TEST[31] 

Should 

be>0.5 

R*
2
m 

TEST[30] 

Should be>0.5 

ΔRmTEST[32] 

Should be<0.2 

4-1 

Training(n=12) 

 

0.9526 

 

0.9423 

 

0.294 

   

Calib(n=8) 0.9772 0.9673 0.54    

Test(n=5) 0.9301 0.8371  0.5332 0.6033 0.026 

4-2 

Training(n=12) 

 

0.9517 

 

0.9412 

 

0.296 

   

Calib(n=8) 0.9772 0.9675 0.52    

Test(n=5) 0.9171 0.8110 0.64 0.461 0.5677 0.0321 

4-3 

Training(n=12) 

 

0.9524 

 

0.9418 

 

0.294 

   

Calib(n=8) 0.9767 0.9666 0.53    

Test(n=5) 0.9190 0.87706 0.63 0.670 0.5767 0.0305 
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B) 

 

 
C) 

 
D) 

 

Fig. 7. The variation of correlation coefficient for test set by threshold and number of epochs. (A): effects of 

threshold. (B) Effects of the number of epochs. (C) 3-D surface plot of R
2
 according to the threshold and the 

number of epochs. (D) Contour plots of R
2
 according to the threshold and the number of epochs. 
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Table 5. SMILES notations 25 compound of Etoposide and train, Calibration and test set 
 

Compound SMILES Set 

1 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=CC5=C4CC6=C5C=CC=C6

)C7=CC8=C(OCO8)C=C27 
Train 

2 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC(=CC=C4)O)C5=CC6=C(OC

O6)C=C25 
Train 

3 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(C=C4)C#N)C5=CC6=C(

OCO6)C=C25 
Train 

4 
CCOC(=O)C1=CC=C(NC2C3COC(=O)C3C(C4=CC(=C(O)C(=C4)OC)OC)C5=CC6=C

(OCO6)C=C25) C=C1 
Train 

7 
+:COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=CC5=CC6=C(C=CC=C6)

C=C45)C7=CC8=C(OCO8)C=C27 
Train 

10 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(OCCO)C=C4)C5=CC6=C

(OCO6)C=C25 
Train 

11 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(COCCO)C=C4)C5=CC6=

C(OCO6)C=C25 
Train 

14 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(NC(=O)CCC5=CC=CC=

C5)C=C4)C6=CC7=C(OCO7)C=C26    : 
Train 

15 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(NC(=O)/C=C/C5=CC=C

C=C5)C=C4)C6=CC7=C(OCO7)C=C26~: 
Train 

16 
COC1=CC(=CC(=C1O)OC)C2C3C=C4OCOC4=CC3C(NC5=CC=C(CCN6CCOCC6)C

=C5)C7COC(=O)C27 
Train 

19 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CCN5CCCCC5)C=C4)C6

=CC7=C(OCO7)C=C26 
Train 

24 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(OC4OC5COC(C)OC5C(O)C4O)C6=C

C7=C(OCO7)C=C26 
Train 

6 
COC(=O)C1=CC=C(NC2C3COC(=O)C3C(C4=CC(=C(O)C(=C4)OC)OC)C5=CC6=C(

OCO6)C=C25)C=C1 
Calib 

9 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=C5C=CC=CC5=C6C=CC7=CC=

CC=C7C6=C4)C8=CC9=C(OCO9)C=C28~: 
Calib 

12 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(COCCCO)C=C4)C5=CC

6=C(OCO6)C=C25 
Calib 

13 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(COCCCCO)C=C4)C5=C

C6=C(OCO6)C=C 
Calib 

17 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CCN5CCCC5)C=C4)C6=

CC7=C(OCO7)C=C26 
Calib 

21 
CCN(CC)CCC1=CC=C(NC2C3COC(=O)C3C(C4=CC(=C(O)C(=C4)OC)OC)C5=CC6=

C(OCO6)C=C25)C=C1 
Calib 

22 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CCN(C(C)C)C(C)C)C=C

4)C5=CC6=C(OCO6)C=C25 
Calib 

25 COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(O)C4=CC5=C(OCO5)C=C Calib 

5 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC5=C(OCO5)C=C4)C6=CC7=

C(OCO7)C=C26 
Test 

8 
#:COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC5=CC=CC6=CC=C7C=CC

=C4C7=C56)C8=C2C=C9OCOC9=C8 
Test 

18 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CC(=O)N5CCCC5)C=C4

)C6=CC7=C(OCO7)C=C26 
Test 

20 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CCN(C)C)C=C4)C5=CC6

=C(OCO6)C=C25 
Test 

23 
COC1=CC(=CC(=C1O)OC)C2C3C(COC3=O)C(NC4=CC=C(CN5CCCCC5)C=C4)C6=

CC7=C(OCO7)C=C26 
Test 
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Table 6. Calculated values for DCW, the experimental activity data (-log IC50) and calculated values for -log 

IC50 with application of CORAL in split1(T=2) 
 

Compound Set DCW Exp Calc 

1 Train 119.14928 0.079 0.1772 

2 Train 147.55382 4 3.9797 

3 Train 119.27411 0.194 0.1939 

4 Train 137.16075 3.301 2.5884 

7 Train 120.43932 0.347 0.3499 

10 Train 141.98748 3.26 3.2345 

11 Train 138.4508 2.294 2.7615 

14 Train 139.15017 2.592 2.8547 

15 Train 134.67843 2.541 2.2561 

16 Train 142.65475 3.357 3.3238 

19 Train 139.19023 2.616 2.86 

24 Train 141.05121 3.108 3.1092 

6 Calib 136.97304 0.076 0.006 

9 Calib 136.67293 -0.362 -0.2 

12 Calib 138.64178 3.523 2.7866 

13 Calib 138.82949 2.939 2.8118 

17 Calib 139.00252 3.699 2.8349 

21 Calib 138.81552 3.367 2.8099 

22 Calib 138.85869 3.409 2.8157 

25 Calib 138.55922 2.903 2.7756 

5 Test 136.95114 3 2.5603 

8 Test 124.68771 0.017 0.9186 

18 Test 136.15678 2.18 2.454 

20 Test 139.81184 2.818 2.9433 

23 Test 139.00252 3.398 2.8349 

 

 
 

Fig. 8. Correlation between experimental and predicted –logIC50 calculated using Eq.3. 

