تاثیر پوترسین و کودهای زیستی بر عملکرد و اجزای پر شدن دانه گندم در شرایط شوری
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیعلیرضا محسنی محمد جانلو 1 , رئوف سید شریفی 2 * , سعید علی پور 3
1 - دانشجوی دکتری رشته زراعت، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی.
2 - استاد دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - استادیار گروه کشاورزی، دانشگاه پیام نور، تهران، ایران.
کلید واژه: میکوریزا, سودوموناس, فلاوباکتریوم, محتوای کلروفیل ,
چکیده مقاله :
به منظور بررسی تاثیر کودهای زیستی و پوترسین بر عملکرد و اجزای پر شدن دانه گندم در شرایط شوری، آزمایشی بهصورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1398 اجرا شد. فاکتورهای مورد بررسی شامل شوری در چهار سطح (بدون شوری به عنوان شاهد و شوریهای 40، 80 و120 میلیمولار با نمک کلرید سدیم)، کاربرد کودهای زیستی در چهار سطح (عدم کاربرد کود زیستی، کاربرد توأم سودوموناس و فلاوباکتریوم، کاربرد توأم میکوریز با سودوموناس و فلاوباکتریوم و کاربرد میکوریز) و محلولپاشی پوترسین در سه سطح (محلولپاشی با آب به عنوان شاهد، 5/0 و 1 میلیمولار) بودند. نتایج نشان داد که تحت شرایط شوری، کاربرد توأم میکوریزا با سودموناس و فلاوباکتریوم و محلولپاشی یک میلیمولار پوترسین شاخص کلروفیل، عملکرد و اجزای عملکرد دانه را افزایش داد. بیشترین سرعت پر شدن (00217/0 گرم در روز)، طول دوره و دوره موثر پر شدن دانه (بهترتیب1/24 و57/35 روز)، وزن و حجم ریشه (به ترتیب 71/0 گرم در بوته و 317/1 سانتیمتر مکعب به ازای هر بوته) در شرایط عدم اعمال شوری، کاربرد توأم میکوریزا، سودوموناس و فلاوباکتریوم و محلولپاشی یک میلیمولار پوترسین و کمترین مقادیر آنها در بالاترین سطح شوری، عدم کاربرد کودهای زیستی و پوترسین بهدست آمد. کاربرد توأم میکوریزا با سودموناس و فلاوباکتریوم و محلولپاشی یک میلیمولار پوترسین در بالاترین سطح شوری، عملکرد دانه را 57/28 درصد نسبت به عدم کاربرد کودهای زیستی و عدم محلولپاشی در همان سطح شوری افزایش داد.
In order to study the effects of putrescine and bio fertilizers on grain filling components of wheat under salinity condition, a factorial experiment was conducted based on RCBD with three replications in research greenhouse of Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili in 2018. Experimental factors were included salinity in four levels [no-salinity as control, salinity 40, 80 and 120 mM NaCl], application of bio fertilizers at four levels [no bio fertilizer, application of both Psedomunas and Flavobacterim, mycorrhiza with Psedomunas and Flavobacterim, mycorrhiza application] and putrescine foliar application (foliar application with water as control, foliar application of 0.5 and 1 mM putrescine. Results showed that application of both mycorrhiza with Psedomunas and Flavobacterim and foliar application of 1 mM putrescine increased chlorophyll index , yield and yield components under salinity conditions. Maximum of grain filling rate (0.00217 g.day), grain filling period and effective grain filling period (24.1 and 35.57 days respectively), root volume and weight (0.71 g per plant and 1.317 cm3 per plant) were obtained in application of mycorrhiza with Pseudomonas and Flowobacterium under no salinity condition and the minimum of values were obtained in the highest salinity level, no application of bio fertilizers and foliar application of putrescine. Application of mycorrhiza with Pseudomonas and Flavobacterium and foliar application of 1 mM putrescine at the highest salinity level increased grain yield by 28.57% compared to no application of bio fertilizers and no foliar application at the same salinity level.
