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Objective: This study aims to evaluate the salt tolerance of various canola genotypes in arid 

and semi-arid regions, particularly focusing on the identification of salt-tolerant varieties that 

can perform well under saline conditions. 

Methods: A total of 39 cultivars and lines of rapeseed were assessed for their tolerance to 

salinity using eight different indices. The evaluation was conducted through a randomized 

complete block experiment with four replications under two irrigation conditions: normal 

(0.831 dSm−1) and saline (8.7 dSm−1) in Kerman, Iran. Statistical analyses, including analysis 

of variance, regression, and artificial neural network (ANN) modeling, were employed to 

assess the performance of the canola varieties. 

Results: The results indicated significant differences between the cultivars and a notable 

interaction effect between environmental conditions and cultivar performance. Additionally, 

there was a non-significant correlation (0.021) between cultivar performance in the two 

irrigation conditions, suggesting genetic diversity among the genotypes for breeding purposes. 

The endurance indices—harmonic mean, stress tolerance index, mean product, and geometric 

mean product—demonstrated positive and significant correlations with seed performance in 

both irrigation scenarios, making them effective predictors of salinity tolerance. High-yielding 

varieties such as Talaye, Talaieh, T98007, Ahmadi, Modena, Option 500, and PP-4010 were 

identified as suitable for cultivation in saline soils. 

Conclusions:This research contributes to the understanding of salt tolerance in canola 

genotypes, providing valuable insights for breeding programs aimed at enhancing crop 

performance in saline environments. The identification of specific endurance indices as reliable 

predictors of tolerance offers a methodological advancement in the selection of salt-tolerant 

cultivars. 
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1 Introduction 

Salty soil and water are the main limiting climatic factors 

that make planting crops difficult and this difficult is caused 

by the high concentration of salt in the soil solution around 

the plant roots (Di-Caterina et al. 2007; Ravari et al. 2015). 

The reason for the decrease in the growth of plants in salty 

conditions is lack of water due to the creation of a negative 

potential in the soil solution around the roots, the creation of 

ionic toxicity conditions due to the absorption of Na+ and Cl- 

ions, which leads to a decrease in the absorption of K+, Ca2+ 

and NO3- (Isayenkov & Maathuis 2019).  

The important role of rapeseed (Brassica napus L.) in the 

production of oilseeds in Iran is undeniable due to its wide 

adaptability to different conditions.  Rapeseed also improves 

the soil structure due to its deep and extensive roots, and as 

a result, its rotation with cereals as a pre-sowing plant 

significantly increases the yield of cereals. Rapeseed 

planting is facing restrictions due to the spread of salinity in 

Iran (Rameeh 2011; Saberi et al 2021). The main strategy to 

increase production in saline conditions is to use improved 

cultivars using the hybridization method (Amiri-Oghan et al. 

2012). 

To check the salinity tolerance trait and use a proper 

breeding method, the influence of the relevant genes on this 

trait should be checked. (Muhammad et al. 2014). Also, in 

order to accurately estimate genetic indices and obtain 

sufficient information about the studied plant, reliable 

information about gene function in the studied population 

should be obtained (Rozema & Schat 2013).  

A number of indicators including 

(SSI)2, (GMP)3, (MP)4, (TOL)5, (HM)6, (STI)7, (YSI)8, 

and (YI)9, had been proposed to select the superior genotypes 

in terms of tolerance to salinity according to the relationship 

between (Yp)10 and (Ys)11 

(Bouslama & Schapaugh 1984; Fernandez 1992; Gavuzzi 

et al. 1997; Sio-Se Mardeh et al. 2006; Shirani Rad & 

Abbasian 2011; Bchini et al. 2011). 

The efficiency of these indicators appears to be dependent 

on the selection objective and target climate. Therefore, to 

increase rapeseed production in different conditions, it is 

necessary to introduce indicators that can be used to identify 

genotypes with good performance in the field. (Amit et al. 

2018). Different techniques, including grouping, regression, 

biplot, and Artificial Neural Network (ANN), can be used to 

evaluate the efficacy of these indices for genotype screening 

(Dehghani et al. 2006; Ravari et al. 2015). The Multilayer 

Perceptron (MLP) is a common ANN model used among 

researchers. This model has three layers, which are the input, 

hidden, and output layers respectively (Ravari et al. 2015). 