 

Molecular features are sorted according 

to their correlation weights and are given 

in table 7. Molecular feature with negative 

correlation weights are omitted due to their 

inverse effect on the -logIC50 value. The 

higher the correlation weigh of a molecular 

feature, the lower the value of IC50, 

therefore, the feature is more significant. 

Definitions of the molecular features are 

given in table 8.  

According to table 7, presence of 

Presence of cyclic ring, Absence of 
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halogens, Presence of double bond, 

Presence of sp2 carbon connected to ring, 

Presence oxygen connected to ring, 

Presence of nitrogen connected to sp3 

carbon, Presence of sp2 carbon connected 

to ring are the most important molecular 

features that might be considered in 

designing new drugs.  

 

4. CONCLUSIONS 

In this study, MLR-ICA approach was 

used to study the structure-activity 

relationships of 25 Etoposide Anticancer 

Drugs. The best descriptors with 

nEmp=140 in gas phase was more 

significant than other descriptors. These 

results proved that H5p, nBnz, JGI5, 

VEA2  descriptors in the gas phase were 

more significant than other descriptors to 

create QSAR model and predict biological 

activity of Etoposide substitution patterns.  

The half maximal inhibitory 

concentration IC50) value reduced with 

increasing H5p (weighted by atomic 

polarizabilities ) and nBnz (Number of 

benzene like rings ) descriptors.  As the 

JGI5 (charge transfer between pairs of 

atoms and the global charge transfer in the 

molecule) and VEA2 (weighted distance 

matrices of a hydrogen-depleted molecular 

graph) descriptors increased the half 

maximal inhibitory concentration (IC50) 

value increased. 

It was concluded that the simultaneous 

use of these two methods gives deeper and 

more comprehensive knowledge of the 

effect of molecular and structural 

descriptors on the activity of drugs and 

provides better insights to design new 

drugs. 
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Table 7. SMILES attributes with positive correlation weights for split 1 
 

SMILES attributes CWs SMILES attributes CWs 

1...........: 5.26003 N...C.......: 6.53305: 

2........... 5.34035 O...1.......: 7.76373 

3...........: 5.59580 6...(.......: 6.10104 

BOND10000000 11.07657 :=...1.......: 5.44523: 

:=...4.......: 6.31714 C...1.......: 5.58715: 

C...2.......: 5.31651 HALO00000000 5.49792 

 

Table 8. Definition of the promoter of Ak 
 

Attribute Ak Comment 

HALO00000000 Absence of F, Cl, Br 

C...C....... Presence of carbon – carbon bonds (sp3) 

C…(…C… SP3 Carbon atoms with branching 

++++O---B2== Presence of oxygen and double bonds 

C…=……. SP2 Carbon atom 

(........... Branching in molecular skeleton 

O........... Presence of oxygen 

1........... Presence of rings 

++++N---B2== Presence of nitrogen and double bond 

= Double bond 

@ Stereo specific bond 

# Triplet bond 
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داروهای  QSARمدل سازی جدید در مطالعه  -سازی کاربرد روش مونت کارلو و یک روش بهینه

 اتوپوزاید
 

2، بابک مطهری1، قاسم قاسمی1، ربابه صیادی کردآبادی1امید علیزاده 
 

 
 ایران ˛رشت ˛دانشگاه آزاد اسلامی ˛واحد رشت ˛گروه شیمی و مهندسی شیمی 1
 ایران ˛رشت ˛دانشگاه آزاد اسلامی ˛واحد رشت ˛گروه مهندسی کامپیوتر 2

 

 

 

 

 چکیده

ترین توصیف  ( برای انتخاب مناسبICA( و الگوریتم رقابتی استعماری )MLRمونت کارلو و رگرسیون خطی چندگانه )

Rو ضریب همبستگی ) (MSEها استفاده شد. با بررسی کیفیت مدل با مقایسه میانگین خطای مربع ) کننده
(، مشخص شد که 2

ها به طور  استفاده شد و داده CORALافزار  در روش مونت کارلو، از نرم ترین تعداد امپراتوری برای فاز گاز است. مناسب 101

Rضریب همبستگی ) تصادفی به سه زیر مجموعه آموزش، کالیبراسیون و آزمون تقسیم شدند.
(، ضریب همبستگی معتبر 2

Q)متقاطع 
محاسبه شد.  0برای مجموعه آزمون با آستانه بهینه  1.888و  1.8388،  1.8311( و خطای استاندارد مدل به ترتیب 2

از رابطه بین توصیف تری از  تواند به درک جامع و مونت کارلو می MLR-ICAنتیجه گیری شد که استفاده همزمان از روش 

و ها منجر شود  های بیولوژیکی آن های تئوری داروها با فعالیت ف کنندهشیمیایی و ساختاری یا توصی -های فیزیکی کننده

 .طراحی داروهای جدید را تسهیل کند

 

 روش مونت کارلو ؛ICAالگوریتم  ؛QSAR ؛اتوپوزاید ها: کلید واژه
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