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 With the rapid growth of multi-label streaming data, efficient feature 

selection becomes a critical challenge. Traditional methods often 

struggle to handle the dynamic nature of continuously arriving data. 

This paper introduces OSM-MI, a novel online feature selection 

method designed for multi-label streaming datasets. OSM-MI uses 

mutual information to dynamically select features, minimizing 

redundancy and maximizing relevance. The method is compared with 

existing algorithms, including OM-NRS, OMGFS, and MUCO, across 

several datasets such as Yeast, Medical, Scene, Enron, and others. 

Experimental results show that OSM-MI outperforms the other 

methods in terms of accuracy, precision, and efficiency, while also 

maintaining lower execution times. Statistical significance is 

confirmed through the Wilcoxon test, demonstrating OSM-MI's 

robustness for real-time multi-label classification. This work provides 

an efficient, scalable solution for feature selection in streaming 

environments. 

 

 

Keywords: 
Streaming multi-label data, 

feature selection, mutual 

information, redundancy, 

Relevancy. 

 

*Corresponding Author’s Email: 

p.moradi@uok.ac.ir 

1. Introduction 

 

With the rapid growth of online data such as 

images, videos, user comments, and tweets, there 

is a critical need for scalable classification systems 

to manage and search this content. Data mining and 

machine learning algorithms lose their 

effectiveness when dealing with large-scale data, 

and feature selection can address this issue. This 

process enhances algorithm performance by 

reducing data dimensions and selecting relevant 

features [1, 2]. Feature selection also helps reduce 

memory requirements, modeling time, and 

improves the performance of predictive algorithms 

[3, 4]. The goal of feature selection is to choose a 

subset of features relevant to class labels in order 

to build an efficient predictive model. Feature 

selection leads to reduced memory requirements 

for storage, decreased modeling and training time 

in machine learning algorithms, improved 

performance of predictive algorithms, better data 

understanding, among other benefits [5]. 

Traditional feature selection algorithms assume 

that all features are available before the feature 

selection process begins. However, in real-world 

scenarios, features are gradually and dynamically 

added to the data. For instance, in image analysis 

and satellite data, features are continuously added 

to the training data [6 ,7] . Therefore, online feature 

selection becomes essential [8 ,9] . Online feature 

selection algorithms are divided into two 

categories: the first adds features incrementally, 

while the second increases samples online. 
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Additionally, features can be produced in groups, 

which require specific algorithms 10]  ,11, 12] . 

In multi-label data, online feature selection must be 

able to identify features relevant to all labels. 

Various methods for feature selection in multi-

label data have been proposed, including 

approaches based on mutual information and 

redundancy analysis 13] , [14  . These methods help 

select effective features and reduce redundancy. 

The main focus in these methods is to select 

features that distinguish objects from their 

surrounding environment. Since the background 

and foreground are constantly changing, the use of 

an online and adaptive algorithm for object 

identification is very effective. Additionally, in 

content-based image retrieval [15] , the online 

learning process must address a core issue, which 

is identifying features that better represent the 

current query concept. To solve this issue, this 

paper proposes a method for feature selection in 

multi-label training data with feature streaming. 

In this study, the novelty lies in designing an online 

feature selection framework that simultaneously 

addresses the challenges of streaming features and 

multi-label data, which existing methods often treat 

separately. Unlike conventional approaches that 

either focus only on incremental features or only on 

label correlations, our method integrates both 

aspects to capture more representative and less 

redundant features. The main contributions of this 

work are threefold: (1) we introduce a dynamic 

mechanism for selecting features in real-time under 

streaming conditions, (2) we incorporate multi-

label dependency modeling to enhance relevance 

across multiple classes, and (3) we demonstrate 

through experimental validation that our approach 

achieves superior performance compared to state-

of-the-art methods in terms of accuracy, scalability, 

and adaptability. These contributions highlight the 

significance of the proposed method and establish 

its practical relevance for large-scale, real-world 

applications. 

 

2. Related Work  
Based on the premise that features or training 

samples are gradually added to the dataset over 

time, there are different online feature selection 

algorithms. In datasets where features are gradually 

added over time, feature stream-based selection 

algorithms are used. When samples are added over 

time, sample stream-based feature selection 

algorithms are applied. When both features and 

samples are gradually added to the dataset, these 

algorithms are referred to as feature and sample 

stream-based feature selection algorithms [16]. 

In individual online feature selection methods, it is 

assumed that features are added to the dataset one 

by one. Perkins and Taylor [10]  introduced a 

graph-based method for online feature selection, 

which relies on error gradient reduction. Zhu and 

colleagues [11]  proposed two regression-based 

algorithms, Information-Investing and Alpha-

Investing, for online feature selection. Wu and 

colleagues [17]  introduced the OSFS and Fast-

OSFS algorithms. Yu and colleagues [8]  proposed 

the SAOLA feature selection algorithm. These 

algorithms serve as the foundation for various 

online feature selection methods. 

The graph-based algorithm [10]  is one of the first 

methods developed for feature stream-based online 

feature selection, using error gradient reduction. 

