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 The objective of this study is to determine the optimal shape of 

masonry arches under dynamic loads using the Support Vector 

Machine (SVM) technique. This approach utilizes the principles of 

Structural Risk Minimization (SRM), which demonstrate superior 

performance compared to methods based on Empirical Risk 

Minimization (ERM). The research particularly focuses on the types 

of arches commonly used in traditional structures and their 

significance in ensuring structural stability and performance. The 

modeling, dynamic analysis, and shape optimization of a semi-circular 

arch are comprehensively explained using ANSYS 11 software and the 

SVM method. The necessity of this study lies in the critical role that 

the optimal shape of arches plays in enhancing the resilience and 

reducing the vulnerability of masonry structures against dynamic 

loads, especially given their widespread application in both historical 

and modern constructions. The main innovation of this research is the 

application of the Support Vector Machine as an advanced and less 

commonly employed method for arch shape optimization. For the first 

time, SRM principles are integrated with dynamic modeling and 

computational analysis, offering a novel framework for optimizing 

traditional structures. 
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1. Introduction 

Masonry arch bridges have been integral 

components of architectural and engineering 

heritage for centuries, known for their aesthetic 

appeal and structural efficiency. These structures, 

prevalent in both historical and modern 

applications, require meticulous analysis to ensure 

their resilience, particularly under dynamic loads 

such as seismic activity and vehicular traffic. A 

critical aspect of their performance lies in the 

optimization of their geometric shape, which 

significantly influences their ability to withstand 

dynamic forces while maintaining stability and 

durability [1]. 

Dynamic analysis is a comprehensive time-history 

analytical method that evaluates the responses of 

structures to time-dependent excitations, such as 

earthquakes. By numerically integrating the 

equations of motion, this method provides a 

detailed understanding of time-varying 

displacements, strains, stresses, and forces within a 

structure. Such insights are essential for predicting 

the behavior of masonry arches under dynamic 

loads, enabling engineers to design and optimize 

structures that meet safety and performance 

requirements [2]. 

Previous research has explored various aspects of 

modeling, dynamic analysis, and shape 

optimization of masonry arches. These studies 

have demonstrated the significance of employing 

advanced computational tools like ANSYS 

software for conducting dynamic analyses. 

However, these methods are often computationally 

intensive, requiring significant time and resources 

to achieve accurate results. The reliance on 

traditional optimization techniques, primarily 

based on Empirical Risk Minimization (ERM), has 

further limited the efficiency and applicability of 

these approaches [3]. 
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Despite the progress made, a notable gap exists in 

the integration of advanced machine learning 

techniques, such as Support Vector Machines 

(SVM), into the dynamic analysis and optimization 

of masonry arches. Traditional methods have 

struggled to balance computational efficiency with 

the precision required for analyzing complex 

structural behaviors. Furthermore, existing studies 

have not fully leveraged the principles of Structural 

Risk Minimization (SRM), which offer a more 

robust framework for predictive modeling 

compared to ERM-based techniques [4]. 

To address these limitations, the present study 

introduces an innovative framework that combines 

SVM with SRM principles for the dynamic 

analysis and shape optimization of masonry arches. 

By employing this approach, the computational 

burden of dynamic analysis is significantly reduced 

while maintaining high accuracy in results. 

Additionally, the integration of SVM into the 

optimization process represents a novel application 

in the field, filling a critical void in the current body 

of knowledge. This research not only advances the 

methodological tools available for structural 

optimization but also sets a precedent for future 

studies aiming to enhance the resilience and 

performance of masonry arch bridges under 

dynamic loads. 

 

2. Literature review 

This section discusses related research on Masonry 

Arch Bridges under Dynamic Loads. In [5], 

Authors developed a hybrid optimization 

framework combining genetic algorithms with 

finite element analysis to investigate the 

optimal shapes of masonry arches. Although 

this approach demonstrated improvements in 

optimization outcomes, it faced challenges in 

handling high-dimensional design spaces 

efficiently. Our SVM-based methodology 

addresses this limitation by offering robust 

performance in high-dimensional settings and 

ensuring scalability.Another noteworthy 

contribution by [6] utilized deep learning 

models to predict the dynamic stability of 

semicircular masonry arches. While their 

neural network models achieved high 

accuracy, the need for extensive training data 

and the risk of overfitting limited the practical 

application of their approach. Our method 

overcomes these issues by leveraging SVM, 

which requires smaller datasets and inherently 

avoids overfitting through SRM principles.In 

[7], the influence of material properties on the 

seismic performance of masonry arches was 

investigated using parametric analyses. 

