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Abstract: Among graphene-like family, phosphorene is a typical 
semiconducting layered material, which can also be a superconductor in low 

temperature. Applying pressure or tension on phosphorene lattice results in 

changing the hopping terms, which change the energy bands of the material. In 
this research we use the tight-binding Hamiltonian, including relevant hopping 

terms, to calculate energy bands of normal and under tension phosphorene. Our 

results show that the energy gap decreases by decreasing 𝒕𝟐/𝒕𝟏from 3 to 2, and 
finally the gap disappears. 

 

Key words: phosphorene, band structure, electron conductivity, tension, energy 

band gap. 

 

1.  INTRODUCTION 

Two dimensional (2D) materials such as monolayer graphene and monolayer 

transition metal dichalcogenide (TMDC) MoS2 have attracted intensive 

research interests owing to their interesting electronic, mechanical, optical, or 

thermal properties, some of them not seen in their bulk counterparts, for 
example, the massless Dirac-fermion behavior of the grapheme [1,2,3]. 

Recent success in isolation of ultrathin layers of black phosphorus has raised 

interest for its electronic properties [4]. Black phosphorus is also a layered 

structure in which the layers are held together by Van der Waals interactions  
[5]. Each layer consists of phosphorus atoms that are covalently bonded to three 
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next to phosphorus atoms, thus forming a puckered honeycomb structure 

because of sp3 hybridization, as shown in Fig. 1. As can be seen, the 
phosphorus sites are grouped in two zigzag layers [6,7]. The upper and lower 

sites are shown with darker and lighter colors, respectively. Phosphorene can 

also be isolated from black phosphorus via mechanical exfoliation [8]. Inside 
the phosphorene layer, each P atom is bonded with three neighboring P atoms, 

forming a puckered honeycomb structure similar to graphene. However, unlike 

zero-bandgap graphene, layered phosphorus has a direct band gap of 0.3 eV in 

the bulk form, which can increase up to 1.0-1.5 eV for an isolated monolayer 
[9]. 

The presence of an significant direct band gap and high carrier mobility [10] 

make few-layer black phosphorus a promising candidate for novel 
semiconductor applications. From the point of view of practical applications, 

the influence of environment plays a crucial role in the performance of potential 

2D electronic devices [11,12].   
There are already several works based on first-principle calculations. The tight-

binding model was proposed by including the transfer energy 𝑡𝑖 over the 5 

neighbor hopping sites (i = 1, 2, · · · , 5), as illustrated in Fig. 1. It has been 

shown that it is enough to take 5 hopping links, as illustrated in Fig. 1. The 

transfer energy explicitly reads as 𝑡1=−1.220 eV, 𝑡2= 3.665 eV, 𝑡3= −0.205 eV, 

𝑡4= −0.105 eV, 𝑡5= −0.055 eV for these links. This implies that the zigzag 

chains have negative 𝑡1hopping integrals along the chains and positive 𝑡2 

hopping integrals connecting these chains [14]. 

Because of the closeness of considered orbitals, the values of 𝑡1 and 𝑡2 are 

more noticeable than other hoppings. The sign of hopping integrals from crystal 

potentials is determined and for example the plus sign of 𝑡2 somehow shows the 
hole like behavior. Other hopping terms are negative. From these discussions it 

can be concluded that the first two hoppings have the most important role in the 

electronic band structure of phosphorene, so calculations are carried out on the 

basis of these two hoppings. Here 𝑡1  is considered the constant and 𝑡2 varies 

with respect to 𝑡1. As it can be seen from the value of hoppings 𝑡2=3|𝑡1|. 
Therefore by applying tension in a specific direction, for example horizontal 

direction, the changes of lattice constant and also the first two hopping terms are 
investigated. 
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Fig.  1 (a) Crystal structure and hopping term 𝑡𝑖of single layer phosphorene for the TB 

model. (b) Top view. Note that the blue (red) balls represent the phosphorus atoms in 

the upper (lower) layer. The dotted rectangle indicates a primitive unit cell containing 

four atoms. The parameters for the bond angles and unit cell lengths are taken from  ref. 

[13]. 

              

 

Fig.  2 The band structure of phosphorene without tension. There are two degeneracy in 

this figure. 
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In this paper, the band structure of phosphorene is studied in section 2 and in 
the band structure of phosphorene will be calculated in the presence tension in 

section 3. Section 4 deals with spectral function and density of states (DOS). 

Finally section 5 will be devoted to conclusion.   

