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With the rapid growth of multi-label streaming data, efficient feature
selection becomes a critical challenge. Traditional methods often
struggle to handle the dynamic nature of continuously arriving data.
This paper introduces OSM-MI, a novel online feature selection
method designed for multi-label streaming datasets. OSM-MI uses
mutual information to dynamically select features, minimizing
redundancy and maximizing relevance. The method is compared with
existing algorithms, including OM-NRS, OMGFS, and MUCO, across
several datasets such as Yeast, Medical, Scene, Enron, and others.
Experimental results show that OSM-MI outperforms the other
methods in terms of accuracy, precision, and efficiency, while also
maintaining lower execution times. Statistical significance is
confirmed through the Wilcoxon test, demonstrating OSM-MI's
robustness for real-time multi-label classification. This work provides
an efficient, scalable solution for feature selection in streaming
environments.

1. Introduction

With the rapid growth of online data such as
images, videos, user comments, and tweets, there
is a critical need for scalable classification systems
to manage and search this content. Data mining and
machine learning  algorithms lose  their
effectiveness when dealing with large-scale data,
and feature selection can address this issue. This
process enhances algorithm performance by
reducing data dimensions and selecting relevant
features [1, 2]. Feature selection also helps reduce
memory requirements, modeling time, and
improves the performance of predictive algorithms
[3, 4]. The goal of feature selection is to choose a
subset of features relevant to class labels in order
to build an efficient predictive model. Feature
selection leads to reduced memory requirements
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for storage, decreased modeling and training time
in  machine learning algorithms, improved
performance of predictive algorithms, better data
understanding, among other benefits [5].

Traditional feature selection algorithms assume
that all features are available before the feature
selection process begins. However, in real-world
scenarios, features are gradually and dynamically
added to the data. For instance, in image analysis
and satellite data, features are continuously added
to the training data [V ,7]. Therefore, online feature
selection becomes essential [ ,A]. Online feature
selection algorithms are divided into two
categories: the first adds features incrementally,
while the second increases samples online.
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Additionally, features can be produced in groups,
which require specific algorithms [V« VY, 12] .

In multi-label data, online feature selection must be
able to identify features relevant to all labels.
Various methods for feature selection in multi-
label data have been proposed, including
approaches based on mutual information and
redundancy analysis [1Y, Y ¥] . These methods help
select effective features and reduce redundancy.
The main focus in these methods is to select
features that distinguish objects from their
surrounding environment. Since the background
and foreground are constantly changing, the use of
an online and adaptive algorithm for object
identification is very effective. Additionally, in
content-based image retrieval [Y¢], the online
learning process must address a core issue, which
is identifying features that better represent the
current query concept. To solve this issue, this
paper proposes a method for feature selection in
multi-label training data with feature streaming.

In this study, the novelty lies in designing an online
feature selection framework that simultaneously
addresses the challenges of streaming features and
multi-label data, which existing methods often treat
separately. Unlike conventional approaches that
either focus only on incremental features or only on
label correlations, our method integrates both
aspects to capture more representative and less
redundant features. The main contributions of this
work are threefold: (1) we introduce a dynamic
mechanism for selecting features in real-time under
streaming conditions, (2) we incorporate multi-
label dependency modeling to enhance relevance
across multiple classes, and (3) we demonstrate
through experimental validation that our approach
achieves superior performance compared to state-
of-the-art methods in terms of accuracy, scalability,
and adaptability. These contributions highlight the
significance of the proposed method and establish
its practical relevance for large-scale, real-world
applications.