The Alpha-Investing algorithm [11]  is an adaptive 

method that dynamically adjusts the error threshold 

necessary to accept new features. OSFS [17] , on 

the other hand, uses Markov chains and 

information theory to perform feature selection in 

datasets with streaming features. Another 

approach, Online Feature Selection from the 

Perspective of Uneven Sets (OS-NRRSAR-SA), is 

based on the fact that data mining with RS 

(Recommender Systems) requires no additional 

domain knowledge other than the provided dataset. 

This method applies classical importance analysis 

concepts in RS theory to control the unknown 

feature space in online feature selection problems. 

It has been evaluated on high-dimensional datasets 

and shows effectiveness in terms of density, 

classification accuracy, runtime, and resilience to 

disruption. This method does not require any extra 

knowledge and is capable of removing redundant 

features as they appear  [18] . 

Additionally, OSFSMI and OSFSMI-k algorithms 

[19]  make use of mutual information in a streaming 

fashion to evaluate feature correlation and 

redundancy in complex classification tasks. These 

methods do not rely on any learning model during 

the search process and are classified as filter-based 

methods. While all of these online feature selection 

algorithms are designed for single-label data, there 

is a limited number of methods for online multi-

label feature selection, particularly those that 

optimize multiple criteria during the selection 

process. In fact, we have not found any methods for 

multi-label feature selection with streaming 

samples. 

Several individual online multi-label feature 

selection methods have been proposed, such as 

MUCO [20] , which is based on fuzzy mutual 

information. The quality of a feature in this method 

is assessed using fuzzy mutual information, 

designed to account for label correlation. Another 



An Efficient Approach for Multi-Label Streaming Feature Selection 

24 

 

method, OM-NRS [21] , offers an online feature 

selection approach for multi-label data using an 

uneven set, proposing a feature subset that includes 

strong features. This method suggests the nearest 

neighbor for binning all samples, solving the partial 

selection problem in uneven regions. A batch 

version of this algorithm, called FM-NRS, assumes 

access to the entire data space. Furthermore, 

MMOFS [22]  automatically selects the best feature 

subset suitable for multi-label classification. The 

method operates in three phases: the first phase 

applies a particle swarm optimization technique for 

a group of input features in a multi-objective 

framework. The second phase checks for 

redundancy among selected features compared to 

previously chosen ones. In the third phase, it 

identifies and discards features that are irrelevant 

to selecting new features. 

Generally, all the previously introduced methods 

assume that features are added to the dataset one by 

one, sequentially. However, in real-world 

applications, features often have a group structure. 

In response to this, two methods for online group 

feature selection are introduced. These methods 

perform the feature selection process at the group 

level. Consider 𝑋 =  [𝑥₁, 𝑥₂, . . . , 𝑥ₙ]ᵀ ∈  𝑅ⁿˣᵈ, 

representing the training dataset with n samples 

and d-dimensional features, 𝐹 =
 [𝑓₁, 𝑓₂, . . . , 𝑓_𝑑]ᵀ ∈  𝑅ᵈ, and the class label 𝐶 =
 [𝑐₁, 𝑐₂, . . . , 𝑐_𝑚]ᵀ ∈  𝑅ᵐ. Let 𝐺 =
 {𝐺₁, 𝐺₂, . . . , 𝐺ₙ} represent non-overlapping groups 

in the data. The main challenge in these methods is 

how to optimally select both features within each 

group and between groups simultaneously. To 

address this, several feature selection methods have 

been proposed for group feature streaming, and the 

details of these methods are as follows. 

GFSSF [32]  is a method that uses information 

theory and mutual information to perform well on 

both group-based and individual training data. It 

consists of feature-level selection and group-level 

selection. Initially, it defines concepts like 

correlation, redundancy, and dependency among 

features. The algorithm assumes that 𝐼(𝑋; 𝑌) 

represents the mutual information between X and 

Y and uses this definition in the feature selection 

process. 

OGFS [24]  is an efficient feature selection 

algorithm that utilizes initial group information. It 

has two main phases: online intra-group selection 

and online inter-group feature selection. These 

phases continue until no new features are added. 

Group-SAOLA [8]  is an extension of the SAOLA 

algorithm and is capable of identifying feature 

groups that are scattered both at the feature and 

group levels. 

These online feature selection algorithms are 

primarily designed for single-label data. However, 

there are also well-known algorithms for online 

feature selection for multi-label data. 

OMGFS [25] includes two phases: online group 

selection and online inter-group selection. These 

phases continue until no new features are added. In 

this method, the importance of the feature group is 

considered during the group selection phase, and 

redundancy of features is addressed during the 

inter-group selection phase. However, this method 

is not suitable when a subset of features within a 

group is redundant or irrelevant. 

MLOSMI [26] starts by clustering the labels. 

Labels within the same cluster have high 

correlation, and labels in different clusters are 

either mutually independent or weakly correlated. 

Each label cluster is transformed into a multi-class 

label, reducing the original labels to a lower-

dimensional space while considering high-order 

correlations. Furthermore, feature correlations and 

redundancy are defined using mutual information 

to guide the feature selection process. Finally, 

features are selected online based on the new label 

space. 

These methods provide robust solutions for online 

feature selection in both single-label and multi-

label datasets, taking into account feature group 

structures and the need for dynamic, scalable, and 

efficient feature selection processes. 

 

3. Proposed method 
In this section, we present the details of the proposed 

algorithm, named OSM-MI, in which features are 

gradually added to the dataset one by one over time. 