The mean squared error (MSE) and the coefficient of 

determination (R2) between the anticipated and actual values 

are two of the most popular metrics for evaluating the 

model's validity (Przyby et al. 2020; Niedbała et al. 2022). 

So far, the use of artificial intelligence has not been used in 

the determination of salinity-tolerant cultivars, especially in 

rapeseed. Ji et al. (2007) used this method to forecast the 

yield of Fujian rice under normal mountain weather 

conditions.  They claimed that when comparing a regression 

model with rice to an ANN model, ANN model consistently 

predicts field performance more accurately. Niedbała et al. 

(2019) compared three artificial intelligence models to 

determine the performance of canola before harvest. The 

outcomes indicated that the lowest mean absolute percentage 

error, (MAPE), and R2 (the coefficient of determination) 

were 6.88% and 0.69, respectively, related to the 

QQWR31_5 program. Ravari et al. (2015) also used this 

system to rate the salinity tolerance indices in determining 

the wheat salinity tolerant cultivars. The results of their 

investigation showed that ANN is a fast, cheap, and at the 

same time efficient solution for detecting genotypes that 

tolerate salinity to a great extent. So this experiment was 

conducted to identify the superior index(s) in order to 

identify the rapeseed genotype(s) tolerant to salinity through 

ANN. 

 

2  Materials and Methods 

  

This design involved the succeeding 39 canola genotypes: 

(1) Talaieh, (2) Sarigol,  (3) Zarfam, (4) Zafar, (5) Delgan, 

(6) Ahmadi, (7) Hyola401, (8) Hyola 60, (9) pp-401015E, 

(10) T98007, (11) Talaye, (12) SLM046, (13) Geronimo, 

(14) Modena, (15) Opera, (16) Symbol, (17) KS-11, (18) 

Colvert, (19) Ks-7, (20) Okapi, (21) Licord, (22) Orient, (23) 

Option500, (24) H-19, (25) Shiralee, (26) San-14, (27) San-

12, (28) SPN178, (29) SPN179, (30) SPN181, (31) SPN182, 

(32) SPN183, (33) SPN184, (34) SPN185, (35) SPN192, 

(36) SPN193, (37) RGS003, (38) Dalgon, and (39) SAN56 

was carried out in two randomized complete block designs 

(designs 1 and 2) with four replicates for each design under 

two irrigation conditions, design 1; 0.931 dSm−1 and design 

2; 8.7 dSm−1, at The Kerman Education and Agriculture and 

 

2 -Sensitivity stress index 
3 - Geometric Mean product 
4 - Mean Product 
5 - Tolerance 
6 - Harmonic Mean 

Natural Resources Research Center, Kerman, Iran in 2020. 

The seeds were planted in six rows 4 meters long in each plot 

with a 0.4 meters distance between rows and 40 plants per 

square meter. The required amount of fertilizer before 

planting (130 kg of nitrogen and 40 kg of phosphorus per 

hectare) was used based on the soil sample analysis. From 

the four middle rows in each plot, 25 cm were removed from 

both sides of each row (top and bottom) and the seed yield of 

the middle four rows was calculated. The following 

7 - Stress Tolerance Index 
8 - Yield Stability Index 
9 - yield index 
10 -  Yield in non-saline Environment 
11 - Yield in saline Environment 

https://sciprofiles.com/profile/579066
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expressions were used to calculate each of the eight stress 

tolerance indices: 

 

𝑀𝑃 =
(𝑌𝑠 + 𝑌𝑝)

2
⁄ , (Bouslama & Schapaugh 1984);  

 𝑇𝑂𝐿 = (𝑌𝑝 − 𝑦𝑠) (Hossain et al. 1990); 

 𝐺𝑀𝑃 = √𝑌𝑠 × 𝑌𝑝 (Sio-Se Mardeh et al. 2006); 

 𝑆𝑆𝐼 =
1−

𝑌𝑠
𝑌𝑝

�̅�𝑠
�̅�𝑝

 (Fischer & Maure 1978); 

