تحلیل چندسطحی رابطه ادراک مهارتهای تشخیصی معلم، سطح چالشانگیزی کلاس، کیفیت تدریس معلم و هیجانات پیشرفت مثبت با عملکرد ریاضی در دانش-آموزان پایه نهم
محورهای موضوعی : تکتونواستراتیگرافیآرش آخش 1 , عسکر آتش افروز 2 * , منیجه شهنی ییلاق 3 , مرتضی امیدیان 4
1 - دانشجوی دکتری روانشناسی تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
2 - استادیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
3 - استاد، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
4 - دانشیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
کلید واژه: کیفیت تدریس, مهارتهای تشخیصی, سطح چالشانگیزی, هیجانات پیشرفت,
چکیده مقاله :
مقدمه: هدف پژوهش حاضر، تحلیل چندسطحی رابطه ادراک مهارتهای تشخیصی معلم، سطح چالشانگیزی کلاس، کیفیت تدریس معلم و هیجانات پیشرفت مثبت با عملکرد ریاضی در دانشآموزان پایه نهم بود.
روش: پژوهش از نوع همبستگی و به صورت تحلیل چندسطحی بود. جامعه آماری این پژوهش، کلیه دانشآموزان پایه نهم پسر و دختر دوره متوسطه اول شهرستان کهگیلویه در سال تحصیلی 1402-1401 بود که از میان آنها، نمونه ای 1000 نفری (500 پسر و 500 دختر) به روش تصادفی چندمرحلهای انتخاب شد. برای سنجش متغیرهای پژوهش، از پرسشنامه ارزیابی کلاس گارتنر، مقیاس ادراک دانشآموزان از فعالیتهای کلاسی جنتری و اسپرینگر، مقیاس کیفیت تدریس کریاکیدز و همکاران، پرسشنامه هیجانات پیشرفت پکران و همکاران و نمرات نوبت اول درس ریاضی دانش آموزان استفاده شد. دادهها به کمک مدلسازی خطی سلسلهمراتبی (HLM) تحلیل شد.
یافتهها: تحلیل چندسطحی نشان داد متغیرهای سطح 1 (هیجانات پیشرفت مثبت) و سطح 2 (میانگین هیجانات پیشرفت مثبت کلاس، ادراک مهارتهای تشخیصی معلم، سطح چالشانگیزی کلاس، کیفیت تدریس معلم) به طور مثبت و معنیدار، پیشبین عملکرد ریاضی بودند. تعامل متغیرهای سطح 2 (میانگین هیجانات پیشرفت مثبت کلاس، ادراک مهارتهای تشخیصی معلم و سطح چالشانگیزی کلاس) با شیب رابطه هیجانات پیشرفت مثبت و عملکرد ریاضی معنیدار بود.
نتیجهگیری: بر اساس تحلیل چندسطحی در این پژوهش میتوان نتیجه گرفت، توجه به افزایش هیجانات پیشرفت مثبت در دانشآموزان و ارتقاء متغیرهای کلاسی (میانگین هیجانات پیشرفت مثبت کلاس، ادراک مهارتهای تشخیصی معلم، سطح چالشانگیزی کلاس و کیفیت تدریس معلم)، منجر به بهبود عملکرد ریاضی دانشآموزان و نگرش مثبت آنها نسبت به این درس خواهد شد.
Introduction: The aim of this multilevel analysis research is to investigate the relationship of perception of teachers’ diagnostic skills, challenging level of the class, quality of teacher’s teaching and positive achievement emotions with math performance in ninth grade students.
Method: The research method was a correlational type, namely multilevel analysis. The statistical population of this research was all ninth grade male and female students of first secondary school in Kohgiluyeh city, in Iran, in the academic year of 1401-1402, among them, a sample of 1000 people (500 Male and 500 female) was selected by multi-stage random sampling. Gartner's Class Evaluation Questionnaire (2010), Gentry and Springer's Scale of Students' Perception of Classroom Activities (2002), Kyriakides et al.'s Teaching Quality Scale (2000), Pakran et al.'s achievement emotions questionnaire (2005) and students' grades of the first semester of math lessons were used to measure the variables of the research. Data were analyzed using Hierarchical Linear Modeling (HLM) method.
Results: The results of multilevel analysis showed that variables of level 1 and level 2 were positively predicting math performance of students. The interactions of level 2 variables with the slope of the relationship between positive achievement emotions and math performance were significant.