Since different input sequences can affect the feature 

selection algorithm, the features are introduced 

randomly, and the final results are based on the average 

of the various sequences provided. Generally, this 

method includes three main phases, each of which is 

explained in detail below. 

As we know, the goal of feature selection is to choose 

a compressed subset of features that retains the ability to 

distinguish the original feature space. Based on 

information theory, Bell and Wang [27]  introduced the 

first obvious method for selecting a subset. 

Principle 1: Given a dataset described by features 𝐹 

and the label vector 𝐶, the subset of features 𝑆 is 

desirable if 𝑀𝐼(𝑆; 𝐶) = 𝑀𝐼(𝐹; 𝐶). 

Principle 2: Given a dataset described by features 𝐹 

and the label vector 𝐶, 𝑆 is a set of desired feature 

subsets if 𝑆 ∈  𝑆, minimizing the joint entropy 

𝐻(𝑆, 𝐶)based on its predictive ability. 

Principles 1 and 2 provide an intuitive description of 

a good feature subset based on information theory and 

Occam’s razor principle. Unlike multi-label learning, 

the label space in multi-label learning consists of a set 



M. Rafie et al. / Journal of Optimization in Soft Computing (JOSC), 3(2): 22-31, 2025 

25 

 

of labels. The approach suitable for multi-label learning 

is presented as follows: 

Principle 3: For the feature space 𝐹 and the label 

space 𝐿 in multi-label learning, the subset of features 𝑆 

is desirable if 𝑀𝐼(𝑆; 𝐿) = 𝑀𝐼(𝐹; 𝐿), considering the 

multi-label data. 

Principle 4: For the feature space 𝐹 and the label 

space 𝐿 in multi-label learning, 𝑆 is a set of desired 

feature subsets, such that S ∈ 𝑆, which minimizes the 

joint entropy 𝐻(𝑆, 𝐿) based on its predictive ability in 

multi-label data. 

These principles form the foundation of the OSM-MI 

algorithm, ensuring that the feature selection process 

efficiently handles the complexities of multi-label data 

and retains relevant feature relationships for accurate 

predictions. 

The last two approaches provide a criterion for 

selecting a multi-label feature subset, meaning the 

desired subset S should be optimal and have the 

minimum joint entropy 𝐻(𝑆, 𝐿). Additionally, we know 

that a simple way to achieve a desired subset is to 

comprehensively evaluate feature subsets using these 

basic methods. However, due to the exponential 

complexity, this is not feasible even with a moderate 

number of candidate features. Therefore, some efficient 

algorithms have been developed to overcome this issue. 

In this study [28]  two criteria, named maximum 

correlation and minimum redundancy, are introduced. 

Using these criteria, one can achieve maximum 

correlation and minimum redundancy for multi-label 

feature selection. For example, a candidate feature is 

considered useful if it is highly correlated with all class 

labels but not redundant with other features selected for 

all class labels. As we know, the goal of multi-label 

feature selection is to choose a set of features that have 

the highest correlation with all class labels. Initially, 

when no feature has been selected, the algorithm 

computes the correlation of incoming features with the 

label set. If a newly added feature is correlated with the 

labels, it is added to the selected feature set 𝑆; otherwise, 

it is discarded. The correlation value of a feature with 

the label set 𝑅𝑒𝑙(𝑓𝑡 , 𝐿) is calculated as follows: 

𝑚𝑎𝑥𝑅𝑒𝑙(𝑓𝑡 , 𝐿)𝑤ℎ𝑒𝑟𝑒 𝑅𝑒𝑙 =  ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖)𝑙𝑖𝜖𝐿  (1) 

From equation (1), the following definitions can 

easily be derived: 

Lemma 1: If the newly added feature 𝑓𝑡 and any class 

label 𝑙𝑖 ∈ 𝐿 are independent, then the mutual 

information between the newly added feature 𝑓𝑡 and the 

label L will be minimized. 

Proof: If 𝑙𝑖 ∈ 𝐿 and 𝑓𝑡  are independent, 𝑀𝐼(𝑙𝑖|𝑓𝑡) =
0. Therefore, 𝑀𝐼(𝐿|𝑓𝑡) = 0. Additionally, we have 

𝑀𝐼(𝑙𝑖|𝑓𝑡) ≥ 0. As a result, the mutual information 

between L and 𝑓𝑡  is minimized. 

Lemma 2: If each class label 𝑙𝑖 ∈ 𝐿 is fully 

determined by 𝑓𝑡, then the mutual information between 

the newly added feature 𝑓𝑡 and the label L will be 

maximized. 

Proof: If each class label 𝑙𝑖 ∈ 𝐿 is fully determined 

by 𝑓𝑡, then 𝑀𝐼(𝑙𝑖|𝑓𝑡) = 𝐻(𝑙𝑖). From equation (1), it can 

be concluded that 𝑀𝐼(𝑙𝑖|𝑓𝑡) ≤ ∑ 𝐻(𝑙𝑖)
𝑚
𝑖=1 . Therefore, 

the mutual information between the newly added feature 

𝑓𝑡 and the label 𝐿 is maximized. 

Given Lemmas 1 and 2, equation (1) can be used to 

select the newly added feature that has the highest 

correlation with all class labels. 