 𝑌𝐼 =
𝑌𝑠

𝑌𝑝
 (Gavuzzi et al. 1997); 

 𝑌𝑆𝐼 =
𝑌𝑠

�̅�𝑝
 (Bouslama & Schapaugh 1984); 

 𝑆𝑇𝐼 =
𝑌𝑠×𝑌𝑝

�̅�𝑃
2  (Gavuzzi et al. 1997); 

 𝐻𝑀 =
2(𝑌𝑠×𝑌𝑝)

(𝑌𝑠+𝑌𝑝)
  (Rosielle & Hamblin 1981). 

     All calculations were done based on seed yield and 

average seed yield under stress and non-stress conditions. 

MLP model was combined with ANN in this experiment. 

The data set was randomly divided into three sets: training, 

testing, and validating sets, containing 95, 36, and 25 of the 

total data, respectively. The network was trained, tested and 

evaluated with the proposed method by Bagheri et al. (2012).  

     In its most basic form, weighted connections allow data 

to flow within the network between the layers so that a node 

accepts data from the preceding layer, and a weighted sum of 

all its net input is computed using the succeeding formula 

(Shearer et al. 2000):  

𝑡𝑖 =∑(𝑊𝑖𝑗𝑋𝑗 + 𝑏𝑖)

𝑛

𝑗=1

 

In this formula, X, n, W, and bi are the input from node j, 

the number of inputs, the weight of communication between 

nodes i and j paths, and a bias, respectively. The weighted 

values, ti, are then subjected to a transfer function to 

determine the output values (oi). 

The most typical activation or transfer equation in hidden 

and output layers are sigmoidal functions (Gholipoor et al. 

2012): 

𝑓(𝑡𝑖) =
1

1 + 𝑒−𝑡𝑖
 

Information is frequently transferred from the input layer 

to hidden layers using a linear transfer function (Kaul et al. 

2005). Several indicators have been introduced in research 

papers to check the validity of a model. MSE and 

coefficient of determination (R2), two of the most popular 

indices, are calculated using the formula shown below 

(Keskin & Taylan 2009): 

𝑅2=
(∑ (𝑎𝑖−�̅�)(𝑝𝑖−�̅�

𝑛
𝑖=1 )

∑ (𝑎𝑖−�̅�)
2𝑛

𝑖=1 (𝑝𝑖−�̅�)
2

2

[3] 

𝑀𝑆𝐸 =
∑ (𝑎𝑖−𝑝𝑖)2𝑛
𝑖=1

𝑛
  [4] 

In the above formulas, ai, pi, �̅�, �̅�, and n are the ith real 

output variable, ith forecasted output variable produced by 

model, the average of real variables, average of forecasted 

output variables, and the number of output variables, 

respectively  
The importance of each predictor is calculated using a 

sensitivity analysis, which also determines the significance 

of the absolute variables. Afterwards, each predictor's 

importance and normalized importance (relative 

importance) are displayed in a table and a chart, 

respectively. The total error in the lack of a variable is 

divided by the entire network error in the existence of all 

the input variables to determine the values of the sensitivity 

(importance) factors for the input variables. Consequently, 

if the sensitivity of the input variable is greater than one, 

the output variable will be significantly affected. The total 

error in the absence of a variable is divided by the entire 

network error in the presence of all the input variables to 

determine the values of the sensitivity (importance) factors 

for the input variables. Consequently, if the sensitivity of 

the input variable is greater than one, the output variable 

will be significantly affected. By dividing the importance 

of every variable by the highest value of its importance, the 

relative importance of each variable is calculated. The 

model that has the lowest MSE and the highest R2 is placed 

in the group of the best models.  All statistical analyzes 

were performed in SPSS version 20 (SPSS. 2010). 

 

3 Results and Discussion 

The outcomes indicated that there is a significant 

difference between cultivars and the interaction effect of 

environment × variety (Table 1). Also, the correlation 

coefficient between Yp and Ys (Table 2) was not significant. 

These results show that the responses of cultivars are 

different in two environments and there is genetic diversity 

among the varieties. 