Conclusion: Based on the multilevel analysis in this research, it can be concluded that paying attention to the increase of students' positive achievement emotions and the improvement of class variables will lead to the improvement of students' mathematical performance and their positive attitude towards this lesson.
References
1- Clements DH. Linking research and curriculum development. In L.D. English (Ed.), Handbook of international research in mathematics education. Mahwah, NJ: Lawrence Erlbaum Associates; 2002, pp:599-629.
2- Delavar A, Ghorbani M, Borjali A, Asadzhde H. Investigating effective motivational and attitudinal factors in predicting the progress of mathematics, in order to formulate a structural model for second grade students High school. Research in Educational Systems. 2011; 4(6):9-26. [In Persian] https://civilica.com/doc/1277354/
3- Staub FC. Mathe matics Classroom Cultures: Methodological and the Oretical Issues. International Journal of Educational Resarch. 2007; 46:319-326. https://doi.org/10.1016/j.ijer.2007.10.007
4- Brunner M, Anders Y, Hachfeld A, Krauss S. The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, & W. Blum, 2013.
http://dx.doi.org /10.1007/978-1-4614-5149-5_11.
5- Sudkamp A, Kaiser J, & Moller J. Accuracy of teachers' judgments of students' academic achievement: A meta-analysis. Journal of Educational Psychology. 2012; 104(3): 743-762. http://dx.doi.org /10.1037/ a002 7627.
6- Loibl K, Leuders T, Dorfler T. A framework for explainingteachers’ diagnostic judgements by cognitive modeling (DiaCoM). Teaching and Teacher Education. 2020; 91: 103059. [DOI:10.1016/j.tate.2020.103059]
7- Urhahne D, Wijnia L. A review on the accuracy of teacher judgments. Educational Research Review. 2021; 32:100-374. https://doi.org/10.1016/ j.edurev. 20 20.100374.
8- Behrmann L, Souvignier E. The relation between teachers’ diagnostic sensitivity, their instructional activities, and their students’ achievement gains in reading. Zeitschrift für Padagogische Psychologie. 2013; 27(4):283-293. https://doi.org/10.1024/1010 0652 /a000112.
9- Kaufmann E. How accurately do teachers judge students? Re-analysis of Hoge and Coladarci (1989) meta-analysis. Contemporary
Educational Psychology. 2020; 63: 101902. https://doi.org/10.1016/j.cedpsych.2020.101902
10- Gentry M, Gable RK, Rizza MG. Student perceptions of classroom activities: Are there grade-level and gender differences. Journal of Educational Psychology. 2002; 94: 539-544. https://doi.org/10.1037/0022-0663.94.3.539
11- Larocque LM. Assessing perceptions of the environment in elementary classrooms: The link with achievement. Journal of the Association of Educational Psychologists. 2008; 24:289-305. DOI:10.1080/02667360802488732
12- Gentry M, Springer P. Secondary student perceptions of their class Activities regarding meaningfulness, challenge, choice, and appeal: An initial instrument validation study. Journal of Secondary Gifted Education. 2002; 13:192-204. http://dx.doi.org/10.4219/jsge-2002-381.
13- Gentry M, Owen SV. Secondary student perceptions of classroom quality: Instrumentation and differences between advanced/honors and nonhonors classes. Journal of Secondary Gifted Education. 2004; 16(1):20-29.
14- Sulik MJ, Finch JE, Obradovic J. Moving beyond executive functions: Challenge preference as a predictor of academic achievement in elementary school. Journal of Experimental Child Psychology. 2020; 198:104-883. DOI: 10.1016/j.jecp.2020.104883
15- Peisner-Feinberg ES, Burchinal MR, Clifford RM, Culkin ML, Howes C, & Kagan SL. The relation of preschool child-care quality to children’s cognitive and social developmental trajectories through second grade. Child Development. 2001; 72:1534-1553. [DOI: 10.1111/1467-8624.00364]
16- Vidovich L, Fourie M, Van der Westhuizen L, Alt H, Holtzhausen S. Quality teaching and learning in Australian and South African universities: comparing policies and practices.
18 1-20:)52( 14 1402
Compare. 2000; 30(2):193-209. [DOI:10.1080/713657455]
17- Lovat TJ, Toomey R. (Eds.) Values education and quality Teaching: Tthe double helix effect: Sydney, David Barlow Publishing; 2007.
