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Abstract: In the present paper, the problem of light reflection from a birefringent medium and thin
film is considered. First, the analytical equations governing the propagation of a plane and harmonic
electromagnetic wave in an infinite, birefringent, linear, non-dispersive, non-absorbing, and non-
magnetic medium is derived from Maxwell equations. Then, using phase matching condition and
boundary conditions, the governing equations of reflection and transmission from a birefringent
medium is obtained. Next, the reflection of s and p polarizations in incidence of s-polarized, p-
polarized, and circularly polarized light on a plane surface is calculated using a massive computer
code developed by the authors. Calculations show that the polarizations are mixed and converted
to each other. On the other hand, dependence of reflection on azimuthal incidence angle is revealed.
Then, the problem of interfering reflection from a birefringent thin film is regarded. The computer
code calculates reflection of light from the film by considering the successive reflections and
transmissions from the upper and lower surfaces of the film through two-reflection approach.
Calculations show that, in reflection of white light from the film, a kind of banding is developed
which is absent in isotropic films. Observation of reflection increase by increasing birefringent
properties is another finding of the paper.
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1. INTRODUCTION

Refractive index in biaxially anisotropic media is dependent on light
propagation direction. Such media which are existent both naturally (e.g. crystals)
and synthetically (e.g. photonic crystals, sculptured thin films, magnetized
plasmas, electro-optical, magneto-optical, elasto-optical, acousto-optical and
other materials) are of great importance in optics [1]. They are used in many
optical components such as modulators, switches, tunable filters, phase plates,
and more recently in high-capacity optical memories, omnidirectional reflectors,
antireflection coatings, enhanced polarization converters, anisotropic diffraction
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gratings, and many other applications [2-7].

The problem of light propagation in birefringent media and its reflection and
transmission in interfaces has a long history in optics [8-10]. Due to their growing
variety and complicated physics, the theoretical, numerical, and experimental
study of such media optics is still in the focus of both geometric [11-13] and wave
[14-17] optics community. The feasibility of well-known phenomena such as
total internal reflection and Brewster angle in biaxial media and their comparison
with isotropic cases has attracted great attention [18-21]. The appearance of
strange optical phenomena in the biaxial media like negative and amphoteric
refraction has also amused researchers [22-24]. Even, light interaction with
inhomogeneous or finite-sized biaxial media which leads to scattering and
diffraction has not been neglected in the literature [25-28].

The problem of successive reflections and transmissions at biaxial interfaces
and resulting interference pattern is also very important. Especially, much time
has been expended to study the light interference associated with a biaxial
monolayer or multilayer [29-31]. Analytical investigation of the interference
patterns by infinite-beam approaches which include an infinite number of
reflected and transmitted beams is greatly simplified by incorporating 4x4 or 2x2
matrix methods [29,32,33]. Simple approximation of the 4x4 matrix method for
ultra-thin films is presented in [34-36]. However, such infinite-beam approaches
are appropriate only when the incident light has infinite longitudinal coherence
(e.g. laser light) to keep its phase relation after each reflection and transmission.
In other words, it is the coherence length of the incident light that determines the
necessary number of reflections and transmissions contributing in the
interference. Hence, using more reflections and transmissions not only does not
increase the accuracy but also can lead to inaccurate results. In situations where
the applied light has a short coherence length (e.g. natural light) the inclusion of
only two beams, i.e. one reflected from the upper interface and the other reflected
from the lower one of the film, suffices to give correct interference pattern. Such
a double-reflection approach can correctly explains many natural interference
patterns such as colorful soap bubbles, the colors of butterfly wings, the rainbow
color of oil stain on the water, and etc. However, despite many studies regarding
biaxial thin film interference by infinite-beam approach, one can hardly find
research works in references by double-reflection approach [7,37].

In the present paper, using propagating waves in biaxial media and applying
boundary conditions at the interfaces, the interference pattern of a biaxial thin
film is numerically calculated by double-reflection method. The results are
compared with that of isotropic thin films. The paper is organized as follows: In
the second and third sections a brief introduction concerning light propagation,
reflection, and transmission in biaxial media and interfaces is presented. The
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fourth section is devoted to numerical calculation of interference pattern
associated with biaxial thin films by double-reflection approach. Summary and
conclusion are drawn in the last section.