These results showed that the selection of superior 

genotype with high performance in non-stress environment 

(Yp) does not always lead to the selection of genotypes with 

high performance in stress environment (Ys). These results 

were consistent with the results of Ravari et al. (2015); 

Isayenkov & Maathuis (2019); and Hosseini et al. (2012). 

The outcomes of the index test indicated the significance 

of the difference of each index between the genotypes 

(Tables 3 and 4). Considering that GMP, MP, HM and STI 

indices had a positive and significant correlation with Yp and 

Ys (P < 0.01), therefore the selection according to the high 

quantity of the mentioned indices led to the selection of high- 

yielding cultivars such as Talaieh, Talaieh, T98007 and 

Ahmadi in both environments. 
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Table 1- Mean squares of 39 rapeseed varieties for grain yield in combined analysis of variance for Yp, first environment (design 1) and Ys, second 

environment (design 2) 

Source of variation df MS 

Environment (E) 1 7008.822** 

Error 1 (R/E) 4 8.359 

Genotype (G) 38 193.539** 

Environment × Genotype (E × G) 38 19.018** 

Error 2 (R × G/E) 152 0.192 

 

Accordingly, these four indicators are used to separate 

cultivars belonging to group A (genotypes with similar good 

performance in stress and stress-free environments), group B 

(genotypes with good performance only in stress-free 

environments), group C (genotypes with performance good 

only in stress environments) and group D (genotypes with 

poor performance in both environments) (Fernandez 1992). 

These consequences are in accordance with the results 

published by Bchini et al. (2011) and  Shokri-Gharelo et al. 

(2018). Henfy et al. (2003) reported that these four indices 

were suitable in research on sorghum.  

The selected cultivars based on the discussed indices were 

introduced as salinity-sensitive cultivars despite the low YS, 

and this is related to the inability of the two mentioned 

indicators to separate the varieties belonging to the two 

groups (A and C) from each other (Table 3). 

These results are agreeing with the findings of Sio-Se 

Mardeh et al. (2006) and Talebi et al. (2009). The non-

weighted paired group method with arithmetic average 

(UPGMA) and similarity matrix based on Euclidean distance 

measurement were used to perform the cluster analysis 

(Figure 1). 

 

 

Table 2 Correlation coefficient between Yp, Ys and eight salt tolerance indices of rapeseed varieties based on grain yield 

 YP YS TOL MP GMP SSI YI STI HM YSI 

YP 1          

YS 0.021ns 1         

TOL 0.78** -0.84** 1        

MP 0.99** 0.99** -0.91** 1       

GMP 0.99** 0.98** -0.85** 0.99** 1      

SSI 0.68** -0.79** 0.55** -0.75** -0.70** 1     

YI 0.06ns 0.99** -0.56** 0.75** 0.703** 0.70** 1    

STI 0.97** 0.99** -0.98** 0.98** 0.968** -0.73** 0.76** 1   

HM 0.69** 0.999** -0.76** 0.99** 0.991** -0.85** 0.76** 0.99** 1  

YSI -0.78** 1** -0.94** 0.99** 0.98** -0.77** 0.79** 0.99** 0.99** 1 

 

The outcome showed that the studied cultivars were 

grouped into four class: sensitive (S), semi-sensitive (MS), 

moderately tolerant (MT), and tolerant (T). The results of 

step-by-step regression analysis (Table 5) among salinity 

indices and genotype reactions to salinity including sensitive, 

semi-sensitive, semi-tolerant, and tolerant as independent 

variables and dependent variables, respectively, show that 

YSI in the first stage entered into the equation (R2 = 0.92). 

GMP entered to the equation in the second stage with (R2 = 

0.91).  

