افزایش پاسخ رشد و فعالیت آنزیم آنتی اکسیدانی سینره (Pericallis × hybrida L.)
لی لی فاتح نژاد
1
(
بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز. شیراز، ایران.
)
ابوالفضل جوکار
2
(
بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز. شیراز، ایران.
)
کلید واژه: فعالیت آنزیم های آنتی اکسیدانی, سینرره, pH بالای خاک, کلروز برگ, Pericallis × hybrida ,
چکیده مقاله :
سینرر (Pericallis hybrida L.) با مانع رشد و کلروز مواجه شده است. اسید هیومیک، سولفات آهن و کودهای کلات آهن برای کشت سینراریا در خاک قلیایی مورد بررسی قرار گرفتند. این پژوهش به صورت آزمایشی فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار و در هر تکرار 4 نمونه انجام شد. محیطهای گیاهی با استفاده از اسید هیومیک (0، 0.5، 1 گرم بر کیلوگرم خاک) و کودهای آهن (0، 5 و 10 میلیگرم بر کیلوگرم سولفات آهن و 5 و 10 میلیگرم بر کیلوگرم کلات آهن) غنیسازی شدند. گیاهانی که با خاک حاوی 1 گرم در کیلوگرم اسید هیومیک همراه با 10 میلی گرم در کیلوگرم کلات آهن تیمار شدند، در ارتفاع بوته (86%)، قطر ساقه (100%)، وزن تر ریشه (170%)، دوره گلدهی(166%)، تعداد گل (182%)، تعداد گل آذین (252%)، قطر گل (59%) و میزان کلروفیل کل (300%) بهبود یافتند. کاربرد همزمان 1 گرم بر کیلوگرم اسید هیومیک و 10 میلی گرم بر کیلوگرم کلات آهن، میزان عناصر معدنی پتاسیم، نیتروژن و فسفر را به ترتیب 179، 193 و 675 درصد افزایش داد. ترکیبات 0.5 گرم بر کیلوگرم اسید هیومیک و 10 میلی گرم بر کیلوگرم کلات آهن باعث افزایش آنتوسیانین (131٪)، سطح برگ (140٪)، TSS (332٪) و نشاسته (642٪) شد. کوددهی با 0.5 گرم بر کیلوگرم اسید هیومیک در ترکیب با 5 میلی گرم بر کیلوگرم کلات آهن منجر به بیشترین فعالیت آنزیم های آنتی اکسیدانی SOD (238٪)، POD (324٪) و CAT (667٪) و کاهش نشت یونی (60%) شد. اسید هیومیک به عنوان یک کود زیستی در ترکیب با کلات آهن برای استفاده در تولید گیاهان در خاک هایی با شرایط PH بالا و استرس زا پیشنهاد می شود.
چکیده انگلیسی :
[1] Kasem, M. M. & El-baset, A. Allelopathic effect of the foliar spray by the aqueous seeds extract of moringa (Moringa oleifera) and Fenugreek (Trigonella foenum graecum) on Cineraria (Pericallis x hybrida) Plant. Journal of Plant Production, 7(11), 1209-1214 (2016).
[2] Jin-gang, W., Wei, L., Hong-wei, R., Yuan-da, L., Ding, B. & Jing, X. Cloning and Expression Analysis of Mlo Gene from Pericallis hybrida B. Nord. Journal of Northeast Agricultural University, 21(1), 10-15 (2014).
[3] Dole, J. & Wilkins, H. Floriculture, Principles and Species, 461-463 (1995).
[4] Pirzad, A. & Shokrani, F. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Applied Sciences Journal, 18(9), 1203-1208 (2012).
[5] Nemati Lafmejani, Z., Jafari, A. A., Moradi, P. & Ladan Moghadam, A. Impact of foliar application of iron-chelate and Iron nano particles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Journal of Essential Oil Bearing Plants, 21(5), 1374-1384 (2018).
[6] Ali, A. F., Salim, H. A., Bader, B. R. & Abed, A. H. Response of Swiss chard cultivars (Beta vulgaris L.) to chelated Iron, nano Iron and Glomus mosseae. In IOP Conference Series: Earth and Environmental Science (Vol. 735, No. 1, p. 012057). IOP Publishing (2021).
