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Abstract: We describe how to obtain electronic transport properties of disordered 

graphene, including the tight binding model and nearest neighbor hopping. We present a 

new method for computing, electronic transport wave function and Greens function of 
the disordered Graphene. In this method, based on the small rectangular approximation, 

break up the potential barriers in to small parts. Then using the finite difference method, 

the Dirac equations of disordered graphene, reduce to the discrete matrix equation. The 

discrete matrix equation is solved by direct and Green’s function methods. In this method, 

geometry of disorder plays an important role. This method allows for an amenable 

inclusion of several disorder mechanisms at the microscopic level. The effect of impurity 

on the transmission probability and conductivity are obtained, using the electronic 

transport wave function. The results show that, for the conductance, geometry plays an 

important role. In addition, by transmission probability and using Landau formula, the 

Fano factor is investigated. 

 

Keywords: Disordered graphene, Finite difference method, Graphene, Green's function. 

1. Introduction 
Due to graphene unusual and remarkable properties and its potential to basis 

for a new generation of electronic devices, has attracted the attention of many 

scientists since the first experiments in 2004. Since it was first produced, several 

synthesis methods have been proposed. All efforts have been based on produce 
better quality sample to improve the transmission properties. Although Klein-

Gordon paradox in graphene which makes the transmission probability of the 

vertical electron one [1]. The scientists have not achieved to the perfect ballistic 
regime and disorders always play an important role in electron transport. The 

overcoming source of disorder which influence transport and optical properties 
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of graphene is uncertain. The disorder appears in different forms, such as charge 

impurities, surface adsorbents, resonant scattering [2, 3]. 
Many theoretical methods have been proposed to describe electron transport 

in disordered graphene [4–6]. One of the best methods is the Greens function 

method [7–10]. Graphene with one and two impurities are studied in different 
ways, such as: a graphene with two coulomb impurities [11], a gapped graphene 

with two oppositely charged impurities [12] and a graphene with single impurity 

which is considered by Greens function and wave function of the system [13]. 

The goal of this paper is to show how to calculate electronic transport 
properties of disordered graphene, with tight-binding method and nearest-

neighbor hopping, using the direct method and green’s function method. In our 

method, geometry of disorder plays an important role. We present an efficient 
discretization scheme to implement our method for disordered graphene. To this 

end, we use the small rectangular approximation and break up the potential 

barrier, caused by impurities, to small rectangles. Then, the equation of each part 
in graphene by finite different method reduces to a discrete matrix equation which 

is solved by Greens function and direct methods. Eventually, as applications of 

transmission electron wave function, transmission probability [14] and 

conductivity and Fano factor are calculated [15–19]. 
This paper is organized as follows: In Sec. II, we briefly describe the small 

rectangular approximation and calculate the wave function of the graphene with 

arbitrary impurities 
In Sec. III, we derive transmission probability, conductivity and Fano factor. 

Finally, the conclusion is given in Sec. VI.  

 

2. Small Rectangular Approximation 

In this section, a rectangle graphene sheet with length L and width W, which 

is fixed by leads in two sides, is considered. Hamiltonian of the disordered 
graphene based on Dirac Hamiltonian is: 

. ( , )fH p V x y  
 

(1) 

   

In which ϑf = 3at/2 ≈ 106m/s is fermi velocity, σi are Pauli matrices and 

p i    is momentum operator of graphene in two dimension and V (x, y) 

stands for a local potential due to disordered which is added to the tight binding 

Hamiltonian. 
The implementation scheme presented in this paper is recommended when 

the system is translational invariance at the vertical direction and its translational 

invariance at the transverse direction is broken up by disorders. So the potential 

is as follows: 
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0( , ) ( )V x y V F x                                                                                                                (2) 
The component of wave function is considered to be 

,    ( ) ( ) ( )

( ) ( )   ( ),

y

y

x y x exp ik y

x y x exp ik y

 

 







                                                                                                 (3) 

Substitute the wave function in Hamiltonian, which became 

( , ) ( , )

( , ) ( , )

x y x y
H E

x y x y

 

 

   
   

                                                                                                       (4) 
The basic idea is to break up potential barriers in X direction of the graphene 

sheet into N + 1 small equal parts with length /L n   . The parts with numbers 
lower than 1 and larger than N +1 represent the left and right leads, respectively. 