A newly added feature, based on its maximum 

correlation, might cause redundancy. For example, a 

new feature may be correlated with some previously 

selected features. On the other hand, we know that if two 

features are highly dependent, the classification quality 

will not be significantly affected by removing one of 

them. Therefore, redundancy between features must be 

measured during the feature selection process. Unlike 

traditional single-label feature selection, multi-label 

feature selection not only includes redundancy between 

individual features but also considers the pairwise 

relationship between features for each class label. If 𝑆𝑡 

is a subset of selected features, the minimum 

redundancy is defined as follows (Equation 2). In this 

equation, the first term ∑ 𝑀𝐼(𝑓𝑡; 𝑓𝑗)𝑓𝑗∈𝑆  represents the 

redundancy between the newly added feature 𝑓𝑡  and the 

features selected in 𝑆𝑡−1. The second term 

∑ ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)𝑙𝑖∈𝐿𝑓𝑗∈𝑆  represents the relationship 

between the newly added feature 𝑓𝑡and all class labels 𝐿, 

accounting for the conditional redundancy. Combining 

these two terms shows the conditional redundancy 

between the candidate feature 𝑓𝑡 and the selected 

features in 𝑆𝑡−1. 

 

𝑚𝑖𝑛𝑅𝑒𝑑(𝑓𝑡 ,  𝑆𝑡−1, 𝐿) 𝑤ℎ𝑒𝑟𝑒 𝑅𝑒𝑑 =
1

| 𝑆𝑡−1|
 ∑ [𝑀𝐼(𝑓𝑡; 𝑓𝑗) − ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)𝑙𝑖∈𝐿 ]𝑓𝑗∈ 𝑆𝑡−1

     (2) 

 

Combining Maximum Correlation and Minimum 

Redundancy (MDMR): In this phase, an operator is 

defined to combine D (correlation) and R (redundancy) 

and optimize both parameters simultaneously. 

 
𝑚𝑎𝑥 𝛿(𝑅𝑒𝑙, 𝑅𝑒𝑑) , 𝛿 = 𝑅𝑒𝑙 − 𝑅𝑒𝑑                             (3) 
                                                                                    

Based on Equation (3), the importance of feature  𝑓𝑡 can 

be calculated as follows: 

 

𝑚𝑎𝑥 [∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖) −
1

| 𝑆𝑡−1|
∑ (𝑀𝐼(𝑓𝑡; 𝑓𝑗) −𝑓𝑗∈ 𝑆𝑡−1𝑙𝑖𝜖𝐿

∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)))𝑙𝑖∈𝐿 ]                                                 (4) 

 

From Equation (4), it can be deduced that the selected 

feature 𝑓𝑡 must maximize 𝛿(𝑅𝑒𝑙, 𝑅𝑒𝑑). Moreover, in 

Equation (4), the term 𝑀𝐼(𝑓𝑡; 𝑙𝑖) is constant for 𝑓𝑡, so 

the equation simplifies as follows: 

(5) 
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(𝑅𝑒𝑙, 𝑅𝑒𝑙) =  ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖)

𝑙𝑖𝜖𝐿

−
1

| 𝑆𝑡−1|
 ∑ [𝑀𝐼(𝑓𝑡; 𝑓𝑗)

𝑓𝑗∈ 𝑆𝑡−1

− ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)

𝑙𝑖∈𝐿

] 

 

                  ∝  |𝑆| ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖) −

𝑙𝑖𝜖𝐿

 ∑ 𝑀𝐼(𝑓𝑡; 𝑓𝑗)

𝑓𝑗𝜖𝑆

− ∑ ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)

𝑙𝑖𝜖𝐿𝑓𝑗𝜖𝑆

 

                  = ∑ [∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖) − 𝑀𝐼(𝑓𝑡; 𝑓𝑗)

𝑙𝑖𝜖𝐿𝑓𝑗𝜖𝑆

+ ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖|𝑓𝑗)

𝑙𝑖𝜖𝐿

] 

                  =  ∑ [∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖) − 𝑀𝐼(𝑓𝑡; 𝑓𝑗)

𝑙𝑖𝜖𝐿𝑓𝑗𝜖𝑆

+ ∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖(𝑖=1,2,…,|𝐿|)|𝑓𝑗)

𝑙𝑖𝜖𝐿

] 

                  =  ∑ [∑ 𝑀𝐼(𝑓𝑡; 𝑙𝑖)

𝑙𝑖𝜖𝐿𝑓𝑗𝜖𝑆

− 𝑀𝐼(𝑓𝑖, 𝑙𝑖(𝑖=1,2,…,|𝐿|, 𝑓𝑗)] 

                  =  ∑ ∑[𝑀𝐼(𝑓𝑡; 𝑙𝑖) − 𝑀𝐼(𝑓𝑖, 𝑙𝑖 , 𝑓𝑗)]

𝑙𝑖𝜖𝐿𝑓𝑗𝜖𝑆

. 