اردکانی، م.ر.، د. مظاهری.، ف. مجد و ق. نورمحمدی. 1379. بررسی کارآیی میکوریزا و استرپتومایسس در سطوح مختلف فسفر و تاثیر کاربرد آنها بر عملکرد و برخی صفات گندم. مجله علوم زراعی ایران. دوره 2 شماره 2: 28-17.
برزویی، ا.، م. کافی.، ح. ر. خزاعی.، و م ا. موسوی شلمانی. 1390. تاثیر شوری آب آبیاری بر صفات ریشه دو رقم حساس و مقاوم به شوری گندم و ارتباط آن با عملکرد دانه در شرایط گلخانه. روابط خاک و گیاه (علوم و فنون کشت های گلخانهای). دوره 2 شماره 8 : 95-106.
بندهحق، ع.، ح. کاظمی.، م. ولی زاده و ع. جوانشیر .1383. مقاومت ارقام گندم بهاره نسبت به تنش شوری در مراحل رویشی و زایشی. علوم کشاورزی ایران. دوره 35 شماره 1: 71-61.
حق بهاری، م و ر. سیدشریفی. 1392. اثیر تلقیح بذر با باکتریهای افزاینده رشد (PGPR) بر عملکرد، سرعت و طول دوره پرشدن دانه گندم در سطوح مختلف شوری خاک. مجله تنشهای محیطی در علوم زراعی. دوره 6 شماره 1 صفحات 75-65.
خلیلزاده، ر.، ر. سیدشریفی و ج. جلیلیان. 1396. برهمکنش سایکوسل و کودهای زیستی بر عملکرد و برخی خصوصیات اگروفیزیولوژیک گندم در شرایط شوری خاک. مجله تنشهای محیطی در علوم زراعی. دوره 10 شماره 3 صفحات 443-425.
خلیلزاده، ر.، ر. سید شریفی و ج. جلیلیان. 1396. تأثیر سایکوسل و تلقیح بذر با باکتریهای محرک رشد بر عملکرد، شاخصهای فلورسانس کلروفیل و برخی صفات فیزیولوژیک گندم در شرایط محدودیت آبی. مجله فرایند و کارکرد گیاهی. جلد 6 شماره 21 صفحات 266-247.
خیریزاده آروق.، ی و ر. سید شریفی. 1397. تأثیر کاربرد کودهای زیستی و روی بر عملکرد، روند تغییرات عملکرد کوانتومی، هدایت روزنهای و برخی صفات فیزیولوژیک تریتیکاله در شرایط قطع آبیاری. مجله فرایند و کارکرد گیاهی. جلد 7 شماره 25 صفحات 74-57
داداشزاده، س.، ر. سیدشریفی و س. فرزانه. 1397. تأثیر کودهای زیستی و نانواکسید آهن بر عملکرد، محتوای کلروفیل و مدلسازی برخی مولفههای پر شدن دانه جو تحت سطوح تنش شوری. پژوهشهای زراعی ایران. دوره 16 شماره 2 صفحات 509-493.
ذبیحی، ح ر.، غ. ثواقبی.، ر. فیروزآبادی.، ک. خاوازی و ع. گنجعلی . 1388. بررسی تاثیر کاربرد سویههایی از سودوموناسهای فلورسنت بر عملکرد و اجزای عملکرد گندم در سطوح مختلف شوری خاک. آب و خاک (علوم و صنایع کشاورزی). دوره 23 شماره 1: 208-199.
سید شریفی، ر و ع، نامور. 1394. کودهای زیستی در زراعت. انتشارات دانشگاه محقق اردبیلی. 282 صفحه.
مستأجران، ا.، ر. عموآقائی و گ. امتیازی، 1384. اثر آزوسپیریلوم و اسیدیته قلیائی آب آبیاری بر عملکرد دانه و میزان پروتئین ارقام زراعی گندم. مجله زیست شناسی ایران، جلد 18 شماره 3: 260-248.
هادی، ه.، ر. سیدشریفی و ع. نامور، 1395. محافظهای گیاهی و تنشهای غیرزیستی. انتشارات دانشگاه ارومیه. 341 صفحه.