2. LIGHT PROPAGATION IN A BIAXIAL MEDIUM

In this section the propagation of a harmonic plane wave in an infinite,
homogeneous, linear, and non-magnetic biaxial medium with no absorption and
dispersion is considered based on the formulation presented in [38-40]. The
dielectric tensor of a biaxial medium is a diagonal matrix in its principal
coordinate system:

nf 0 0
F=g[ 0 nz 0 (1)
0 0 nl

z

Where ny, ny, and n; are principal refractive indices along principal axes x, y, and
z respectively and g is vacuum permittivity. The electric field of a harmonic plane
wave has the form:

E(r,t)=E, ek 2

inwhich E_ is the vector amplitude and  and K are frequency and wave vector,
respectively, with relation:

K=%a)éK ©)

N in (3) is the effective refractive index, c is light speed in free space, and &,
is @ unit vector in propagation direction. g, and N in (2) and (3) are unknowns

and must be determined in terms of @ and &, . Defining D and H fields of the
wave as:

e
H (F,t) _ Ho ei(Kf—wt) _ i éo ei(wa{) (4)

and using curl equations of Maxwell yields:
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—_ — a) - —
B =zt & ©)
KxE, = wB,
Their combination leads to:
N?(6c (6 .Ey)-E,)+& . E, =0 (6)
with the matrix form of:
nf -N 2(e}2<,y + ei,z) N 2eK,xeK,y N ZeK,><eK,z EOx 0
N%e e n;—N*(ez, +ex,) N%e e, E,, [=|0 (7)
N 2eK,xeK,z N ZeK,yeK,z n22 -N 2(elz<,>< + el2<,y) EO z 0

Equating the determinant of the coefficient matrix with zero in order to find
nontrivial amplitude g, results in:

eK,x eK,y eK,z 1 0 (8)

+ +
N®-ni N?-ni N?-n? N?Z

This is a sixth degree equation in terms of N and has six solutions: £Ni, £N,,
and +co. The only physically meaningful solutions are +N; and +N,. If these
indices are found for all propagation directions and their loci are plotted, a three-
dimensional double-shell is formed in which one of the shells is within the other.
The double-shell is known as iso-frequency double-shell. Inserting N1 and N2 in
(7), one can obtain their respective eigen-polarization:

eK,x eK,x
Ny —ng Nz -1}
B, e - e 9)
— Y _ K.y
EOl_Ai Nz 2 ' EO,Z_AZ Nz 2
1 r-]y 2 ny
eK z eK z
Ny —n; Nz —n;

where A; and A are arbitrary constants. So, two aforementioned unknowns
(namely effective index, N, and amplitude, E,) are obtained. This discussion

shows that a harmonic plane wave can propagate in any direction of a biaxial
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medium but cannot have any polarization except two eigen-polarizations of (9).
Because of different refractive indices, these two eigen-polarizations cannot
combine to form various elliptic polarizations as in isotropic media. These eigen-
polarizations are known as ordinary and extra-ordinary waves in uniaxial media.
They have different nomenclature in biaxial media such as slow-wave and fast-
wave (depending of their phase velocity) or outer-shell and inner-shell waves
(depending on their effective index position in the outer or inner shell of the
double-shell iso-frequency).

3. REFLECTION AND TRANSMISSION OF A PLANE HARMONIC WAVE AT A
FLAT INTERFACE BETWEEN ISOTROPIC AND ANISOTROPIC MEDIA

In this section the reflection and transmission of a harmonic plane wave
incident from a semi-infinite isotropic medium on a flat surface of a semi-infinite
biaxial medium with arbitrary orientation of principal axes is considered, Fig. 1.
In addition to the principal frame, a laboratory frame is also needed, because
initial information of incident wave is more easily given in lab frame rather than
principal one. Lab axes xiap and Yyiap lie in the interface so that the z . axis is
directed into the biaxial medium. Using Euler rotation matrix which includes
three successive rotations, first by o about z,a, second by f about new Xpab, and
third by y about new z,ap, the lab frame coincides with the principal frame.

Isotropic Medium
Er
E

Biaxial Medium

z
¥ “Lab

Fig. 1. Schematic of the reflection and transmission at the plane interface between
isotropic and biaxial media with principal axes of x, y, and z.

A harmonic plane wave is incident on the surface by polar angle of 6., and
azimuthal angle of ¢ an With electric field:

E, (7 t)=E, e (10)
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Where E, ; is incident amplitude which can have any elliptic polarization due

to isotropy of the incidence medium, and k, is its wave vector. The reflected and
transmitted waves can be written in the form:

—
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Where £, and E_; are amplitudes of the reflected and transmitted waves, and

k, and k. are respective wave vectors. The phase matching condition in the
interface implies that:

)
)

Applying this condition retrieves the common optics laws of isotropic media:
1) the reflected and transmitted waves lie in the incidence plane, 2) the angle of
reflection wave (both polar and azimuthal) is equal to that of incident wave, and
3) the Snell’s law is true in the form:

I
| Ty

(IZR.I’—M)
(Kr.F-at) (12)
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n Sin(gl,Lah): Ny Sin(HT,Lab) (13)

where n is refractive index of incident medium, N+ is effective refractive index
of the biaxial medium in the transmission direction, and &r,ap is the polar angle
of the transmitted (or refracted) wave. Nt and 6 Lap are both unknown in (13) and
must be found. In order to find a second complementary equation, the unit vector
of the transmitted wave is used:

S PN [

. . . 14
€ Lo =| SIN (QT,Lab)SIn (¢7|,Lab) (14)
COS (gT,Lab)
This unit vector is transformed to principal frame by Euler matrix:
éT,Princ(eT,Lab): [EUIer (avﬂ1 7/)] éT,Lab (15)

Inserting this unit vector in (8) the complementary equation is found:
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2

eT,Princ,x(eT,Lab>+ eT Princ, y( T, Lab) eT Princ, z( T Lab) 1 -0 (16)
NZ —n? N? —n? NZ —n? NZ

Simultaneous solution of (13) and (16) yields two transmission angles and one
refractive index for each:

{ (QT,Lab,l’ N, ,1) (]_7)

0T ,Lab,2? NT 2

This equation shows that there are two transmitted waves that fulfill the Snell’s
law simultaneously. So, an incident wave on the biaxial medium is refracted to
two transmitted waves. Hence, the transmitted wave in (11) should be modified
as:

E (7 t)=Epp, ety E et (18)

Where E

T1,0

k., are respective wave vectors. g and E_,, are obtained using (9) as

and E

1,0 are amplitudes of the two transmitted waves and k;, and

eTl,Princ,x (eT,Lab,l) eTZ,Princ,x(eT,Lab,Z)
NT2,1 - nf NTz,z - nf
eTl,Princ,y(aT,Lab,l) eTZ,Princ,y(eT,Lab,Z) (19)
T].O A’I‘l Nz _nz ' T20 ATZ Nz _nz
T1 y T2 y
eTl,Princ,z(gT,Lab,l) eTZ,Princ,z(gT,Lab,Z)
2 2 2
NT,l_nz NT,Z_ z

So far, all of the unknowns including effective refractive index and amplitude
of the transmitted light were found in terms of initial values such as incidence
angle, refractive indices of media, and Euler matrix. However, E_ , Ari, and Ar,

are still unknown. As the reflected wave is in the isotropic medium, its amplitude
E., can be expanded in terms of p (parallel to incidence plane) and s

R0 !

(perpendicular to incidence plane) polarizations:

ER,o = ER,o,p fH‘ ER,O,S s (20)

With this definition, the unknown vector E_ is decomposed into two unknown
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Rop’ and Egpo, are

scalars E,, and E., . So, if the four unknowns Ari, Ar, E
found somehow, then the reflection and transmission problem is completely
solved. To find them, boundary conditions must be applied. Continuation of
tangential components of E and H fields at interface yields four scalar equations
for these four unknowns and uniquely gives the amplitudes of reflected and
transmitted waves. Of course, application of boundary conditions is easier in lab
frame than principal one, so, the transmission amplitude in (19) must be
transformed to lab frame by inverse Euler matrix. A computer code has been
developed by the authors in Mathematica software and calculates the reflection
and transmission of any incidence light with arbitrary polarizations.
As a numerical example assume:

=]
Il
'_\
>
Il
'_\
[N}
>
1

22,n,=32
(21)

A plane wave with p, s, and circular polarizations is incident on the biaxial
medium in arbitrary polar and azimuthal angles. The reflection coefficient for s
and p polarization was calculated by the computer code and plotted in left and
right column of Fig. 2, respectively. The upper row of the figure is for incident s
polarization, the middle row for p and the lower row for circular ones. The upper
row shows that, in reflection of incident s polarization, both s and p polarizations
are created. This is contradicting with isotropic media that only s polarization is
created upon reflection of incident s polarized light. Another important thing is
that again in contrast to isotropic media, the reflection is dependent on azimuthal
angle in addition to polar angle of incidence.
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Fig. 2. Reflection coefficient of s (left) and p (right) polarizations as functions of
incidence polar, 6, and azimuthal, ¢, angles. Upper row is for incident s
polarization, and middle and lower rows for p and circular ones, respectively.