2. Related Work

Based on the premise that features or training
samples are gradually added to the dataset over
time, there are different online feature selection
algorithms. In datasets where features are gradually
added over time, feature stream-based selection
algorithms are used. When samples are added over
time, sample stream-based feature selection
algorithms are applied. When both features and
samples are gradually added to the dataset, these
algorithms are referred to as feature and sample
stream-based feature selection algorithms [16].
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In individual online feature selection methods, it is
assumed that features are added to the dataset one
by one. Perkins and Taylor [Y+] introduced a
graph-based method for online feature selection,
which relies on error gradient reduction. Zhu and
colleagues [Y)] proposed two regression-based
algorithms, Information-Investing and Alpha-
Investing, for online feature selection. Wu and
colleagues [YV] introduced the OSFS and Fast-
OSFS algorithms. Yu and colleagues [A] proposed
the SAOLA feature selection algorithm. These
algorithms serve as the foundation for various
online feature selection methods.

The graph-based algorithm [ +] is one of the first
methods developed for feature stream-based online
feature selection, using error gradient reduction.
The Alpha-Investing algorithm [Y Y] is an adaptive
method that dynamically adjusts the error threshold
necessary to accept new features. OSFS [VV], on
the other hand, uses Markov chains and
information theory to perform feature selection in
datasets with streaming features. Another
approach, Online Feature Selection from the
Perspective of Uneven Sets (OS-NRRSAR-SA), is
based on the fact that data mining with RS
(Recommender Systems) requires no additional
domain knowledge other than the provided dataset.
This method applies classical importance analysis
concepts in RS theory to control the unknown
feature space in online feature selection problems.
It has been evaluated on high-dimensional datasets
and shows effectiveness in terms of density,
classification accuracy, runtime, and resilience to
disruption. This method does not require any extra
knowledge and is capable of removing redundant
features as they appear [YA] .

Additionally, OSFSMI and OSFSMI-k algorithms
[Y 4] make use of mutual information in a streaming
fashion to evaluate feature correlation and
redundancy in complex classification tasks. These
methods do not rely on any learning model during
the search process and are classified as filter-based
methods. While all of these online feature selection
algorithms are designed for single-label data, there
is a limited number of methods for online multi-
label feature selection, particularly those that
optimize multiple criteria during the selection
process. In fact, we have not found any methods for

multi-label feature selection with streaming
samples.
Several individual online multi-label feature

selection methods have been proposed, such as
MUCO [Y-+], which is based on fuzzy mutual
information. The quality of a feature in this method
is assessed using fuzzy mutual information,
designed to account for label correlation. Another



An Efficient Approach for Multi-Label Streaming Feature Selection

method, OM-NRS [Y'], offers an online feature
selection approach for multi-label data using an
uneven set, proposing a feature subset that includes
strong features. This method suggests the nearest
neighbor for binning all samples, solving the partial
selection problem in uneven regions. A batch
version of this algorithm, called FM-NRS, assumes
access to the entire data space. Furthermore,
MMOFS [Y Y] automatically selects the best feature
subset suitable for multi-label classification. The
method operates in three phases: the first phase
applies a particle swarm optimization technique for
a group of input features in a multi-objective
framework. The second phase checks for
redundancy among selected features compared to
previously chosen ones. In the third phase, it
identifies and discards features that are irrelevant
to selecting new features.

Generally, all the previously introduced methods
assume that features are added to the dataset one by
one, sequentially. However, in real-world
applications, features often have a group structure.
In response to this, two methods for online group
feature selection are introduced. These methods
perform the feature selection process at the group
level. Consider X = [x1,Xx3,...,%4]7 € R™9,
representing the training dataset with n samples
and d-dimensional features, F =
[(fuf2..,f_d]" € RY and the class label C
[c1,C2...,com]T € R™. Let G =
{G41, G, ..., Gy} represent non-overlapping groups
in the data. The main challenge in these methods is
how to optimally select both features within each
group and between groups simultaneously. To
address this, several feature selection methods have
been proposed for group feature streaming, and the
details of these methods are as follows.

GFSSF [YY] is a method that uses information
theory and mutual information to perform well on
both group-based and individual training data. It
consists of feature-level selection and group-level
selection. Initially, it defines concepts like
correlation, redundancy, and dependency among
features. The algorithm assumes that I(X;Y)
represents the mutual information between X and
Y and uses this definition in the feature selection
process.