Although the research provided a detailed 

understanding of material behavior, it lacked a 

systematic framework for shape optimization. 

Our research extends beyond material analysis 

to include comprehensive shape optimization, 

enhancing the overall resilience of masonry 

arches. Finally, in [8] authors examined the 

impact of geometric irregularities on the 

dynamic performance of masonry arches 

through numerical simulations. While the 

study highlighted critical geometric factors 

affecting stability, it did not incorporate 

advanced optimization methodologies. Our 

work fills this gap by integrating machine 

learning techniques directly into the 

optimization process, providing a more 

efficient and effective framework for 

analyzing and improving structural 

performance. Despite the progress made, a 

notable gap exists in the integration of 

advanced machine learning techniques, such as 

Support Vector Machines (SVM), into the 

dynamic analysis and optimization of masonry 

arches. Traditional methods have struggled to 

balance computational efficiency with the 

precision required for analyzing complex 

structural behaviors. Furthermore, existing 

studies have not fully leveraged the principles 

of Structural Risk Minimization (SRM), which 

offer a more robust framework for predictive 

modeling compared to ERM-based 

techniques.To address these limitations, the 

present study introduces an innovative 

framework that combines SVM with SRM 

principles for the dynamic analysis and shape 

optimization of masonry arches. By employing 

this approach, the computational burden of 

dynamic analysis is significantly reduced 

while maintaining high accuracy in results. 

Additionally, the integration of SVM into the 

optimization process represents a novel 

application in the field, filling a critical void in 

the current body of knowledge. This research 

not only advances the methodological tools 

available for structural optimization but also 

sets a precedent for future studies aiming to 

enhance the resilience and performance of 

masonry arch bridges under dynamic loads. 
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3. Modeling, Analysis, and Shape Optimization 

of Arches Using ANSYS 11 

Considering that in the optimization section, design 

variables, namely the thickness of the base and the 

thickness of the crown, need to be defined as 

parameters, key points in the modeling of the arch 

must be defined as follows[9]. 

4. Geometrical Modeling 

For clarity, the semi-circular arch with the 

definition of key points as parameters is presented 

in (Figure 1), where the coordinates of the key 

points are defined as follows (Table1): 

 

Table 1: Coordinates of Key Points of the Semi-

Circular Arch 

point 1 2 3 4 5 6 7 

X 

coordinate

s 
0 R 

-

R 
0 

R+t

0 

-

(R+t0

) 

0 

Y 

coordinate

s 

0 0 0 R 0 0 

R+t

1 

 

 

Figure 1: Semi-Circular Arch [8] 

 

Modeling the arch in this way means that the 

gradual reduction in thickness from the base to the 

crown contributes to the stability of the arch. It is 

worth noting that in the modeled arch, the thickness 

decreases linearly from the base to the crown. 

Additionally, the thickness of the arch in the 

longitudinal direction is equal to 20 units. The 

displacements of the support nodes are set to zero, 

and the shear force is unable to displace them. 

Furthermore, the masonry consists of brick and 

mortar, considered as homogeneous materials with 

properties listed in Table 2, and the coefficients 

involved in the nonlinear and non-elastic analysis 

listed in Table 3 are taken into account. 

 
Table 2: Characteristics of Masonry Materials 

1460[6] 
Density 

 ρ
 

3/ mkg
                     

8105 [7] 

Elastic Modulus 

 E
                       

2/ mN
 

5105.0  [6,7,8] 

Allowable Tensile Stress

 tf
                    

2/ mN  

0.17 [8] Poisson's Ratio 
 

 

 

Table 3: Coefficients Influencing Nonlinear Non-

Elastic Analysis 

0.1[6] 
Shear Transfer Coefficient 

for Open Crack 

0.9[7] 
Shear Transfer Coefficient 

for closed Crack 

4105 [6, 7, 8] 

Allowable Tensile Stress 
2/ mN           tf  

5105 [6,7] 

Allowable compress Stress 
2/ mN         cf  

 

 

5. Support Vector Machine: 

 (SVM) is a machine learning method based on the 

statistical learning theory proposed by Vapnik and 

his colleagues in the 1990s. In SVM, the principles 

of Structural Risk Minimization (SRM) are 

employed, while other methods rely on Empirical 

Risk Minimization (ERM). It has been 

demonstrated that SRM principles perform better 

than ERM in terms of functionality. SVM is 

generally used for binary or multiclass 

classification and regression problems [10]. 