The following steps involved entering the parameters SSI, 

MP, STI, TOL, and HM into the equation, with R2 values of 

0.91, 0.90, 0.91, 0.9, and 0.9, respectively. Additionally, the 

yield index (YI) was left out of the calculation. 
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Table 3 Mean grain yield and indices of 39 rapeseed varieties under stress and non-stress conditions (data sorted by Ys−Yp) 

G.N.D Name YP Ys TOL MP GMP SSI YI YSI STI HM Ys-Yp 

3 Zarfam 2285 3967 1682 3126 3010.7 -1.66 1.736 1.376 1.09 2899.74 1682 

4 Zafar 2500 3402 -902 2951 2916.3 -0.81 1.361 1.18 1.02 2882.07 902 

1 Talaieh 3001 3685 -684 3343 3325.5 -0.51 1.228 1.278 1.33 3308.01 684 
2 Sarigol 2758 3375 -617 3066.5 3050.9 -0.5 1.224 1.171 1.12 3035.46 617 

5 Delgan 1968 2408 -440 2188 2176.9 -0.5 1.224 0.835 0.57 2165.88 440 

6 Ahmadi 2947 3386 -439 3166.5 3158.9 -0.34 1.149 1.174 1.2 3151.28 439 
8 Hyola60 2873 3224 -351 3048.5 3043.4 -0.28 1.122 1.118 1.11 3038.4 351 

9 PP4010 2850 3198 -348 3024 3019 -0.27 1.122 1.109 1.1 3013.99 348 

7 Hyola401 3011 3307 -296 3159 3155.5 -0.22 1.098 1.147 1.2 3152.07 296 
10 T98007 2990 3260 -270 3125 3122.1 -0.2 1.09 1.131 1.17 3119.17 270 

11 Talaye 3866 4122 -256 3994 3991.9 -0.15 1.066 1.43 1.92 3989.9 256 
14 Moderna 2879 2967 -88 2923 2922.7 -0.07 1.031 1.029 1.03 2922.34 88 

15 Opera 950 955 -5 952.5 952.5 -0.01 1.005 0.331 0.11 952.493 5 

12 Slm046 2271 2256 15 2263.5 2263.5 0.015 0.993 0.782 0.62 2263.48 -15 
13 Geranimo 2590 2382 208 2486 2483.8 0.181 0.92 0.826 0.74 2481.65 -208 

22 Orient 281 150 131 215.5 205.3 1.05 0.534 0.052 0.01 195.592 -131 

23 Option50 2856 2454 402 2655 2647.4 0.317 0.859 0.851 0.84 2639.78 -402 

24 H-19 2844 2322 522 2583 2569.8 0.413 0.816 0.805 0.79 2556.63 -522 

17 Ks-11 886 342 544 614 550.47 1.382 0.386 0.119 0.04 493.505 -544 

18 Colvert 2266 1202 1064 1734 1650.4 1.057 0.53 0.417 0.33 1570.78 -1064 
16 Symbol 2743 1383 1360 2063 1947.7 1.116 0.504 0.48 0.46 1838.86 -1360 

19 Ks-7 2972 1474 1498 2223 2093 1.135 0.496 0.511 0.53 1970.64 -1498 

20 Okapi 2777 1156 1621 1966.5 1791.7 1.314 0.416 0.401 0.39 1632.45 -1621 
21 Licord 2544 902 1642 1723 1514.8 1.453 0.355 0.313 0.28 1331.8 -1642 

34 Spn185 2820 1153 1667 1986.5 1803.2 1.331 0.409 0.4 0.39 1636.78 -1667 

35 Spn192 2843 1153 1690 1998 1810.5 1.338 0.406 0.4 0.39 1640.63 -1690 
32 Spn183 2805 1003 1802 1904 1677.3 1.446 0.358 0.348 0.34 1477.63 -1802 

33 Spn184 2973 1158 1815 2065.5 1855.5 1.374 0.39 0.402 0.41 1666.78 -1815 

36 Spn193 2975 921 2054 1948 1655.3 1.554 0.31 0.319 0.33 1406.56 -2054 
37 Spn194 2770 623 2147 1696.5 1313.7 1.745 0.225 0.216 0.21 1017.22 -2147 

38 Rgs003 2975 779 2196 1877 1522.3 1.662 0.262 0.27 0.28 1234.7 -2196 

39 Dalgon 3930 1543 2387 2736.5 2462.5 1.367 0.393 0.535 0.73 2215.97 -2387 
27 San-12 2577 35 2542 1306 300.32 2.221 0.014 0.012 0.01 69.062 -2542 