OGFS [Y¥] is an efficient feature selection
algorithm that utilizes initial group information. It
has two main phases: online intra-group selection
and online inter-group feature selection. These
phases continue until no new features are added.
Group-SAOLA [A] is an extension of the SAOLA
algorithm and is capable of identifying feature
groups that are scattered both at the feature and
group levels.
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These online feature selection algorithms are
primarily designed for single-label data. However,
there are also well-known algorithms for online
feature selection for multi-label data.

OMGFS [25] includes two phases: online group
selection and online inter-group selection. These
phases continue until no new features are added. In
this method, the importance of the feature group is
considered during the group selection phase, and
redundancy of features is addressed during the
inter-group selection phase. However, this method
is not suitable when a subset of features within a
group is redundant or irrelevant.

MLOSMI [26] starts by clustering the labels.
Labels within the same cluster have high
correlation, and labels in different clusters are
either mutually independent or weakly correlated.
Each label cluster is transformed into a multi-class
label, reducing the original labels to a lower-
dimensional space while considering high-order
correlations. Furthermore, feature correlations and
redundancy are defined using mutual information
to guide the feature selection process. Finally,
features are selected online based on the new label
space.

These methods provide robust solutions for online
feature selection in both single-label and multi-
label datasets, taking into account feature group
structures and the need for dynamic, scalable, and
efficient feature selection processes.

3. Proposed method

In this section, we present the details of the proposed
algorithm, named OSM-MI, in which features are
gradually added to the dataset one by one over time.
Since different input sequences can affect the feature
selection algorithm, the features are introduced
randomly, and the final results are based on the average
of the various sequences provided. Generally, this
method includes three main phases, each of which is
explained in detail below.

As we know, the goal of feature selection is to choose
a compressed subset of features that retains the ability to
distinguish the original feature space. Based on
information theory, Bell and Wang [ Y V] introduced the
first obvious method for selecting a subset.

Principle 1: Given a dataset described by features F
and the label vector C, the subset of features S is
desirable if MI(S; C) = MI(F; C).

Principle 2: Given a dataset described by features F
and the label vector C, S is a set of desired feature
subsets if S € S, minimizing the joint entropy
H(S, C)based on its predictive ability.

Principles 1 and 2 provide an intuitive description of
a good feature subset based on information theory and
Occam’s razor principle. Unlike multi-label learning,
the label space in multi-label learning consists of a set
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of labels. The approach suitable for multi-label learning
is presented as follows:

Principle 3: For the feature space F and the label
space L in multi-label learning, the subset of features S
is desirable if MI(S; L) = MI(F; L), considering the
multi-label data.

Principle 4: For the feature space F and the label
space L in multi-label learning, S is a set of desired
feature subsets, such that S € S, which minimizes the
joint entropy H (S, L) based on its predictive ability in
multi-label data.

These principles form the foundation of the OSM-MI
algorithm, ensuring that the feature selection process
efficiently handles the complexities of multi-label data
and retains relevant feature relationships for accurate
predictions.

The last two approaches provide a criterion for
selecting a multi-label feature subset, meaning the
desired subset S should be optimal and have the
minimum joint entropy H (S, L). Additionally, we know
that a simple way to achieve a desired subset is to
comprehensively evaluate feature subsets using these
basic methods. However, due to the exponential
complexity, this is not feasible even with a moderate
number of candidate features. Therefore, some efficient
algorithms have been developed to overcome this issue.
In this study [YA] two criteria, named maximum
correlation and minimum redundancy, are introduced.
Using these criteria, one can achieve maximum
correlation and minimum redundancy for multi-label
feature selection. For example, a candidate feature is
considered useful if it is highly correlated with all class
labels but not redundant with other features selected for
all class labels. As we know, the goal of multi-label
feature selection is to choose a set of features that have
the highest correlation with all class labels. Initially,
when no feature has been selected, the algorithm
computes the correlation of incoming features with the
label set. If a newly added feature is correlated with the
labels, it is added to the selected feature set S; otherwise,
it is discarded. The correlation value of a feature with
the label set Rel(f, L) is calculated as follows:

maxRel(f, L)where Rel = ¥, MI(f; 1)) (1)

From equation (1), the following definitions can
easily be derived:

Lemma 1: If the newly added feature f; and any class
label [; € L are independent, then the mutual
information between the newly added feature f; and the
label L will be minimized.