4. REFLECTION INTERFERENCE FROM A BIREFRINGENT THIN FILM

A flat biaxial thin film of thickness h placed between two isotropic media is
considered. A plane wave with given polarization is incident on the film at polar
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angle 6, and azimuthal angle ¢ian. A part of the wave is reflected from the
upper surface and the other part is transmitted to film in the form of two refracted
waves. These two waves reach the lower surface of the film. There, a part of them
is reflected back to the biaxial medium and the other part is transmitted to the
lower medium. Phase matching condition in the lower surface implies that each
of the two waves is converted to two reflected and one transmitted waves. The
four reflected waves move toward the upper surface and generate four transmitted
waves to upper medium and eight reflected waves to biaxial medium, Fig. 3. This
procedure continues until an infinite number of reflected and transmitted waves
in upper, biaxial, and lower media are produced. As mentioned in references [for
example 29 and 32] the superposition of these infinite waves results in a single
up-going wave in the upper medium, a single down-going wave in the lower
medium, and four (two up-going and two down-going) waves in the biaxial film.
This is, indeed, an infinite-reflection approach. On the other hand, the method
that includes only one reflection from the upper surface and one reflection from
the lower surface and calculates the superposition of the five waves sent to the
upper medium is called double-reflection approach. This approach, as mentioned
in the introduction, is true only when the incident light has not sufficient
coherence length to involve higher order reflections in the calculations. An
important point evident in Fig is that each incident wave on internal surface of
the film produces two reflected waves with different angles. This is the other
optical properties of the biaxial media.

Isotropic Medium

Biaxial Medium

h
X

Isotropic Medium

Ziab
Fig. 3. Schematic of a biaxial thin film placed between two isotropic media with x, y, and
z as its principal axes. Each incident wave is converted to two reflected waves with
different angles upon internal reflections.

The developed computer code can numerically calculate interference patterns
of biaxial thin films with arbitrary number of reflections. In the double-reflection
mode, the code finds the amplitudes of the five waves sent to the upper medium
by applying boundary conditions in points a, b, ¢, d, e, f, and g denoted in Fig and
sums over them to form the interference pattern. As an example, the interference
pattern of a biaxial thin film with thickness h=1pm placed in vacuum is
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considered. The Euler angles are assumed as:

T T T
a—g,ﬂ—g,y—7 (22)
A circularly polarized white light in the wavelength range of
400 nm < 4 <800 nm is incident on the biaxial film under constant incident
angles. The interference patterns of 0iLa = 7/3 and ¢y La0 = /3 for films with
increasing birefringence (but with equal values of average refractive index of
Nave=1.8) are plotted in Fig. 4 from left to right.

Rp (nz=1.81 , ny=1.80, nx=1.79) Rp (nz=1.91, ny=1.80 , nx=1.69)
035 035
030 030
025 025
020 020
0.1 0.15
0.10 0.10
0.05 0.05
400 500 500 700 800 400 500 600 700 800
a b
Rp (nz=2.01 , ny=1.80 , nx=1.59) Rp (nz=2.11, ny=1.80 , nx=1.49)
035 035
030 030
@25 025
020 020
015 0.15
0.10 0.10
0.05 0.05
400 500 500 700 800 400 500 600 700 800

[¢]

Wavelength (nm)

Fig. 4. Reflection coefficient of p polarization for circularly polarized white light
incident with ¢ Lav=7/3 and 6, La=7/3 angles. The birefringence is increased from ‘a’ to
‘d’” with a fixed average index of Nae=1.8.

The second example is for the same film as previous example but with different
incident angles of 6, a» = #/3 and ¢1,L.a0 = #/6. The interference pattern is plotted
in Fig. 5.

Inspection of these figures reveals important things. The first is that, by
increasing the birefringence value a kind of banding (or interference pattern) is
observed in reflection. On the other hand some bands of wavelength have higher
reflection and some smaller one. The second finding is that, with a fixed value of
average index, increasing birefringence value leads to higher level of reflection
(see the increasing level of reflection from ‘a’ to ‘d’ in both figures).
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Rp (nz=1.81, ny=1.80 , nx=1.79) Rp (nz=1.91 , ny=1.80 , nx=1.69)
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V. , f
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Fig. 5. Reflection coefficient of p polarization for circularly polarized white light incident
with ¢ La=7/6 and 6, a=7/3 angles. The birefringence is increased from ‘a’ to ‘d’ with a
fixed average index of nae=1.8.

5. SUMMARY AND CONCLUSION

In this paper, the interference pattern of a biaxial thin film with arbitrary
orientation of principal axes is calculated numerically by a home-made computer
code. Calculations show that upon reflection from birefringent films,
polarizations are mixed which each other and it is related on azimuthal incident
angle in addition to polar one. It was also observed that a kind of modulation (or
banding) appears in the interference pattern produced by white light illumination.
The number of bands is increased by increasing birefringence. On the other hand,
increasing birefringence leads to increased reflection. The reported banding of
reflection coefficient due to birefringence is a new finding that is not reported in
the literature and the authors are indeed the first ones who are observing it. One
of the applications of such a discovery is determination of birefringence
properties of crystals and also study of electro-optical effects such as ‘Kerr’ and
‘Pockels’ ones which is considered as future works.
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