28 Spn178 4196 1621 2575 2908.5 2608 1.382 0.386 0.562 0.82 2338.56 -2575 

25 Shiralee 2850 83 2767 1466.5 486.36 2.186 0.029 0.029 0.03 161.302 -2767 
26 San-14 4151 1348 2803 2749.5 2365.5 1.52 0.325 0.468 0.67 2035.11 -2803 

29 Spn179 3007 37 2970 1522 333.56 2.224 0.012 0.013 0.01 73.1005 -2970 

30 Spn181 4196 1621 2575 2908.5 2608 1.382 0.386 0.562 0.82 2338.56 -2575 
31 Spn182 2850 83 2767 1466.5 486.36 2.186 0.029 0.029 0.03 161.302 -2767 

*Group Number in Dendogram 

Table 4 Mean squares of eight tolerance indices for grain yield 

S.O.V df TOL MP GMP SSI YI YSI STI HM 

Replication 2 4.5** 7.34** 6.33** 0.0001ns 0.0001ns 0.0001ns 0.008* 5.48* 

Variation 38 38.3** 96.7** 88. 7** 0.014** 0.004** 0.1218 0.48** 80.7** 

Error 76 0.373 0.099 0.80 0.001 0.0003 0.001 0.001 0.081 

CV%  12.25 8.3 7.32 17.82 12.46 15.8 13.11 8.9 

 

Table 5 Stepwise linear regression equations 

Steps Indices Entered Equations R2 

1 X1(YSI) Y=-0.434 + 0.345X1 0.92 

2 X2(GMP) Y=0.478 +0.35X1 + 0.45X2 0.89 

3 X3(SSI) Y=0.551 + 0.446X1 + 0.47X2 + 0.43X3 0..88 

4 X4(MP) Y=0.5862 + 0.38X1 + 0.53X2 + 0.41X3 + 0.54X4 0.88 

5 X5(STI) Y=0.64234 + 0.49X1 + 0.57X2 + 0.35X3 + 0.49X4 + 0.43X5 0.89 

6 X6(TOL)  Y=0.69021 + 0.476X1 + 0.54X2 + 0.42X3 + 0.48X4 + 0.39X5 + 0.21X6 0.85 

7 X7(HM)  Y=0.6742 + 0.31X1 + 0.57X2 + 0.41X3 + 0.52X4 + 0.37X5 + 0.18X6 + 0.19X7 0.88 

                YI was not entered in the equation;( regression calculations were made using average data) 
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Figure 1 Dendrogram on the basis of the UPGMA method for tolerance indices of grain yield in 39 rapeseed varieties 

 

The input layer in the ANN analysis had eight neurons 

that represented eight indicators related to salinity, and the 

output layer had one neuron representing the response of 

genotypes to salinity (Figure 2).  

The neurons’s number in the hidden layer was 

determined through a process of trial-and-error, which 

started with one and then increased sequentially. At this 

stage, the learning rate, the number of learning round (or 

"epochs"), and the momentum were constant at 0.8, 10000, 

and 0.6, respectively. 
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Figure 2 The schematic structure of multilayer-perceptron neural networks model. 

 

The momentum is a tuning parameter to avoid inconstancy 

arising from a high learning rate. The network's training 

process speed is governed by learning rate and for faster 

training network it will be between 0 and 1. The number must 

be greater than zero, represent the maximum number of 

epochs (p) or sources (data transferred from training sample) 

that can be used to bring the initial learning rate down to the 

lower boundary. Training stops if the number of epochs 

exceeds the maximum number allowed. These three network 

evaluation parameters were determined based on the research 

done by Bagheri et al (2012). This operation will be 

successively repeated several times on the training data set 

to ensure the correct performance of the network. According 

to a review of the network's performance, its execution 

tended to get better as the hidden layer's number of neurons 

was raised to the ideal level (Table 6). 

In this experiment, the learning phase's MSE curve was 

lower than the validating phase, indicating accurate training. 

The two curves' close proximity to one another revealed that 

0.0054 was the best MSE value (Table 7; Figure 3). 