 

2. Band structure of Phosphorene  

In this paper, we use the Tight Binding (TB) model to obtain band structure 

of a crystal. The TB Hamiltonian reads as [15] 
 

†

,

ij i j

i j

H t c c
                                                                                 (1)                                                                                                                                          

 

Where the summation is over the lattice sites, and 𝑡𝑖𝑗  are the hopping integrals 

between the ith and jth sites. Further, 𝑐𝑖
†
and 𝑐𝑗  represent the creation and 

annihilation operators of electrons in sites i and j, respectively. These hopping 
integrals between a site and its neighbours are shown in Fig. 1(a). 

 The connections in the upper or lower layers in each zigzag chain are 

represented by 𝑡1hopping integrals, and the connections between a pair of upper 

and lower zigzag chains are represented by 𝑡2 hopping integrals. Further, 𝑡3 

denotes the hopping integrals between the nearest sites of a pair of zigzag 

chains in the upper or lower layer, and 𝑡4 denotes the hopping integrals between 

the next nearest neighbor sites of a pair of upper and lower zigzag chains. 

Finally, 𝑡5 is the hopping integrals between two atoms on the upper and lower 

zigzag chains that are farthest from each other. In the momentum representation 

the 4-band Hamiltonian reads as 
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Whose elements are given by 
 

  

 

1 2 5( ) exp( )xh K t t ik a  

2 4( ) 4 exp( / 2( ))cos( / 2)cos( / 2)x y x yh K t i k a k b k a k b  
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                        (3)                                                   

 . 

The Above matrix is Hermitian and gives real eigenvalues which are the bands 

energy. By doing so, we are provided with four eigenvalues equtions, each of 
them is a function of vector K. As shown in figure.2, the bands are nearly 

symmetrical and degeneracy between the two bands in direction of X-S and S-Y 

can be seen. More ever, in the calculations, we obtain 1.8 eV for band gap, 

which as opposed to graphene, there are no Dirac point in the bands. These 
comments lead us to the conclution that phosphorene is a semiconductor.  

                      

 

Fig.  3 Indicating the band structure when tension has applied. (a)  A conductor, 

𝑡2=2|𝑡1|. (b) A gap has created around 0.5eV for 𝑡2=5/2|𝑡1|. (c) Similar to real band 

structure without tension for 𝑡2=3|𝑡1|. 
 

3 1 3( ) 2exp( / 2( ))cos( / 2)( exp( / 2( )) )y y xh K i k b k b t i k a t  

4 1 3( ) 2exp( / 2( ))cos( / 2)( exp( / 2( )))y y xh K i k b k b t t i k a  
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Fig.  4 : local density of states for 𝑡2=2|𝑡1| and for 5 directions considered in band 

structures. 
 

3. Strain in phosphorene lattice 

Deformation of structure of phosphorene lattice would bring about changing 

in hopping. In this case the lattice constants increases and the strength of 
hoppings decreases. In this paper, we apply changing in hoppings, and as a 

result the changes in bands will be studied. we set 𝑡1fixed and change 𝑡2relative 

to that. The reason of choosing these two hoppings, as was mentioned, is their 

role, which is assumed to be more than other hoppings.  
It should also be noted that tension is applied in the horizontal direction and 

approximately 10 to 20 percent of real value of lattice constants decreases along 

the horizontal direction. As shown in Fig. 3 the material changes into different 
phases and band structures vary a lot for three given values. 

In this figure, tension effect in lattice is completely noticeable, it is because a 

phase change in phosphorene is observed. In Fig. 3 (a) bands show a dirac point 

for 𝑡2=2|𝑡1|. In these conditions a phase change is observed in phosphorene 

which has transferred from semiconductor there to conductor. Good result can 

be seen in this figure because phosphorene is known as a semiconductor 

without a dirac point. In Fig. 3 (b) there is still gap between bands but gap size 
in comparison with normal condition has decreased and reached 0.5 eV. In this 

figure the relation between the first and the second hopping is 𝑡2=5/2|𝑡1|. 
Finally, Fig. 3 (c) shows band structures similar to real band structure of 

phosphorene without tension. In this figure, gap is nearly 1 eV and 𝑡2=3|𝑡1|. 
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Fig.  5 Density of states (DOS) for 𝑡2=2|𝑡1|. 