Proof: If [; € L and f; are independent, MI(L;|f;) =
0. Therefore, MI(L|f;) = 0. Additionally, we have
MI(;|f,) = 0. As a result, the mutual information
between L and f; is minimized.

Lemma 2: If each class label [; € L is fully
determined by f;, then the mutual information between
the newly added feature f; and the label L will be
maximized.

Proof: If each class label [; € L is fully determined
by f;, then MI(l;|f;) = H(l;). From equation (1), it can
be concluded that MI(l;|f;) < X7, H(l;). Therefore,
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the mutual information between the newly added feature
f: and the label L is maximized.

Given Lemmas 1 and 2, equation (1) can be used to
select the newly added feature that has the highest
correlation with all class labels.

A newly added feature, based on its maximum
correlation, might cause redundancy. For example, a
new feature may be correlated with some previously
selected features. On the other hand, we know that if two
features are highly dependent, the classification quality
will not be significantly affected by removing one of
them. Therefore, redundancy between features must be
measured during the feature selection process. Unlike
traditional single-label feature selection, multi-label
feature selection not only includes redundancy between
individual features but also considers the pairwise
relationship between features for each class label. If S;
is a subset of selected features, the minimum
redundancy is defined as follows (Equation 2). In this
equation, the first term 37 s MI(f;; f;) represents the

redundancy between the newly added feature f;, and the
features selected in S._;. The second term
Y5 jes Zuer MI(fi; Li|f;) represents  the  relationship
between the newly added feature f,and all class labels L,
accounting for the conditional redundancy. Combining
these two terms shows the conditional redundancy
between the candidate feature f; and the selected
features in S,_;.

minRed(f;, S;—,,L) where Red =
o Sresa M £) = Sua MI(f UIF)] ()

Combining Maximum Correlation and Minimum
Redundancy (MDMR): In this phase, an operator is
defined to combine D (correlation) and R (redundancy)
and optimize both parameters simultaneously.
max §(Rel,Red),5 = Rel — Red 3
Based on Equation (3), the importance of feature f; can
be calculated as follows:

max S MIFs ) = 5= Srje s, MI(fis f7) =

—1l

Sue MI(fs 1|1)))] @

From Equation (4), it can be deduced that the selected
feature f; must maximize §(Rel, Red). Moreover, in
Equation (4), the term MI(f;; ;) is constant for f;, so
the equation simplifies as follows:

©®)
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From Equation (5), we can see that the first term focuses
on the correlation between the candidate feature and all
class labels, while the second term specifies the
conditional redundancy between the candidate feature
and the selected features. Therefore, the MDMR
criterion can be used to rank a set of features and
determine the best newly added feature f; . The newly
added feature must have the highest value of the
difference between Rel and Red. In other words, when
a new feature f; is introduced, it gains a "fitness" value
based on its correlation with the labels (Rel) and
redundancy (Red) with previously selected features. If
the number of selected features equals the size
previously specified by the user, one of the features will
be removed, and the new feature will replace it. Thus,
the newly added feature is compared with all previously
selected features g € S;, and if a feature has a lower
fitness value than the newly added feature, it is replaced.
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Figure (1) shows the pseudocode of the proposed
method.

Input: f; is the newly arrival feature f at time t. A is
the fitness function, S,:{ }, k: Size of selected of
features.

Output: The selected feature subset till time t.