[7] Mousa, G. T., Abdul-Hafeez, E. Y. & Ibrahim, O. H. M. Response of gardenia plants grown under various growth media and ferrous sulfate application. Pak. J. Agri. Sci, 52(3), 651-658 (2015).
[8] Gabra, G. W. R. Response of Narcissus constantinople 'Double Roman' plants of some natural and chemical fertilizers. Egyptian Academic Journal of Biological Sciences, H. Botany, 12(1), 147-160 (2021).
[9] Ghafari, H. & Razmjoo, J. Effect of foliar application of nanoiron oxidase, iron chelate and iron sulfate rates on yield and quality of wheat. International Journal of Agronomy and plant production, 4(11), 2997-3003 (2013).
[10] Memon, S. A., Bangulzai, F. M., Keerio, M. İ., Baloch, M. A. & Buriri, M. Effect of humic acid and iron sulfate on growth and yield of zinnia (Zinnia elegans). Journal of Agricultural Technology, 10(6), 1517-152 (2014).
[11] Adam, A. Studies the response of gladiolus plants to humic acid, potassium and water irrigation intervals. Scientific Journal of Agricultural Sciences, 3(1), 23-37 (2021).
[12] Boogar, A. R., Shirmohammadi, E. & Geikloo, A. Effect of humic acid application on qualitative characteristic and micronutrient status in (Petunia hybrida L.). Bull. Env. Pharmacol. Life Sci, 3(9), 15-19 (2014).
[13] Rasouli, F., Nasiri, Y., Asadi, M., Hassanpouraghdam, M. B., Golestaneh, S. & Pirsarandib, Y. Fertilizer type and humic acid improve the growth responses, nutrient uptake, and essential oil content on Coriandrum sativum L. Scientific Reports, 12(1), 7437 (2022).
[14] Abbass, J. A., Al-Zurf, M. T. H. & Ajami, A. T. Response of Freesia (Freesia hybrida) to spraying with an organic acid (Laq-Humus) and chelated iron and their effect on growth and flowering indicators. Euphrates Journal of Agriculture Science, 12(1), 31-41 (2020).
[15] Mirzaee Esgandian, N., Jabbarzadeh, Z. & Rasouli-Sadaghiani, M. H. Investigation on some morphological and physiological characteristics of Gerbera jamesonii as affected by humic acid and nanocalcium chelate in hydroponic culture conditions. Journal of Ornamental Plants, 10(1), 1-13 (2020).
[16] Noroozisharaf, A. & Kaviani, M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3), 423-431 (2018).
[17] Kamali Omidi, T., Khorgami, A. & Taleshi, K. Effect of foliar application of humic acid levels and nanofertilizer application on some quantitative and qualitative traits of pumpkin (Cucurbita pepo L.) in climatic conditions of Khorramabad area, Iran. Caspian Journal of Environmental Sciences, 20(3), 467-476 (2022).
[18] Hourani, W. Effect of fertilizers on growth and productivity of saffron: a review. Agronomy Research, 20, 1-18 (2022).
[19] Mohamed, A. A. O., Mohammed, B. K. & Taha, S. M. Effect of humic acid and chelated iron on yield and quality of two strawberry cultivars (Fragaria x ananassa Duch.). Euphrates Journal of Agriculture Science, 12(2), 405-422 (2020).
[20] Li, Y. et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci. Rep. 9(1), 1-9. https:// doi. org/ 10. 1038/ s41598- 019- 48620-4 (2019).
[21] Salem, H., Khattab, M. & Yacout, M. Effect of Levels and Application Methods of Iron and Zinc on Growth and Flowering of Rosa hybrida cv. Dallas. Alexandria Journal of Agricultural Sciences, 64(2), 63-73 (2019).
[22] Haghighi, M., Kafi, M. & Fang, P. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science, 18(2), 182-189 (2012).
[23] Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z. & Zheng, C. S. Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118-123 (2014).
[24] Ibrahim, O. H. M. Chelated iron and magnesium boost productivity and anthocyanins content in calyces of Hibiscus sabdariffa L. Assiut Journal of Agricultural Sciences, 50(2), 93-108 (2019).