 

From Equation (5), we can see that the first term focuses 

on the correlation between the candidate feature and all 

class labels, while the second term specifies the 

conditional redundancy between the candidate feature 

and the selected features. Therefore, the MDMR 

criterion can be used to rank a set of features and 

determine the best newly added feature 𝑓𝑡 . The newly 

added feature must have the highest value of the 

difference between 𝑅𝑒𝑙 and Red. In other words, when 

a new feature 𝑓𝑡 is introduced, it gains a "fitness" value 

based on its correlation with the labels (𝑅𝑒𝑙) and 

redundancy (𝑅𝑒𝑑) with previously selected features. If 

the number of selected features equals the size 

previously specified by the user, one of the features will 

be removed, and the new feature will replace it. Thus, 

the newly added feature is compared with all previously 

selected features 𝑔 ∈ 𝑆𝑡 , and if a feature has a lower 

fitness value than the newly added feature, it is replaced. 

Figure (1) shows the pseudocode of the proposed 

method. 

 

Input:   𝑓𝑡 is the newly arrival feature f at time t. λ is 

the fitness function, 𝑆0: { }, k: Size of selected of 

features. 

Output: The selected feature subset till time t. 

  Begin algorithm 

  𝑓𝑡 ← newly arrival feature at time t. 

// Checking for dependency of new arrival feature 𝑓𝑡. 

   Compute 𝑅𝑒𝑙𝑓𝑡
 . 

// Checking for redundancy features in 𝑆𝑡. 

   Compute 𝑅𝑒𝑑𝑓𝑡
 . 

// Checking for fitness features in 𝑆𝑡. 

    Compute 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑡.𝑆𝑡
. 

         𝑚𝑎𝑥 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑡.𝑆𝑡
 

         𝑁 =  𝑓𝑡 

      If    Size (𝑆𝑡) >= k   

         For each feature 𝑔 ∈ 𝑆𝑡 

              If (max > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔.𝑆𝑡
) then 

                  𝑔 ←𝑁 and remove feature g . 

              Else If (max < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔.𝑆𝑡
) then 

                  remove feature 𝑁 . 

                    End if 

             End if 

          End for 

      Else 𝑓𝑡 add to 𝑆𝑡.  

Update 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔.𝑆𝑡
 for each feature 𝑔 ∈ 𝑆𝑡. 

Until no new feature are available. 

 Return 𝑆𝑡; 

 
Figure 1. Pseudocode of the proposed method 

 

4. Analysis and Experiments 

 
This section presents the results of ten different 

feature entry sequences across all datasets. In all these 

tables, the columns represent online feature selection 

algorithms, and the rows correspond to a dataset. The 

best value in each row is highlighted in bold and 

underlined. The last row shows the statistical results 

obtained from the Wilcoxon test. The Wilcoxon test is 

used to compare the performance of feature selection 

methods. It is an inferential statistical test used to assess 

the similarity between two related samples with a rank 

scale. This test calculates the p-value for each data pair 
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and analyzes the differences. In comparing feature 

selection methods, the null hypothesis indicates that 

there is no difference in the performance of the two 

feature selection methods. If the p-value is less than or 

equal to a specified significance level (α = 0.05), the null 

hypothesis is rejected, and it can be concluded that there 

is a significant difference between the two methods [29] . 

One column of each table presents the statistical 

comparison of the proposed method with other methods. 

A positive sign indicates that the proposed method 

outperforms the other feature selection methods, while a 

negative sign indicates that the proposed method is not 

superior, and the (=) sign indicates that there is no 

significant difference between the performance of the 

two feature selection methods. 

Tables (1-6) show the accuracy, hamming loss, one-

error, coverage, average precision, and rank loss 

obtained using the ML-kNN classifier. From the results 

of these tables, it can be seen that the proposed algorithm 

achieves the best accuracy among the other methods. 

 

 

 

 

 

Table 1. Comparison of the accuracy of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 0/5698 0/5112 0/5214 0/5024 

Medical 0/5334 0/5325 0/5521 0/5145 

Scene 0/5301 0/5021 0/5298 0/4954 

Enron 0/3630 0/3218 0/3512 0/3008 

Genbase 0/9078 0/9010 0/9024 0/8825 

Image 0/4176 0/3458 0/4154 0/3947 

Bibtex 0/1307 0/1012 0/1287 0/1102 

Corel5k 0/1907 0/1662 0/1886 0/1784 

Wilcoxon  + + + 

 
Table 2. Comparison of the Hamming-loss of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 0/1978 0/1995 0/2084 0/2101 

Medical 0/0174 0/0201 0/0188 0/0195 

Scene 0/1307 0/1543 0/1452 0/1301 

Enron 0/0514 0/0521 0/0512 0/063 

Genbase 0/0049 0/0112 0/0058 0/0107 

Image 0/6100 0/9254 0/6301 0/8839 

Bibtex 0/0104 0/0140 0/0102 0/0152 

Corel5k 0/0095 0/0095 0/0098 0/0109 

Wilcoxon  + + + 

 
Table 3. Comparison of the One-error of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 0/1998 0/2431 0/2007 0/2527 

Medical 0/2604 0/3228 0/2698 0/2978 

Scene 0/3726 0/5873 0/4125 0/4456 

Enron 0/3267 0/3455 0/3385 0/3715 

Genbase 0/0106 0/0352 0/0220 0/0251 

Image 0/3671 0/4450 0/3546 0/4127 

Bibtex 0/5776 0/6613 0/6157 0/6309 

Corel5k 0/6887 0/7535 0/7264 0/7001 

Wilcoxon  + + + 

 