Begin algorithm
fi < newly arrival feature at time t.
/I Checking for dependency of new arrival feature f;.
Compute Rely, .
/I Checking for redundancy features in S,.
Compute Redy, .
/I Checking for fitness features in S;.

Compute fitnessftlst.

max = fitnessft_st
N = f
If Size (S;)>=k
For each feature g € S,

If (max > fitnessglst) then

g <N and remove feature g .

Else If (max < fit”essgst) then

remove feature N .
End if
End if
End for
Else f; add to S;.

Update f itness, ¢, for each feature g € S,.

Until no new feature are available.

Return S;;

Figure 1. Pseudocode of the proposed method
4. Analysis and Experiments

This section presents the results of ten different
feature entry sequences across all datasets. In all these
tables, the columns represent online feature selection
algorithms, and the rows correspond to a dataset. The
best value in each row is highlighted in bold and
underlined. The last row shows the statistical results
obtained from the Wilcoxon test. The Wilcoxon test is
used to compare the performance of feature selection
methods. It is an inferential statistical test used to assess
the similarity between two related samples with a rank
scale. This test calculates the p-value for each data pair
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and analyzes the differences. In comparing feature
selection methods, the null hypothesis indicates that
there is no difference in the performance of the two
feature selection methods. If the p-value is less than or
equal to a specified significance level (o= 0.05), the null
hypothesis is rejected, and it can be concluded that there
is a significant difference between the two methods [Y4].
One column of each table presents the statistical
comparison of the proposed method with other methods.
A positive sign indicates that the proposed method
outperforms the other feature selection methods, while a
negative sign indicates that the proposed method is not

Table 1. Comparison of the accuracy of the OSM-MI method with other multi-label streaming feature selection methods.

superior, and the (=) sign indicates that there is no
significant difference between the performance of the
two feature selection methods.

Tables (1-6) show the accuracy, hamming loss, one-
error, coverage, average precision, and rank loss
obtained using the ML-KNN classifier. From the results
of these tables, it can be seen that the proposed algorithm
achieves the best accuracy among the other methods.

OSM-MI OM-NRS OMGFS MUCO
Yeast 0/5698 0/5112 0/5214 0/5024
Medical 0/5334 0/5325 0/5521 0/5145
Scene 0/5301 0/5021 0/5298 0/4954
Enron 0/3630 0/3218 0/3512 0/3008
Genbase 0/9078 0/9010 0/9024 0/8825
Image 0/4176 0/3458 0/4154 0/3947
Bibtex 0/1307 0/1012 0/1287 0/1102
Corel5k 0/1907 0/1662 0/1886 0/1784
Wilcoxon + + +

Table 2. Comparison of the Hamming-loss of the OSM-MI method with other multi-label streaming feature selection methods.

OSM-MI OM-NRS OMGFS MUCO
Yeast 0/1978 0/1995 0/2084 0/2101
Medical 0/0174 0/0201 0/0188 0/0195
Scene 0/1307 0/1543 0/1452 0/1301
Enron 0/0514 0/0521 0/0512 0/063
Genbase 0/0049 0/0112 0/0058 0/0107
Image 0/6100 0/9254 0/6301 0/8839
Bibtex 0/0104 0/0140 0/0102 0/0152
Corel5k 0/0095 0/0095 0/0098 0/0109
Wilcoxon + + +

Table 3. Comparison of the One-error of the OSM-MI method with other multi-label streaming feature selection methods.

OSM-MI OM-NRS OMGFS MUCO

Yeast 0/1998 0/2431 0/2007 0/2527
Medical 0/2604 0/3228 0/2698 0/2978
Scene 0/3726 0/5873 0/4125 0/4456
Enron 0/3267 0/3455 0/3385 0/3715
Genbase 0/0106 0/0352 0/0220 0/0251
Image 0/3671 0/4450 0/3546 0/4127
Bibtex 0/5776 0/6613 0/6157 0/6309
Corel5k 0/6887 0/7535 0/7264 0/7001

Wilcoxon + + +

Table 4. Comparison of the Coverage of the OSM-MI method with other multi-label streaming feature selection methods.