18- Kilday CR, Kinzie MB. Analysis of instruments that measure the quality of mathematics teaching in early childhood. Early Childhood Education Journal. 2009; 36: 365-372. https://doi.org/10.1007/s10643-008-0286-8
19- Nicoleta S. Teachers for the knowledge society. How can technology improve math learning process. Procedia Social and Behavioral Sciences. 2011; 11:170-174.
doi: 10.1016/j.sbspro.2011.01.055
20- Spicuzza R, Ysseldyke J, Lemkuil A, Kosciolek S, Boys C, Teelucksingh E. Effects of curriculum-based monitoring on classroom instruction and math achievement. Journal of School Psychology. 2001; 39: 521-542. DOI:10.1016/S0022-4405(01)00087-5
21- Schutz PA, Pekrun R. (Eds.). Educational psychology series: Emotion in education. San Diego, CA: Academic Press; 2007.
22- Pekrun R, Goetz T, Frenzel AC, Barchfeld P, Perry RP. Measuring emotions in students' learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 2011; 36(1):36-48.
http://dx.doi.org/10.1016/j. cedpsych.2010.10.002.
23- Pekrun R, Perry RP. Control-value theory of achievement emotions. In R. Pekrun & L. Linnenbrink-Garcia (Eds.). International handbook of emotions in education New York, NY: Routledge; 2014, pp:120-141.
24- Pekrun R, Lichtenfeld S, Marsh HW, Murayama K, Goetz T. Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Society for Research Child Development. 2017; 5(88):1653-1670. DOI:10.1111/cdev.12704.
25- Felicidad T, Villavicencio T, Alelan B, Bernardo D. Positive academic emotions moderatethe relationship between self-regulation and academic achievement. British Journal of Educational Psychology. 2012; 83(2):329-340.
DOI: 10.1111/j.2044-8279.2012.02064.x
26- Heck RH, Thomas SL, Tabata LN. Multilevel and Longitudinal Modeling with IBM SPSS. Second Edition. Published in New York by Routledge; 2014.
27- Mass CJM., Hox JJ. The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Computational Statistics and Data Analysis.
2004; 46:427-440. https://doi.org/10.1016/j.csda.2003.08.006
28- Hair JF, Black W, Babin B, Anderson RE. Multivariate data analysis. New Jersey, NJ: Prentice Hall; 2009.
29- Gartner H. Wie Schülerinnen und Schuler ihre Lernumwelt wahrnehmen. Ein Vergleich verschiedener Maße zur Ubereinstimmung von Schülerwahrnehmungen [How students perceive their learning environment: A comparison of four indices of interrater agreement]. Zeitschrift fur Padagogische Psychologie. 2010; 24(2):111-122. DOI:10.1024/1010-0652/a000009
30- Westphal A, Kretschmann J, Gronostaj A, Vock M. More enjoyment, less anxiety and boredom: How achievement emotions relate to academic self-concept and teachers' diagnostic skills. Learning and Individual Differences. 2018; 62:108-117. https://doi.org/10.1016/j.lindif.2018.01.016
31- Kyriakides L, Campbell RJ, Gagatasis A. The significance of the classroom effect in primery school: An application of Creemers’ comprehensive model of educational effectiveness. School Effectiveness and School Improvement. 2000; 11:501-529. DOI:10.1076/sesi.11.4.501.3560
32- Latifian M, Khoshbakht F. Investigating the predictive power of the teacher's teaching quality and classroom atmosphere for learning mathematics with the mediation of motivational beliefs and self-regulation learning strategies in fifth grade students. Educational Sciences of Shahid Chamran University of Ahvaz. 2011; 6(2):107-126. [In Persian]
33- Pekrun R, Goetz T, Perry RP. Achievement Emotions Questionnaire (AEQ), Users Mannal, Mannal Version 2005; 2005.
34- Kadivar P, Farzad W, Kavosian J, Nikdel F. Validation of Pakran's academic emotions questionnaire. Educational Innovations Quarterly. 2010; 8(32):7-32. [In Persian]
35- Pekrun R, Murayama K, Marsh HW, Goetz T, Frenzel AC. Happy fish in little ponds: Testing a reference group model of achievement and emotion. Journal of Personality and Social Psychology. 2019; 117:166–185. https://doi.org/10.1037/pspp0000230.
36- Putwain D, Becker S, Symes W, Pekrun R. Reciprocal relations between students' academic enjoyment, boredom, and achievement over time. Learning and Instruction. 2018; 54:78-81. https://doi.org/10.1016/j.learninstruc.2017.08.004.
