برداشت ریزجلبک Nannochloropsis oculata به روش لخته¬سازی الکتروشیمیایی توسط الکترودهای آهن، آلومینیوم و گرافیت
محورهای موضوعی : نشریه فن آوریهای نوین در توسعه آبزی پروری
1 - گروه شیلات، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.
کلید واژه: Nannochloropsis oculata, برداشت جلبک, الکتروشیمی, انعقاد الکتریکی ,
چکیده مقاله :
برداشت ريزجلبک یک فرایند دو مرحلهای است که شامل جداسازی فاز مایع رویی از زی¬توده یا فاز جامد است که بعد از تولید انبوه آغاز می¬شود. هدف از این تحقیق جمع¬آوری ریزجلبک Nannochloropsis oculata به روش لخته¬سازي الکتروشیمیایی توسط الکترودهای مختلف آهن، آلومینیوم و گرافیت و اثر آنها بر بازده برداشت، تعداد سلولهای ریزجلبک بعد از برداشت و نرخ لخته شدن ریزجلبک بود، که طی مدت 20 دقیقه ارزیابی شد. بیشترین مقدار بازده برداشت به طور همزمان در تیمار شاهد (استفاده از سانتریفیوژ) و الکترود آلومینیوم اندازهگیری شد (05/0>P). نتایج این مطالعه نشان داد که برداشت الکتروشیمایی ریز جلبک N. oculata توسط الکترودهای فلزی (آهن و آلومینیوم) و غیرفلزی (گرافیت) سبب تغییرات معنیداری در تعداد سلولها بعد از برداشت، مقدار خاکستر و غلظت لخته¬سازي جلبک داشت و تیمار الکترود آلومینیوم بالاترین بازده برداشت جلبک را نشان داد (48/1 ± 47/96 درصد) و کمترین بازده در الکترود گرافیت (c33/1 ± 92/74 درصد) مشاهده شد (05/0>P). همچنين نرخ لخته شدن ريز جلبک نانوکلرپسیس اوکولاتا در تيمار آلومينيوم سريع¬تر اتفاق افتاد (05/0>P). بنابراين با توجه به نتایج به دست آمده در این تحقیق، انعقاد الکتریکی (Electrocoagulation) با الکترود آلومينيوم روشی موثر برای لختهسازي و برداشت سلولهای میکروجلبک نانوکلرپسیس اوکولاتا بوده، از این رو می¬تواند به عنوان یک روش مناسب و جایگزینی سودآور در بازیابی زی¬توده و تولید ميکروجلبک نانوکلرپسیس تغلیظ شده برای استفاده در صنایع مختلف از جمله بیودیزل پیشنهاد نمود.
Microalgae harvesting is a two-step process that included the separation of supernatant liquid phase from biomass or solid phase that starts after mass production. The purpose of this research is to collect Nannochloropsis oculata microalgae by electrocoagulation method with different electrodes (iron, aluminum and graphite), and their effect on harvesting efficiency, the number of microalgae cells after harvesting and the coagulation rate of microalgae, which was evaluated during 20 minutes. The highest harvesting efficiency was measured in the control and aluminum electrode treatments (P<0.05). The results of this study showed that the electrochemical harvesting of microalgae N. oculata by metallic (iron and aluminum) and non-metallic (graphite) electrodes caused significant changes in the number of cells after harvesting, the amount of ash and the concentration of algae. Aluminum electrode treatment showed the highest algae harvesting efficiency (96.47±0.48%) and the lowest harvesting efficiency was observed in graphite electrode (74.92±1.33%) (P<0.05). Also, the coagulation rate of microalgae Nansoclepis oculata was faster in aluminum treatment (P<0.05). According to the results obtained in this research, electrocoagulation with aluminum electrode is an effective method for coagulation and harvesting of N. oculata microalgae cells. Therefore, it can be used as a suitable method and a profitable alternative in the recovery of biomass and the production of concentrated N. oculata microalgae for various industries such as biodiesel.