Akram, M., M. Hussain, S. Akhtar and E. Rasul. 2002. Impact of NaCl salinity on yield components of some wheat accessions/varieties. Int Agric. Boil. 1: 156-8
Ali-Dinar, H.M., Gz. Ebert and P. Ludders, 1999. Growth, chlorophyll content, photosynthesis and water relations in guava (Psidium guajava L.) under salinity and different nitrogen supply. Gartenbauwissenschaft, 64, 54-59.
Asrar, A.A., G.M. Abdel-Fattah and K.M. Elhindi, 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under wellwatered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50 (2): 305–316.
Atiya, A.M., E. Poortvliet, R. Stromberg and A. Yngve, 2011. Polyamines in foods: development of a food database. Food Nut Res. 14 (55): 1-15.
Banitarafi Zadeh, M., M. ShamiliI and M. Alavifazel, 2019. Relationship between SPAD and nitrogen rate in crop plants. 4th International Congress of Development Agriculture, Natural Resources, Environment and Tourism of Iran. 14-16 Agust, 2019. Shiraz, Iran.
Behl, R.K., H. Sharma, V. Kumar and N. Narula, 2003. Interaction between mycorrhiza, Azotobacter chroococcum and root characteristics of wheat varieties. J. Agron and Crop Sci, 89: 151-155.
Bouthaina, A.E.G., A.M. Rhawhia, E.R. Tomader and E.S. Mona Morsy, 2010. Effect of some soil microorganisms on soil properties and wheat production under north sinai conditions. J. Appl Sci Res, 4(5): 559-579.
Cantrell, I.C. and R.G. Linderman. 2001. Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil, 233: 269-281.
Ellis, R.H. and C. Pieta-Filho. 1992. The development of seed quality in spring and winter cultivars of barley and wheat. Seed Sci Res, 2: 19-25.
Francois, L.E., C. Grieve, E.V. Mass and S.M. Lesch. 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agron. J. 86: 100-107.
Francisco, G., L. Jhon, S. Jifon, C. Micaela and P.S. James. 2002. Gas exchanges chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in ‘sunburst’ Mandarin grafted on different root stocks. Plant Sci. 35, 314-320.
Gamalero, E., G. Berta and B.R. Glick. 2009. The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (Eds). Microbial strategies for crop improvement. Dordrecht Heidelberg, London, Springer pp 1-22.
Gramer, G.R., G.J. Alberico and C. Schmidt. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust. J. Plant Physiol. 21(5): 675-682.
Grattan, S.R. and C.M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. J. Hortic Sci, 78: 127-157.
Grover, M., S.K. Ali, Z. Sandhya, V. Abdul Rasul and B. Venkateswarlu, 2010. Role of microorganisms in adaption of agriculture crops to abiotic stresses. World J. Microb and Biotech, 27 (5): 1231- 1240.
Hanafy Ahmed, A.H., E. Darwish, S.A.F. Hamoda and M.G. Alobaidy, 2013. Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. Am-Eur J. Agric and Environ. Sci, 13: 479-497.
Hussein, M.M., H.M. Nadia, EL-Gereadly and M. EL-Desuki, 2006. Role of puterscine in resistance to salinity of Pea plants (Pisum sativum L.). J. Appl. Sci Res, 2(9): 598-604.
Idris, M, 2003. Effect of integrated use of mineral, organic N and Azotobacter on the yield, yield components and N-nutrition of wheat (Triticum aestivum L.). Pakistan Journal of Biological Sciences, 6 (6): 539-544.
Jeffries, P., S. Gianinazi, S. Perotto, K. Turnau and J. M. Barea, 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol and Fert. Soils, 37: 1-16.
Kader, M.A., M.H. Main and M.S. Hoque, 2002. Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. J. Biol Sci, 2: 259-261.
Khalilzadeh, R., R. Seyed Sharifi and J. Jalilian, 2017. Physiological status and yield of salt stressed wheat (Triticum aestivum L.) plants affected by biofertilizer and cycocel application. Arid Land Res. Manage. 32, 71-90.