Like many other machine learning methods, SVM 

involves a model construction process consisting of 

two stages: training and testing. At the end of the 

training phase, the generalization capability of the 

trained model is evaluated using test data. In 

summary, the main operation of SVM in solving 

regression problems can be stated as follows: 

1. Support Vector Machine approximates the 

regression function using a linear function. 

2. Support Vector Machine performs regression 

operations with a function where the deviation 

from the actual value is less than ε (loss function). 

3. By minimizing the structural risk, Support 

Vector Machine provides the best solution [11]. 

In methods such as artificial neural networks, 

empirical risk minimization principles are used to 

achieve the best solution. Minimizing empirical 

risk ensures the appropriate performance of the 

model on training data, but there is no guarantee of 

proper generalization. Therefore, in this method, 

proper network design is necessary to improve the 

generalization performance of the model. The goal 

of structural risk minimization is to optimize the 
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generalization capability of the model while 

minimizing empirical risk simultaneously [12]. 

Solving the regression problem in SVM involves 

approximating the regression function using a 

linear function f(x) =˂w.x˃+b. on a set containing 

a sample such as 

{(x1,y1),….(x1,y1)ϵ Rn, yϵR} Translated 

academically, it becomes: to be able to estimate 

output values based on inputs. In the above 

equation, x is the input vector 

(w,b) ϵ RN×R  The controlling parameters of the 

function f are represented by ˂w.x˃, indicating the 

inner product. For solving the regression problem, 

the Vapnik loss function is used, where a minimum 

error of ε can be ignored. This loss function is 

defined in equation (1) as follows: 

 

 
(1) 

 

Lɛ(y) represents the loss function and ε is the 

allowable error in the loss function. The controlling 

parameters of the optimal regression function are 

obtained by solving the following optimization 

problem: 

 

 

 

 

 

(2) 

 

In the equation (2), ζ's are slack variables. These 

variables, along with the loss function, are depicted 

in Figure 2. To solve the optimization problem 

above, the Lagrange function is written according 

to equation (2) using the theory of Lagrange 

multipliers. 

 

 

 
Figure 2: Vapnik's Loss Function and Slack 

Variables 

 

With the maximization of the above function under 

the following constraints, the values of a and a* are 

obtained. These coefficients are referred to as 

Lagrange multipliers. 

 The optimization problem above can be solved 

using Quadratic Programming (QP) methods, thus 

achieving a definite global extremum. 

Consequently, the risk of overfitting these data 

points is higher. Therefore, support vectors do not 

lie within the margin band. Hence, controls the 

number of support vectors[13]. With the help of 

Lagrange multipliers and support vectors, the 

optimal response control parameters are calculated 

as follows: 

In Equation 7, Xr and Xs are two support vectors. 

For constructing a Support Vector Machine (SVM) 

model, the parameters C and are defined by the 

user. Parameter C is a regularization parameter and 

can take values from zero to infinity. Its role is to 

balance between minimizing empirical risk and 

maximizing generalization capability. Parameter 

can also take values from zero to infinity. Its value 

is crucial in the context of support vectors and 

consequently, the model's performance. Linear 

regression problem in SVM can be easily extended 

to non-linear regression. For this purpose, kernel 

functions are used [14]. Various kernels have been 

recognized so far, but the successful application of 

polynomial and radial basis function (rbf) kernels 

in geotechnical engineering problems has been 

reported. Thus, in the case of non-linear regression 

in SVM, the control parameters of the optimal 

function are calculated with the following 

equations: 

6. Modeling arches using Support Vector 

Machines (SVM) 

To generate and evaluate a Support Vector 

Machine (SVM)-based model for predicting the 

dynamic response of concrete arches under seismic 

force, 300 arch samples analyzed by ANSYS 

software are used. Each arch sample includes 3 

independent variables: arch radius, base thickness, 

and crown thickness, and one dependent variable: 

maximum arch tensile stress. The range of these 

parameters in this study is defined as follows: arch 

radius (4 to 8 meters), base thickness (0.8 to 1.4 

meters), and crown thickness (0.2 to 0.4 meters). 