 

Table 6 Error variations with different number of neurons in the training, testing and validating phases 

Training Testing Validating No. of Neurons Hidden 

Layer MSE R2 MSE R2 MSE R2 

3.3951033 0.731 2.320405 0.421 3.1320478 0.742 2 

2.879032 0.782 1.764093 0.582 2.2306459 0.783 3 

1.093418 0811 0.72145 0.734 1.0056124 0.888 4 

0.790541 0.838 0.478089 0.789 0.4521126 0.945 5 

0.0034861 0.879 0.05621 0.812 0.00842160 0.959 6 

0.00085967 0.895 0.00312 0.849 0.0002183 0.980 7 

0.0005782 0.893 0.00682 0.831 0.00064034 0.963 8 

0.000305 0.874 0.0090523 0.801 0.00437512 0.969 9 

0.000222 0.831 0.083701 0.798 0.00120548 0.972 10 

The bold values show the optimum number of neurons in hidden layer and the best training steps that established minimum error , respectively. 

 

Eight neurons were selected in the 18th training step of an 

experienced network with a hidden layer. The proximity of 

R2 values, 0.969 and 0.977, respectively, in the training and 

testing phase indicated the correct training of the ANN and 

the good performance of the network in determining the 

reaction of varieties to salinity according to the relevant 

indicators (Figure 4). 

Similar outcomes were reported by Bagheri et al. (2012) for 

the prediction of silage maize yield; they noted that their 

model's best validation performance occurred at step 10 with 

an MSE of 0.0032. The high R2 of 0.98 between the 

Input layer Hidden layer Output layer 



Using artificial neural network to evaluate salinity indices to identify rapeseed salinity tolerant cultivars                                                                               48 

 

  

  

 

calculated and actual dry yields demonstrated the 

effectiveness and superiority of the planned network. 

According to the ANN outcomes, the YSI index (140.6) was 

discovered to be crucial in identifying salt-tolerant varieties 

(Figure5). 

 

 
Table 7 MSE values at different training steps of the network 

MSE 
Training Steps 

Training Testing Validating 
3.793 4.515 4.321 2 
2.439 3.021 2.869 4 
0.931 1.068 1.309 6 
0.556 0.421 0.672 8 
0.234 0.058 0.0831 10 
0.015 0.024 0.015 12 
0.008 0.007 0.0069 14 
0.0053 0.0041 0.0073 16 
0.0051 0.0043 0.0071 18 
0.0049 0.0056 0.0098 20 
0.0069 0.0068 0.0091 22 

0.06 0.0059 0.0085 24 

The bold values show the optimum number of neurons in hidden layer and the best training steps that established minimum error, respectively 

 

This index demonstrated a significant (P= 0.01) negative and 

positive correlation with Yp and Ys, respectively. The 

cultivars that were selected based on high values of this index 

had high performance under stressful conditions, but their 

performance may be low in a non-stress environment. Even 

though choosing tolerant varieties won't lower Ys, selection 

based on this index is appropriate. The following parameters, 

in order of importance, were indices listed in figure 5, 

respectively. 

 

Figure 3 Change in the mean square error during the training steps 

 
 

 

According to the findings of ANOVA, regression, and 

neural networks, the best indicators that can distinguish 

group A varieties from other groups are the first four 

indicators according to figure 5. The evaluation overall 

findings demonstrated that these four indices are 

appropriate for choosing genotypes tolerant to salinity. 
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Figure 4 Predicted values of tolerance by MLP neural network versus observed values in testing (left) and training (right) phases 

 

Figure 5 The relative importance of the effective parameters in determining salt-tolerant varieties 

 

 

4: Conclusions

Finally, it should be noted that further experiments 

using other genotypes at different stress levels (more than 

two) would be useful to more accurately evaluate the 

salinity tolerance of different canola cultivars. What is 

important about the ANN is to know that this method is a 

useful manner for predicting the tolerance of agricultural 

and gardening plants to various stresses quickly, cheaply, 

accurately and objectively. However, the results of this 

article provide valid evidence that it is possible to carefully 

select plants that tolerate different biotic and abiotic 

stresses by using artificial neural networks, and it is also 

valuable to use this method in different fields of 

agriculture. 
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