37- CherahiKhah Z, Arabzadeh M, Kadivar P. The role of academic optimism, academic emotions and school well-being in students' mathematical performance. Health psychology Bulletin. 2015;
1-20:)52( 14 1402
1(3):11-20. [In Persian] [DOR: 20.1001.1.24764248.1394.1.3.2.0]
38- Kolovou D, Naumann A, Hochweber J. Content-specificity of teachers’ judgment accuracy regarding students’ academic achievement. Teaching and Teacher Education. 2021; 100:103-298.
39- Thiede KW, Brendefur JL, Carney MB, Champion J, Turner L, Stewart R, et al. Improving the accuracy of teachers’ judgments of student learning. Teaching and Teacher Education. 2018; 76:106-115. https://doi. org/10.1016/j.tate .2018.08.004.
40- Gabriele AJ, Joram E, Park KH. Elementary mathematics teachers’ judgment accuracy and calibration accuracy: Do they predict student mathematics achievement outcomes? Learning and Instruction. 2016; 45:49-60. https://doi.org/10.1016 /j.learninstruc. 2016.06.008.
41- Cunningham AE, Perry KE, Stanovich KE, Stanovich PJ. Disciplinary knowledge of K-3 teachers and their knowledge calibration in the domain of early literacy. Annals of Dyslexia. 2004; 54(1):139-167. DOI: 10.1007/s11881-004-0007-y
42- Altermatt ER, Pomerantz EM. The implications of having high-achieving versus low-achieving friends: A longitudinal analysis. Social Development. 2005; 14:61-81. https://doi.org/10.1111/j.1467-9507.2005.00291.x
43- Kunter M, Klusmann U, Baumert J, Richter D, Voss T, Hachfeld A. Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology. 2013; 105(3):805-820. http://dx.doi.org /10.1037/a0032583.
44- ZabihNejad Arabi F, SalehiImran E, MirArab Razi R. Investigating the quality of teachers teaching and student academic performance in the new and old curriculum of third grade mathematics. Master Thesis of Educational Sciences, Faculty of Humanities and Social Sciences, Mazandaran University. 2019. [In Persian]
45- Rezaei A, Rezaei M. Investigating the mediating role of academic boredom in the relationship between teacher teaching quality and social support with math performance in sixth grade students. Master Thesis, Faculty of Humanities, Department of Psychology, Islamic Azad University of Arsanjan. 2019. [In Persian]
46- Holm ME, Bjorn PM, Laine A, Korhonen J, Hannula MS. Achievement emotions among adolescents receiving special education support
in mathematics. Learning and Individual Differences. 2020; 79:101- 851. https://doi.org/10.1016/j.lindif.2020.101851.
47- Schukajlow S, Rakoczy K. The power of emotions: Can enjoyment and boredom explain the impact of individual preconditions and teaching methods on interest and performance in mathematics? Learning and Instruction. 2016; 44:117-127. http://dx.doi.org/10.1016/j.learninstruc.2016.05.001
48- Naqsh Z, RamezaniKhamsi Z. Perception of classroom learning environment and academic emotions: Multilevel analysis of math class. Quarterly Journal of Applied Psychological Research. 2017; 8(1):127-141. [In Persian]
.[DOI:10.22059/JAPR.2017.62607]
49- Pekrun R. The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review. 2006;18(4):315-341. https://doi.org/10.1007/s10648-006-9029-9
50- Csikszentmihalyi M. Flow and the foundations of positive psychology.
Dordrecht, The Netherlands: Springer; 2014.
51- Lazarides R, Buchholz J. Student-perceived teaching quality: How is it related to different achievement emotions in mathematics classrooms? Learning and Instruction. 2019; 61:45-59. https://doi.org/10.1016/j.learninstruc.2019.01.001
52- Goetz T, Ludtke O, Nett UE, Keller MM, Lipnevich A A. Characteristics of teaching and students' emotions in the classroom: Investigating differences across domains. Contemporary Educational Psychology. 2013; 38(4):383-394. DOI:10.1016/j.cedpsych.2013.08.001
53- Frenzel AC, Pekrun R, Goetz T. Perceived learning environment and student emotional experiences: Amultilevel analysis of mathematics classroom. Learning and Instruction. 2007; 17(5):478-493. https://doi.org/10.1016/j.learninstruc.2007.09.001
54- Weijer-Bergsma EV, Sanne HGV. Why and for whom does personalizing math problems enhance performance? Testing the mediation of enjoyment and cognitive load at different ability levels. Learning and Individual Differences. 2021; 87:101-982. [DOI:10.1016/j.lindif.2021.101982]