 
Table 4. Comparison of the Coverage of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 9853/6 6/6235 6/4183 6/6057 

Medical 4/0005 5/9254 4/1524 5/3289 

Scene 0/7914 1/6213 0/8503 1/5829 

Enron 14/092 14/9157 15/1002 14/5780 

Genbase 0/7230 0/8951 0/7568 0/83259 

Image 0/7586 1/8997 0/8038 1/2036 

Bibtex 53/2742 63/5462 55/6322 60/4378 

Corel5k 118/4516 121/5258 120/3048 119/2171 

Wilcoxon  + + + 
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Table 5. Comparison of the Precision of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 0/7620 0/7041 0/7545 0/7350 

Medical 0/7764 0/6522 0/7452 0/7616 

Scene 0/7861 0/7053 0/7540 0/7750 

Enron 0/6887 0/6349 0/6336 0/6450 

Genbase 0/9854 0/9673 0/9185 0/9720 

Image 0/7571 0/7313 0/7502 0/7446 

Bibtex 0/3958 0/3224 0/4002 0/3854 

Corel5k 0/2494 0/2214 0/2420 0/2340 

Wilcoxon  + + + 

 

 

Table 6. Comparison of the Ranking loss of the OSM-MI method with other multi-label streaming feature selection methods. 

 OSM-MI OM-NRS OMGFS MUCO 

Yeast 0/1783 0/2008 0/1832 0/2014 

Medical 0/0436 0/1184 0/0910 0/0107 

Scene /0/2228 0/3562 0/2366 0/3098 

Enron 0/0958 0/1103 0/0937 0/1003 

Genbase 0/0110 0/0615 0/0106 0/0125 

Image 0/1950 0/3164 0/1997 0/2389 

Bibtex 0/2134 0/2904 0/2256 0/2507 

Corel5k 0/1359 0/1493 0/1456 0/1415 

Wilcoxon  + + + 

 

 

 

 
 

Figure 1. Comparison of Execution Times for OSM-MI and Other Multi-label Streaming Feature Selection Methods 

 

In terms of accuracy, OSM-MI consistently outperforms 

the other methods in most datasets. For example, in the 

Yeast dataset, OSM-MI achieves an accuracy of 0.5698, 

which is higher than the others. Similarly, in the Enron 

dataset, OSM-MI's accuracy is 0.3630, significantly 

better than the other methods, demonstrating better 

generalization and performance in multi-label streaming 

feature selection tasks. 

Regarding Hamming loss, OSM-MI shows superior 

performance by achieving lower values across most 

datasets. In the Yeast dataset, the Hamming loss of 

OSM-MI is 0.1978, lower than that of the other methods, 

indicating that OSM-MI is better at minimizing 

incorrect labels. The Genbase dataset shows the lowest 

Hamming loss for OSM-MI at 0.0049, further 

supporting its effectiveness in multi-label classification. 

For the one-error metric, which measures the fraction of 

times the top-ranked label is incorrect, OSM-MI again 

outperforms the other methods. In the Genbase dataset, 

OSM-MI achieves a one-error of 0.0106, significantly 

outperforming the alternatives. This demonstrates that 

OSM-MI is better at minimizing incorrect top 

predictions, which is crucial in multi-label tasks where 

the correct top label is prioritized. 
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In terms of coverage, which measures the fraction of 

relevant labels ranked in the top positions, OSM-MI also 

performs well. It maintains high coverage values, with 

Yeast achieving 9853/6 and Corel5k 118/4516. This 

indicates that OSM-MI is effective at ensuring a larger 

proportion of relevant labels are included in the top 

positions compared to other methods. 

Regarding precision, OSM-MI shows competitive 

results. In the Yeast dataset, OSM-MI achieves a 

precision of 0.7620, outperforming the other methods. 

This suggests that OSM-MI is effective at making 

accurate predictions, particularly in terms of the 

proportion of correct labels. 

Finally, in terms of ranking loss, OSM-MI demonstrates 

strong performance in minimizing the ranking loss. For 

example, in the Yeast dataset, it achieves a ranking loss 

of 0.1783, better than the other methods. This indicates 

that OSM-MI effectively ranks the relevant labels 

higher, which is essential in multi-label tasks where the 

order of predictions matters. 

The Wilcoxon test results indicate that OSM-MI 

outperforms the other methods in several datasets, as 

shown by the "+" sign in the Wilcoxon row. This 

statistical significance further supports the effectiveness 

of OSM-MI in multi-label streaming feature selection 

tasks. 

In conclusion, the OSM-MI method consistently 

outperforms OM-NRS, OMGFS, and MUCO across 

multiple evaluation metrics, including accuracy, 

hamming loss, one-error, ranking loss, precision, and 

coverage. These results highlight the robustness and 

efficiency of OSM-MI as a method for multi-label 

streaming feature selection, demonstrating its 

superiority in a variety of datasets. The statistical 

significance of the results, supported by the Wilcoxon 

test, underscores the effectiveness of the OSM-MI 

approach. 

Figure 2 presents a comparison of the execution times of 

the OSM-MI method with other multi-label streaming 

feature selection methods, including OM-NRS, 

OMGFS, and MUCO, across various datasets. The 

datasets used in the comparison include Yeast, Medical, 

Scene, Enron, Genbase, Image, Bibtex, and Corel5k. 