Anthony, R. J., Ellis, J. T., Sathish, A., Rahman, A., Miller, C. D., Sims, R. C., 2013. Effect of coagulant/flocculants on bioproducts from microalgae. Bioresource technology, 149, 65-70.#
Baierle, F., John, D. K., Souza, M. P., Bjerk, T. R., Moraes, M. S., Hoeltz, M., Schneider, R. C., 2015. Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes. Chemical Engineering Journal, 267, 274-281.#
Bakhtiari, H., Ansari Tadi, R., Golzari, A. A., 2021. An overview of microalgae harvest from aquatic environments using biological methods. Applied Biology, 11(41), 85-106.#
Canizares, P., Carmona, M., Lobato, J., Martinez, F., Rodrigo, M. A., 2005. Electrodissolution of aluminum electrodes in electrocoagulation processes. Industrial & engineering chemistry research, 44(12), 4178-4185.#
Chua, E. T., Schenk, P. M., 2017. A Biorefinery for Nannochloropsis: Induction, harvesting, and
extraction of EPA-rich oil and high-value protein. Bioresource Technology, 244, 1416-1424.#
Crist, D. R., Crist, R. H., Martin, J. R., Watson, J. R., 1994. Ion exchange systems in proton metal reactions with algal cell walls. FEMS microbiology reviews, 14(4), 309-313.#
Duan, J., Gregory, J., 2003. Coagulation by hydrolysing metal salts. Advances in colloid and interface science, 100, 475-502.#
Gao, S., Du, M., Tian, J., Yang, J., Yang, J., Ma, F., Nan, J., 2010. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. Journal of Hazardous Materials, 182(1-3), 827-834.#
Hu, Y., Wang, F. Wang, S.K. Liu, C.Z., Guo, C., 2013. Efficient harvesting of marine microalgae Nannochloropsis maritimausing magnetic nanoparticles. Biosourese Technology, 138:387-390.#
Kagan, M. L., Sullivan Jr, D. W., Gad, S. C., Ballou, C. M., 2014. Safety assessment of EPA-rich polar lipid oil produced from the microalgae Nannochloropsis oculata. International Journal of Toxicology, 33(6), 459-474.#
Kim, J., Ryu, B. G., Kim, K., Kim, B. K., Han, J. I., Yang, J. W., 2012. Continuous microalgae recovery using electrolysis: effect of different electrode pairs and timing of polarity exchange. Bioresource technology, 123, 164-170.#
Misra, R., Guldhe, A., Singh, P., Rawat, I., Bux, F., 2014. Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: A sustainable approach for biodiesel production. Chemical Engineering Journal, 255, 327-333.#
Misra, R., Guldhe, A., Singh, P., Rawat, I., Stenström, T. A., Bux, F., 2015. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresource technology, 176, 1-7.#
Moheimani, N.R., Borowitzka, M.A., Isdepsky, A., Sing, S., 2013. Standard methods for measuring growth of algae and their composition. Algae for biofuels and energy Springer. pp. 265-84.#
Mouedhen, G. Fekia. M, Weryb, M.D.P., Ayedia, H.F., 2008. Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials. 150, 124-125.#
Naghavi, B., Malone, R.F., 1986. Algae removel by find sand/silt filtration.20: (3) 377-383.#
Neti, N. R., Misra, R., 2012. Efficient degradation of Reactive Blue 4 in carbon bed electrochemical reactor. Chemical Engineering Journal, 184, 23-32.#
Packer, M., 2009. Algal capture of carbon dioxide; biomass generationas a tool for greenhouse gas mitigation with reference to NewZealand energy strategy and policy. Energy Policy, 37:3428–3437.#
Perreault, F., Dewez, D., Fortin, C., Juneau, P., Diallo, A., Popovic, R., 2010. Effect of aluminum on cellular division and photosynthetic electron transport in Euglena gracilis and Chlamydomonas acidophila. Environmental Toxicology and Chemistry: An International Journal, 29(4), 887-892.#
Poelman, E., De Pauw, N., Jeurissen, B., 1997. Potential of electrolytic flocculation for recovery of micro-algae. Resources, Conservation and Recycling, 19(1), 1-10.#
Prochazkova, G., Safarik. I., Branyik, T., 2013. Harvesting microalgae with microwave synthesized magnetic Microparticles. Bioresource Technology, 130:472-477.#
Richmond, A., 2003 Handbook of Microalgalculture: Biotechnology and applied Phycology. Blackwell Publishing Oxford, 566PP.#
Rocha, J. M. S., Garcia, J.E.C., Henriques, M.H.F., 2003. Growth aspects of the marinemicroalga Nannochloropsis gaditana. Departemant of chemichal & Biomulecular Engineering, 20: 237-242
Roselet, F., Vandamme, D., Muylaert, K., Abreu, P. C., 2019. Harvesting of Microalgae for Biomass Production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment (pp. 211-243). Springer, Singapore.#
Sabzi, S., Shamsaie Mehrgan, M., Rajabi Islami, H., Hosseini Shekarabi, S. P., 2018. Changes in biochemical composition and fatty acid accumulation of Nannochloropsis oculata in response to different iron concentrations. Biofuels, 1-7.#
Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., Vaca-Garcia, C., 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278.#
Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1(1), 20–43.#
Vandamme, D., Pontes, S. C. V., Goiris, K., Foubert, I., Pinoy, L. J. J., Muylaert, K., 2011. Evaluation of electro‐coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnology and bioengineering, 108(10), 2320-2329.#
Wong, Y. K., Ho, Y. H., Leung, H. M., Ho, K. C., Yau, Y. H., Yung, K. K. L., 2017. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method. Environmental Science and Pollution Research, 24(10), 9102-9110.#
Zeng, D., Wu, J., Kennedy, J.F., 2008. Application of a chitosanflocculant to water treatment. Journal of Applied Phycology, 71:135–139.#
Zhu, C.J., Lee, Y.K., 1997. Determination of biomass dry weight of marine microalgae.
J. Appl. Phycol. 9, 189–194.#
Zongo, I., Maiga, A. H., Wethe, J., Valentin, G., Leclerc, J. P., Paternotte, G., Lapicque, F., 2009. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance. Journal of Hazardous Materials, 169(1-3), 70-76.#