OSM-MI OM-NRS OMGFS MUCO

Yeast 6/9853 6/6235 6/4183 6/6057

Medical 4/0005 5/9254 4/1524 5/3289

Scene 0/7914 1/6213 0/8503 1/5829
Enron 14/092 14/9157 15/1002 14/5780
Genbase 0/7230 0/8951 0/7568 0/83259

Image 0/7586 1/8997 0/8038 1/2036
Bibtex 53/2742 63/5462 55/6322 60/4378
Corel5k 118/4516 121/5258 120/3048 119/2171

Wilcoxon + + +
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Table 5. Comparison of the Precision of the OSM-MI method with other multi-label streaming feature selection methods.

OSM-MI OM-NRS OMGFS MUCO

Yeast 0/7620 0/7041 0/7545 0/7350
Medical 0/7V64 0/6522 0/7452 0/7616
Scene 0/7861 0/7053 0/7540 0/7750
Enron 0/6A87 0/6349 0/6336 0/6450
Genbase 0/9A54 0/9673 0/9185 0/9720
Image 0/7571 0/7313 0/7502 0/7446
Bibtex 0/3958 0/3224 0/4002 0/3854
Corel5k 0/2494 0/2214 0/2420 0/2340

Wilcoxon + + +

Table 6. Comparison of the Ranking loss of the OSM-MI method with other multi-label streaming feature selection methods.

OSM-MI OM-NRS OMGFS MUCO
Yeast 0/1783 0/2008 0/1832 0/2014
Medical 0/0436 0/1184 0/0910 0/0107
Scene /0/2228 0/3562 0/2366 0/3098
Enron 0/0958 0/1103 0/0937 0/1003
Genbase 0/0110 0/0615 0/0106 0/0125
Image 0/1950 0/3164 0/1997 0/2389
Bibtex 0/2134 0/2904 0/2256 0/2507
Corel5k 0/1359 0/1493 0/1456 0/1415
Wilcoxon + + +
60000 | g 511
mm OM-NRS
mmm OMGFS
MUCO
50000+
= 40000
E
[}
E
*~ 30000}
=]
5
3
o
20000 -
10000+
0 A > e 2 + -
2
‘@,ata é@&@ c)(-' « &L oé\\o@% \6‘79 éé@ 00(5)
Datasets

Figure 1. Comparison of Execution Times for OSM-MI and Other Multi-label Streaming Feature Selection Methods

In terms of accuracy, OSM-MI consistently outperforms
the other methods in most datasets. For example, in the
Yeast dataset, OSM-MI achieves an accuracy of 0.5698,
which is higher than the others. Similarly, in the Enron
dataset, OSM-MI's accuracy is 0.3630, significantly
better than the other methods, demonstrating better
generalization and performance in multi-label streaming
feature selection tasks.

Regarding Hamming loss, OSM-MI shows superior
performance by achieving lower values across most
datasets. In the Yeast dataset, the Hamming loss of
OSM-MI is 0.1978, lower than that of the other methods,

indicating that OSM-MI is better at minimizing
incorrect labels. The Genbase dataset shows the lowest
Hamming loss for OSM-MI at 0.0049, further
supporting its effectiveness in multi-label classification.
For the one-error metric, which measures the fraction of
times the top-ranked label is incorrect, OSM-MI again
outperforms the other methods. In the Genbase dataset,
OSM-MI achieves a one-error of 0.0106, significantly
outperforming the alternatives. This demonstrates that
OSM-MI is better at minimizing incorrect top
predictions, which is crucial in multi-label tasks where
the correct top label is prioritized.