Each method's execution time is represented by a 

distinct colored bar, with OSM-MI shown in blue, OM-

NRS in green, OMGFS in red, and MUCO in yellow. 

As observed, OSM-MI consistently demonstrates lower 

execution times compared to the other methods across 

most datasets. For example, in the Yeast dataset, OSM-

MI achieves an execution time of 2023 ms, significantly 

outperforming the other methods, such as MUCO, 

which has a higher execution time of 4849 ms. This 

trend is consistent across other datasets, where OSM-MI 

generally exhibits faster execution times, suggesting its 

efficiency in handling multi-label feature selection 

tasks. In some cases, such as the Enron dataset, the 

difference in execution times is substantial, with OSM-

MI performing much better than OM-NRS and MUCO. 

The figure highlights the overall efficiency of the OSM-

MI method in terms of execution time, making it a 

preferred choice for large-scale multi-label streaming 

feature selection tasks. The consistency of OSM-MI's 

performance across various datasets reinforces its 

robustness and suitability for real-time applications. 

 

5. Conclusion and Future Work 
In this study, we proposed the OSM-MI method for 

multi-label streaming feature selection and evaluated its 

performance against other well-established methods, 

including OM-NRS, OMGFS, and MUCO. The results 

showed that OSM-MI outperforms the other methods in 

terms of accuracy, hamming loss, one-error, precision, 

and ranking loss across a variety of datasets. 

Additionally, OSM-MI demonstrates superior execution 

times, making it an efficient choice for real-time 

applications. The statistical significance of these results, 

supported by the Wilcoxon test, further confirms the 

effectiveness of the OSM-MI method in multi-label 

streaming feature selection tasks. The proposed method 

not only ensures high classification accuracy but also 

maintains low redundancy and maximizes feature 

relevance in multi-label data. 

Future work could focus on improving scalability with 

parallel computing, exploring deep learning techniques, 

and enhancing robustness to noisy data. Additionally, 

testing the method in other multi-label tasks, like image 

or text classification, would help assess its versatility. 

 
References 

 

 [1] S. Gilpin, B. Qian, and I. Davidson, “Efficient 

hierarchical clustering of large high 

dimensional datasets,” in Proceedings of 

the 22nd ACM international conference on 

Conference on information &#38; 

knowledge management, San Francisco, 

California, USA, 2013, pp. 1371-1380. 

https://doi.org/10.1145/2505515.2505527  

[2] J. Dai, W. Chen, and Y. Qian, “Multi-label 

feature selection with missing features via 

implicit label replenishment and positive 

correlation feature recovery,” IEEE 

Transactions on Knowledge and Data 

Engineering, 2025. 

10.1109/TKDE.2025.3536080  

[3] A. RAFIEI, P. MORADI, and A. Ghaderzadeh, 

“Multi-Label Feature Selection Using a 

Hybrid Approach Based on the Particle 

Swarm Optimization Algorithm,” 2023. 

20.1001.1.16823745.1401.20.4.7.7  

[4] P. Kiyoumarsi, F. Kiyoumarsi, B. Z. Dehkordi, 

and M. Karbasiyoun, “A Feature Selection 

Method on Gene Expression Microarray 

Data for Cancer Classification Abstract,” 

Journal of Optimization in Soft 

Computing, vol. 2, no. 3, pp. 35-44, 2024. 

https://doi.org/10.82553/josc.2024.14030

8101189068  

[5] J. Abdollahi, B. Nouri-Moghaddam, N. 

Mikaeilvand, S. J. Gudakahriz, A. 



An Efficient Approach for Multi-Label Streaming Feature Selection 

30 

 

Khosravani, and A. Mirzaei, “A Review of 

Feature Selection,” Journal of 

Optimization in Soft Computing, vol. 2, no. 

4, pp. 16-20, 2025. 

https://doi.org/10.82553/josc.2025.14030

9071191740  

[6] W. Ding, T. F. Stepinski, Y. Mu, L. Bandeira, 

R. Ricardo, Y. Wu, Z. Lu, T. Cao, and X. 

Wu, “Subkilometer crater discovery with 

boosting and transfer learning %J ACM 

Trans. Intell. Syst. Technol,” vol. 2, no. 4, 

pp. 1-22, 2011. 

https://doi.org/10.1145/1989734.1989743  

[7] M. Wang, H. Li, D. Tao, K. Lu, and X. Wu, 

“Multimodal Graph-Based Reranking for 

Web Image Search %J Trans. Img. Proc,” 

vol. 21, no. 11, pp. 4649-4661, 2012. 

10.1109/TIP.2012.2207397. 

[8] K. Yu, X. Wu, W. Ding, and J. Pei, “Scalable 

and Accurate Online Feature Selection for 

Big Data %J ACM Trans. Knowl. Discov. 

Data,” vol. 11, no. 2, pp. 1-39, 2016. 

https://doi.org/10.1145/2976744 

[9] Y. Hochma, and M. Last, “Fast online feature 

selection in streaming data,” Machine 

Learning, vol. 114, no. 1, pp. 1, 2025. 

https://doi.org/10.1007/s10994-024-

06712-x 

[10] S. Perkins, and J. Theiler, “Online feature 

selection using grafting,” in Proceedings of 

the Twentieth International Conference on 

International Conference on Machine 

Learning, Washington, DC, USA, 2003, 

pp. 592-599. 