 

 

4. Spectral Function 

By using the full hamiltonianof the system, Green function can be obtained 

using equation[16]  
 

1( , ) ( )nG K Z H                                                                                             (4)                                                                                                                  

 Matsubaraare  (2 1)
n

n 





and 1( )nZ i   In this equation Z is defined as 

frequencies for fermions.  
In the presences of these frequencies temperature should be added to the 

calculations. The temperature is considered 𝑇 = 0.01˳c. spectral function is 

defined like the equation  

1
( , ) Im ( , )n nA K G k 


   .                                                                       (5)                                          

Spectral function  for case 1 (𝑡2=2|𝑡1|) has been shown in Fig. (4) In this figure 
points with more density of state have greater spectral value (A). if all states are 

N, density of states (DOS) can be fined from equation  

1
( ) ( , )n n

K

A k
N

                                                                                (6)                                                                    

It can be concluded from equation (6) that spectral function plays the role of 

local density of states. In figure 5 density of state for phosphorene for 𝑡2=2|𝑡1| 
has been shown.    

As it is expected from Fig. 3 (a) density of states (DOS) in Fig. 5 shows 

conductor phase for phosphorene when 𝑡2=2|𝑡1|. The reason for this conclusion 
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is that there are two peaks in Fig. 5 for 𝜔 = 0 which are not completely 

separated from each other.   

 

5. Conclusion 

Phosphorene is known as a semiconductor material which has a gap in its 
band structure. When tension is applied on phosphorene lattice Hamiltonian 

parameters of its lattice varies. In other words, when electrochemical pressure 

on material in specific direction increases, hopping parameters may increase. In 

this paper by considering 𝑡1  parameter as a constant, 𝑡2 parameter is considered 
as an independent parameter and gap changes can be studied. it is observed that 

by decreasing the ratio of 𝑡2/𝑡1 from 3  for isotropic phosphorene, band gap 

gradually decreases until it disappears for 𝑡2/𝑡1 and the material transfers to 

metal phase. For this case (𝑡2/𝑡1=2) a dirac point is observed in band structure 

which leads to the carrier mobility of phosphorene. Therefore, phosphorene can 

have conductivity property when it is under tension. These results show that 

phosphorene can be used for making electronic and industrial pieces when a 
material as a conductor in the presence of pressure is required.      

 

Refrence 

[1]  K.S. Novoselov, A. Morozov, S. Jiang, D. Grigorieva, M. K. Dubonos and  S. 

Firsov, Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 

2005, 438, 197 −200. 

[2]  K. S. Novoselov, E. McCann, S. Morozov, V. Fal’ko, M. Katsnelson, U. Zeitler, D. 

Jiang, F. Schedin and A. Geim, Unconventional Quantum Hall Effect and Berry’s 

Phase of 2π in Graphene. Nat. Phys. (2006), 2, 177 −180. 

[3] K. F. Mak, C. Lee, Hone, J. Shan and  T. F. Heinz,  Atomically Thin MoS2: A New 

Direct-Gap Semiconductor. Phys. Rev. Lett. (2010),105, 136805.  
    [4]M.  Ezawa, New Journal of Physics 16 (2014) 115004.   

    [5]  A. Morita, Appl. Phys. A 39, 227 (1986). 

    [6] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng,X. H. Chen, and Y. Zhang, 

Nature Nanotechnology 9,372 (2014).   

    [7]  S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Oezyilmaz, Appl. 

Phys. Lett. 104, 103106 (2014).  

    [8]  W. Lu, et al., Nano Res. 7, 853 (2014). 

    [9]  J. Qiao, X. Kong, Z.-X. Hu, F. Yang and W. Ji, Nature Communications, 2014, 5, 

4475. 

    [10] E. Taghizadeh, M. Zare,  and Fazileh, F., “Scaling laws for band gaps of 

phosphorene nanoribb ons: A tight-binding calculation”,  Physical Review B 91, 
085409 (2015). 

    [11] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant 

and A. Castellanos-Gomez,Nano Lett., (2014), 14, 3347–3352. 

 [12]  Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G. Ye, C. X. H, J. Shan and P. 

Feng, Nanoscale, (2014), DOI:10.1039/C1034NR04829F. 



Energy band correction due to one dimension tension in phosphorene    *67 

 [13]  A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-

Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, 

H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Materials 1, 025001 

(2014).  

 [14]  A. N. Rudenko and M. I. Katsnelson, Phys. Rev. B 89,201408 (2014). 
     [15]  V. M Pereira, A. H. Neto,  and  N. M. R. Peres, Phys. Rev. B 80, 045401(2009). 

     [16] H. Bruus, F. Karsten,   Many-body quantum theory in condensed ma tter physic,  

Published by Oxford Graduate Texts(2004). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



68 * Journal of Optoelectronical Nanostructures Winter 2017 / Vol. 2, No. 1 

 

 



 

 

 

 

 

 

 