[25] Ahmad, I., Usman Saquib, R., Qasim, M., Saleem, M., Sattar Khan, A. & Yaseen, M. Humic acid and cultivar effects on growth, yield, vase life, and corm characteristics of gladiolus. Chilean journal of agricultural research, 73(4), 339-344 (2013).
[26] Hembrom, R. & Singh, A. K. Effect of iron and zinc on growth, flowering and bulb yield in lilium. International Journal of Agriculture, Environment and Biotechnology, 8(1), 61-64 (2015).
[27] Cordeiro, F. C., Santa-Catarina, C., Silveira, V. & de Souza, S. R. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience, Biotechnology, and Biochemistry, 75(1), 70-74 (2011).
[28] Baldotto, M. A. & Baldotto, L. E. B. Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres, 60, 138-142 (2013).
[29] Ghatas, Y. A. A. & Mohamed, Y. F. Y. Influence of mineral, micronutrients and lithovit on growth, oil productivity and volatile oil constituents of Cymbopogon citrus L. plants. Middle East J. Agric. Res, 7(1), 162-174 (2018).
[30] Poornima, S., Munikrishnappa, P. M., Kumar, S. A., Seetharamu, G. K. & Kumar, R. Effect of foliar application of micronutrients on growth and flowering of floribunda rose under open air condition. Int. J. Curr. Microbiol. App. Sci, 7(10), 1873-1878 (2018).
[31] Nikbakht, A., Kafi, M., Babalar, M., Xia, Y. P., Luo, A. & Etemadi, N. A. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31(12), 2155-2167 (2008).
[32] Izadi, Z., Nejad, A. R. & Abadía, J. Physio-morphological and biochemical responses of pot marigold (Calendula officinalis L.) to split iron nutrition. Acta Physiologiae Plantarum, 42(1), 1-14 (2020).
[33] Bhute, P., Panchbhai, D., Raut, V., Neha, C. & Hemlata, K. Studies on flower production in annual chrysanthemum in response to iron and zinc. Plant Arch, 17, 1017-1019 (2017).
[34] Ngan, H. T. M., Tung, H. T., Van Le, B. & Nhut, D. T. Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus ‘Express golem’) plantlets cultured in two culture systems supplemented with iron nanoparticles. Scientia Horticulturae, 272, 109612 (2020).
[35] Shokri-Gharelo, D. D. M. & Ghader, R. Effects of nanoiron spraying on the antioxidant activities of canola leaf under drought stress. Journal of Biodiversity and Environmental Sciences, 11, 304-311 (2017).
[36] Elmongy, M. S., Zhou, H., Cao, Y., Liu, B. & Xia, Y. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227, 234-243 (2018).
[37] Ribeiro, T. P., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W., ... & Horn, A. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radical Biology and Medicine, 80, 67-76 (2015).
[38] Kabir, A. H., Rahman, M. M., Haider, S. A. & Paul, N. K. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environ. Exp. Bot., 112, 16-26 (2015).
[39] Hiscox, J. T. & Israelstam, G. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334 (1979).
[40] Fox, J. D. & Robyt, J. F. Miniaturization of three carbohydrate analyses using a microsample plate reader. Analytical biochemistry, 195(1), 93-96 (1991).
[41] McCready, R. M., Guggolz, J., Silviera, V. & Owens, H. S. Determination of starch and amylose in vegetables. Application to peas. Analytical Chemistry, 22(1), 1156-1158 (1950).
[42] Wang, S., Chu, Z., Ren, M., Jia, R., Zhao, C., Fei, D. & Ding, X. Identification of anthocyanin composition and functional analysis of an anthocyanin activator in Solanum nigrum fruits. Molecules, 22(6), 1-14 (2017).
[43] Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 21(1), 31-36 (1962).
[44] Bremner, J. M. Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5, 1085-1121 (1996).
[45] Gulen, H. & Eris, A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3), 739-744 (2004).
[46] Ozden, M., Demirel, U. & Kahraman, A. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163-168 (2009).
[47] Dhindsa, R. S., Plumb-Dhindsa, P. A. M. E. L. A. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101 (1981).
[48] Giannopolitis, C. N. & Ries, S. K. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314 (1977).