28



M. Rafie et al. / Journal of Optimization in Soft Computing (JOSC), 3(2): 22-31, 2025

In terms of coverage, which measures the fraction of
relevant labels ranked in the top positions, OSM-MI also
performs well. It maintains high coverage values, with
Yeast achieving 9853/6 and Corel5k 118/4516. This
indicates that OSM-MI is effective at ensuring a larger
proportion of relevant labels are included in the top
positions compared to other methods.

Regarding precision, OSM-MI shows competitive
results. In the Yeast dataset, OSM-MI achieves a
precision of 0.7620, outperforming the other methods.
This suggests that OSM-MI is effective at making
accurate predictions, particularly in terms of the
proportion of correct labels.

Finally, in terms of ranking loss, OSM-MI demonstrates
strong performance in minimizing the ranking loss. For
example, in the Yeast dataset, it achieves a ranking loss
of 0.1783, better than the other methods. This indicates
that OSM-MI effectively ranks the relevant labels
higher, which is essential in multi-label tasks where the
order of predictions matters.

The Wilcoxon test results indicate that OSM-MI
outperforms the other methods in several datasets, as
shown by the "+" sign in the Wilcoxon row. This
statistical significance further supports the effectiveness
of OSM-MI in multi-label streaming feature selection
tasks.

In conclusion, the OSM-MI method consistently
outperforms OM-NRS, OMGFS, and MUCO across
multiple evaluation metrics, including accuracy,
hamming loss, one-error, ranking loss, precision, and
coverage. These results highlight the robustness and
efficiency of OSM-MI as a method for multi-label
streaming feature selection, demonstrating its
superiority in a variety of datasets. The statistical
significance of the results, supported by the Wilcoxon
test, underscores the effectiveness of the OSM-MI
approach.

Figure 2 presents a comparison of the execution times of
the OSM-MI method with other multi-label streaming
feature selection methods, including OM-NRS,
OMGFS, and MUCO, across various datasets. The
datasets used in the comparison include Yeast, Medical,
Scene, Enron, Genbase, Image, Bibtex, and Corel5k.
Each method's execution time is represented by a
distinct colored bar, with OSM-MI shown in blue, OM-
NRS in green, OMGFS in red, and MUCO in yellow.
As observed, OSM-MI consistently demonstrates lower
execution times compared to the other methods across
most datasets. For example, in the Yeast dataset, OSM-
MI achieves an execution time of 2023 ms, significantly
outperforming the other methods, such as MUCO,
which has a higher execution time of 4849 ms. This
trend is consistent across other datasets, where OSM-MI
generally exhibits faster execution times, suggesting its
efficiency in handling multi-label feature selection
tasks. In some cases, such as the Enron dataset, the
difference in execution times is substantial, with OSM-
MI performing much better than OM-NRS and MUCO.
The figure highlights the overall efficiency of the OSM-
MI method in terms of execution time, making it a
preferred choice for large-scale multi-label streaming
feature selection tasks. The consistency of OSM-MI's
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performance across various datasets reinforces its
robustness and suitability for real-time applications.

5. Conclusion and Future Work

In this study, we proposed the OSM-MI method for
multi-label streaming feature selection and evaluated its
performance against other well-established methods,
including OM-NRS, OMGFS, and MUCO. The results
showed that OSM-MI outperforms the other methods in
terms of accuracy, hamming loss, one-error, precision,
and ranking loss across a variety of datasets.
Additionally, OSM-MI demonstrates superior execution
times, making it an efficient choice for real-time
applications. The statistical significance of these results,
supported by the Wilcoxon test, further confirms the
effectiveness of the OSM-MI method in multi-label
streaming feature selection tasks. The proposed method
not only ensures high classification accuracy but also
maintains low redundancy and maximizes feature
relevance in multi-label data.

Future work could focus on improving scalability with
parallel computing, exploring deep learning techniques,
and enhancing robustness to noisy data. Additionally,
testing the method in other multi-label tasks, like image
or text classification, would help assess its versatility.
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