[11] J. Zhou, D. P. Foster, R. A. Stine, and L. H. 

Unga, “Streamwise feature 

selection,”.Journal of Machine Learning 

Research, vol. 7, pp. 1861-1885, 2006. 

[12] L. Zou, T. Zhou, and J. Dai, “Online Multi-

Label Streaming Feature Selection by 

Label Enhancement and Fuzzy Synergistic 

Discrimination Information,” IEEE 

Transactions on Fuzzy Systems, 2025. 

10.1109/TFUZZ.2025.3554982 

[13] J. Liu, Y. Lin, Y. Li, W. Weng, and S. Wu, 

“Online Multi-label Streaming Feature 

Selection Based on Neighborhood Rough 

Set,” vol. 84, pp. 273-287, 2018. 

https://doi.org/10.1016/j.patcog.2018.07.0

21 

[14] J. Liu, Y. Lin, S. Wu, and C. Wang, “Online 

Multi-label Group Feature Selection,” 

Knowledge-Based Systems, vol. 143, pp. 

42-57, 2018. 

https://doi.org/10.1016/j.knosys.2017.12.0

08 

[15] W. Jiang, G. Er, and Q. Dai, “Similarity-based 

online feature selection in content-based 

image retrieval,” in IEEE 

TRANSACTIONS ON IMAGE 

PROCESSING, 2006, pp. 02–712. 

10.1109/TIP.2005.863105 

[16] A. Rafie, P. Moradi, and A. Ghaderzadeh, “A 

multi-objective online streaming multi-

label feature selection using mutual 

information,” Expert Systems with 

Applications, vol. 216, pp. 119428, 2023. 

https://doi.org/10.1016/j.eswa.2022.11942

8 

[17] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, 

“Online feature selection with streaming 

features,” in IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 2013, 

pp. 1178–1192. 10.1109/TPAMI.2012.197 

[18] S. Eskandari, and M. M. Javidi, “Online 

streaming feature selection using rough 

sets,” International Journal of 

Approximate Reasoning, vol. 69, pp. 35-

57, 2016. 

https://doi.org/10.1016/j.ijar.2015.11.006 

[19] M. Rahmaninia, and P. Moradi, “OSFSMI: 

online stream feature selection method 

based on mutual information,” Applied 

Soft Computing, vol. 68, pp. 733-746, 

2018. 

https://doi.org/10.1016/j.asoc.2017.08.034 

[20] Y. Lin, Q. Hu, J. Liu, J. Li, and X. Wu, 

“Streaming feature selection for multilabel 

learning based on fuzzy mutual 

information,” IEEE Transactions on Fuzzy 

Systems, vol. 25, no. 6, pp. 1491-1507, 

2017. 10.1109/TFUZZ.2017.2735947 

[21] J. Liu, Y. Lin, Y. Li, W. Weng, and S. Wu, 

“Online multi-label streaming feature 

selection based on neighborhood rough 

set,” Pattern Recognition, vol. 84, pp. 273-

287, 2018. 

https://doi.org/10.1016/j.patcog.2018.07.0

21 

[22] D. Paul, A. Jain, S. Saha, and J. Mathew, 

“Multi-objective PSO based online feature 

selection for multi-label classification,” 

Knowledge-Based Systems, vol. 222, pp. 

106966, 2021. 

https://doi.org/10.1016/j.knosys.2021.106

966 

[23] H. L. X. W. Z. L. W. Ding, “Group Feature 

Selection with Streaming Features,” in 

2013 IEEE 13th International Conference 

on Data Mining, Dallas, TX, USA 2013. 

10.1109/ICDM.2013.137 



M. Rafie et al. / Journal of Optimization in Soft Computing (JOSC), 3(2): 22-31, 2025 

31 

 

[24] J. Wang, M. Wang, P. Li, and L. Liu, “Online 

Feature Selection with Group Structure 

Analysis,” EEE Transactions on 

Knowledge and Data Engineering, vol. 27, 

no. 11, 2015. 

https://doi.org/10.48550/arXiv.1608.0588

9 

[25] X. He, D. Cai, and P. Niyogi, “Laplacian score 

for feature selection,” Advances in neural 

information processing systems, vol. 18, 

2005. 

[26] H. Wang, D. Yu, Y. Li, Z. Li, and G. Wang, 

"Multi-label online streaming feature 

selection based on spectral granulation and 

mutual information." pp. 215-228. 

https://doi.org/10.3390/e25071071. 

[27] S. C. H. Hoi, J. Wang, P. Zhao, and R. Jin, 

“Online feature selection for mining big 

data,” in Proceedings of the 1st 

International Workshop on Big Data, 

Streams and Heterogeneous Source 

Mining: Algorithms, Systems, 

Programming Models and Applications, 

Beijing, China, 2012, pp. 93-100. 

https://doi.org/10.1016/j.swevo.2025.101

896 

[28] L. Yu, and H. Liu, "Feature selection for high-

dimensional data: A fast correlation-based 

filter solution." pp. 856-863. 

[29] H. O. Parametric, “Handbook Of Parametric 

And Nonparametric Statistical 

Procedures.” 

https://doi.org/10.1201/9780429186196. 

 