Kheirizadeh Arough, Y., R. Seyed Sharifi, M. Sedghi and M. Barmaki, 2016. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in Triticale under salinity condition. Notu Botan Horti Agro Cluj-Napoca 44(1):116-124.
Lal Khajanchi, S.G., M. Setih, P.C. Sharma, A. Swarup and S.K. Gupta, 2007. Effect of NaCl concentration ongrowth, root morphology and photosynthetic pigment in wheat and barley under solution culture. J. Agron, 51: 194-206.
Malabika, R. and R. Wu, 2001. Arginine decarboxilase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci, 160: 869-875.
Mashi, A., S. Galeshi, E. Zeinali and A. Noorinia, 2008. Salinity effect on seed yield and yield components in four Hull-les barley. J. Agric Sci and Tech, 14: 1-10.
Moucheshi, A., M.T. Heidari and B. Assad, 2012. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. Inter J. Agric Sci, 2: 35–47.
Munns, R. and A. James. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil. 253: 201-218.
Nadeem, S.M., Z.A. Zahir, M. Naveed, M. Arshad and S.M. Shahzad, 2006. Variatin in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil and Environ, 25:78-84.
Prasad, T.N., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Raja Reddy, T.S. Sreeprasad and P.R. Sajanlal, 2012. Effect of nanoscale Zinc-oxide particles on the germination, growth and yield of peanut. J. Plant Nut, 35, 905-927.
Rahdari, P. and S.M. Hoseini. 2013. Roll of polyamines (spermidine and putrescine) on protein, chlorophyll and phenolic compounds in wheat (Triticum aestivum L.) under salinity stress. J. Novel Appl Scie, 2:746-751.
Rayca, D., R. Pall and B.N. Johri. 1994. Plant growth stage, fertilizer management and bioinoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rainfed wheat fields. Soil Biol and Bioch, 38:1111-1120.
Ronanini, D.R., R. Savin and A.J. Hall. 2004. Dynamic of fruit growth and oil quality of sunflower (Helianthus annus L.) exposed to brif interval of high temperature during grain filling. Field Crops Res, 83: 79-90.
Sadras, V.O. and D.B. Egli, 2008. Seed size variation in grain crops: allometric relationships 49 between rate and duration of seed growth. Crop Sci, 48:408-416.
Sangtarash, M.H. 2010. Responses of different wheat genotypes to drought stress applied at different growth stages. Pak J. Biol Sci, 13:114-119.
Seyed Sharifi, R., K. Khavazi. 2011. Effects of seed priming with plant growth promoting rhizobacteria (PGPR) on yield and yield attributes of maize (Zea mays L.) hybrids. J Food Agric Environ. 9:496–500.
Seyed Sharifi, R., R. Khalilzadeh and J. Jalilian. 2016. Effects of biofertilizers and cycocel on some physiological and biochemical traits of wheat (Triticum aestivum L.) under salinity stress. Arch Agron and Soil Sci, 63 (3): 308–318.
Sfakianaki M., L. Sfichi and K. Kotzabasis. 2006. The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. J. Photochem. and Photobiol B: Biol. 84: 181-188.
Tadayon, M.R. and Y. Emam. 2007. Physiologic and morphologic reactions in two variety barley for salinity stress and its relative with grain yield. J. Agric Sci and Nat Res, 1, 253-262. (in Persian).
Talaat, I.M., M.A. Bekheta and M.H. Mahgoub, 2005. Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Inter J. Agric and Biol, 7: 210-213.
Tammam, A.M.F. and M. Hemeda, 2008. Study of salt tolerance in wheat (Triticum aestivum L.) cultivar banysaifl. Aust J. Crop Sci, 115-125.
Yang, M., L. Shi, F.S. Xu, J.W. Luand and Y.H. Wang, 2009, Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere, 19(1): 53-59.
Zeid, I.M. 2004. Responses of been (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress Pak. J. Biolog Sci 7: 219-225.
Zhu, X., F. Song and S. Liu, 2011. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J. Food, Agric and Environ, 9: 583-587.
_||_