For creating the SVM model, the data are divided 

into two sets, training and evaluation, with a ratio 

of 70 to 30 (210 samples for training and 90 

samples for evaluation). The desired model is 

generated using the training dataset, and its 

performance in predicting the desired population is 

evaluated using data not experienced during the 

model training (test dataset). Moreover, the radial 



Optimal Shape Investigation of Masonry Arch Bridges under Dynamic Loads Using Support Vector Machine 

25 

 

basis function (rbf) kernel, chosen as the best 

kernel function in various research studies, is used 

as the kernel function in this study[15]. To achieve 

a better model, multiple models are created by 

combining different combinations of kernel 

function parameters (C, and ζ), and their 

performance is evaluated. Additionally, the 

prediction results of the model are presented using 

statistical indices such as the correlation coefficient 

(R) and the root mean square error (RMSE). The 

correlation coefficient is a measure of the 

conformity of predicted values to measured values 

and is calculated according to the following 

equation. 

Moreover, the value of RMSE, which is a measure 

for error estimation, is calculated according to the 

following equation. 

Tables 4 to 6 present the results obtained from the 

generated models based on different combinations 

of parameters C, , and ζ. 

 

 

 

 

 

 

 

 

 

Table 4: Model evaluation for various values of the kernel function parameter ζ 

ζ 
Train Set Test Set 

R RMSE R RMSE 

0.5 0.8324 0.2134 0.6914 0.1424 

1 0.8873 0.2542 0.7105 0.1804 

10 0.9132 0.0422 0.8123 0.1924 

50 0.9732 0.1393 0.8012 0.0834 

100 0.9023 0.2059 0.9145 0.1425 

200 0.9802 0.1942 0.9014 0.1804 

300 0.8931 0.1954 0.7204 0.1643 

ε = .002          C=120 

 

 

Table 5: Model evaluation for various values of the kernel function parameter𝛆 

ε 
Train Set Test Set 

R RMSE R RMSE 

0.0001 0.8753 0.1246 0.7406 0.0245 

0.001 0.8472 0.0754 0.8520 0.0810 

0.005 0.9123 0.0864 0.9025 0.1149 

0.01 0.7856 0.1825 0.8205 0.1820 

0.05 0.7750 0.1342 0.7525 0.1025 

0.1 0.8253 0.2305 0.8206 0.2150 

ζ = 45          C=120 

 

Table 6: Model evaluation for various values of the kernel function parameter 𝐜 

C 
Train Set Test Set 

R RMSE R RMSE 

0.1 0.6892 0.2025 0.6027 0.1486 

1 0.8402 0.1840 0.8242 0.1085 

10 0.7920 0.1820 0.8295 0.0895 

50 0.8154 0.1234 0.7930 0.0702 

100 0.8682 0.0804 0.8206 0.1079 

150 0.9104 0.0865 0.9253 0.0802 

200 0.9425 0.9104 0.9874 0.9795 

ε = .002          ζ =45 

 

 

7. Conclusion 
 

The overall goal of this research is to utilize a 

nonlinear Support Vector Machine (SVM) model 

along with a radial basis function (rbf) kernel for 

predicting the dynamic response of concrete arches 

under seismic force. To this end, a dataset 

consisting of 300 arch samples analyzed by 
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ANSYS software is divided into a 70 to 30 ratio for 

training and evaluation datasets (Figure 3). 

Finally, after determining the best SVM model, 

which exhibits adequate accuracy in predicting the 

dynamic responses of arches compared to actual 

results, the kernel function parameters (C, , and ζ) 

as well as the values of R (correlation coefficient) 

and RMSE (root mean square error) are presented 

as determinant parameters in selecting the best 

SVM model. Figure 4 compares the maximum 

tensile stress calculation by Support Vector 

Machine and ANSYS software. The results of the 

study indicate that the Support Vector Machine has 

an error ranging from 11 to 17 compared to the 

results obtained by ANSYS software. 

 
 

 

Figure 3: Comparison plot of maximum tensile stress calculated by ANSYS software and SVM 

 

 

Figure 4: Percentage error plot of maximum tensile stress calculation by  

SVM software compared to ANSYS software 
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