So, here Vi denotes the potential of isolated ith part which is constant 

approximately. Therefore, each part has a constant potential. Neighboring parts 
in sample are connected to each other because of nearest-neighbor hopping. The 

first and last parts are connected to the leads. By choosing an input electron wave 

function in the left lead, and using Eq. (4) for each part, we can obtain the output 

electron wave function in right lead. Using the finite difference method [20], Eqs. 
(4), (3) for each part is converted to a recursive relation in term of wave functions 

of that part and its neighbors, as follows, 
2

21 1

2

( ) ( ) (2  
( ) ( )

)i i i i
y i i

f

x x x E V
k x x

  
 
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 
   
  
     

(5) 

 

In this manner, second component of the total wave function became: 

1 1( ) ( )
( ) ( )

2

f i i
i y i

i

i x x
x k x

E V

  
  

  
  

    
(6) 

 

This kind of operation is repeated throughout the method. For i = 0, equation 
(5) gives a relation between input and output wave functions of first potential 

barrier which is given by, 

1 0 1

2

2
0 02

( ) ( ) ( )
( )

2
(

 
)y

f

E
k x x

x x x
 



   
 
  
  







 

(7) 

1( )x  represents the unperturbed wave function where electrons are found 

in part n = 0 or left lead, so the input wave function can be written as 

1 0 ( ) ( )x xik x ik x
x Ae A e  

   
 

(8) 

 

By substituting Eq. (8) in (7), is obtained 
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We proceed analogously in order to obtain last part’s relation. So for i = N + 

1 we have 
2

21
1 1

2

2

( ) ( ) ( )
( ) (
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)N N N

y N N
f

x x x E
k x x 
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(10) 

2( )N x  represents the wave function where electrons are found in part i = 

N +2 or right lead 

2 1(  ) ( ) Rik
N Nx x e  
                                                                                                       (11) 

As we see above, Eqs.(5),(7) and (10), can be used to process a matrix 
equation for wave functions of potential barriers. As a result, we find 

   
( ) ) (E I H x q   

                                                                                                          (12) 

Where I is the identity matrix and H′ is a matrix, whose dimension is defined 
by the number of parts N + 2, which it’s elements are as follows: 
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(13) 

In this part, we consider Eq.(12) by the Green’s function and direct methods. 

 

 

 

A. Green's function method 

In the following we show how to obtain electron wave function from Green’s 

function method. To calculate the Green’s function of the disordered graphene, 
equation (12) is written in the form of a matrix, as follows 

1 1 1 1 0

1 2

2 2 2 2

0

0

0 0

d d d

H E t q

t H E t

t H E







 

     
    

      
             

(14) 
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In the above relation, d  represents an electron wave function of the 

graphene and 1  and 1  represents electron wave function of the left and 

right leads, respectively. 1t  and 2t are hoping matrix elements connecting parts 

together. 1H  and 2H  are the Hamiltonians of leads which connect to graphene 

and dH  is Hamiltonian of the graphene. Solving Eq. (14) by Green’s function 

method gives 

( )G(E) IE H                             (15) 

Therefore the matrix equation becomes 

1 1 1 1 1 12

1 2 1 2

2 2 2 21 2 2

0 0 0

0 0

0 0 0

d

d d d d d

d

H E t G G G I

t H E t G G G I

t H E G G G I

 

      
     

       
             

(16) 

dG  is Green’s function’s matrix element which is related to graphene sample 

without leads effects. As follows 

1 2
1 ( )d d dG E H                                                                                                   (17) 

in which 

i i i it g t                                                                                                                        (18) 

Where,  1/ ( ).i i ig E H   

In eq.(12), 0q  is like a perturbation, then the wave function in term of 

operator G(E) is 

0( ) qG E  
                                                                                                             (19) 

Based on the third row of the matrix equation, the electron wave function on 

the right lead in term of electron wave function over graphene is given 

 2 2 2( ) dg E t 
                                                                                                     (20) 

The electronic wave function in left lead is the sum of two terms, incident 

and reflection wave function. So, we have, 

1 1 1

1 2 1, 1,

2 2 2

( ) ( )d n R d n R

H t E

H t t E

H t E

    

   
   

       
         

 (21) 

According Eq.(21), graphene’s wave function is obtained 

1 1,d d nG t 
                                                                                                        (22) 

Respect to Eq.(20), right lead’s wave function is obtained 

2 2 2 2 2 1 1,d d ng t g t G t   
                                                                                 (23) 

Therefore, the total wave function in left lead become 
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1 1 1 1 1,(1 )d ng t G t  
                                                                                         (24) 

Following the second component of wave function is achieved: 

Hψ(x) = φ(x) + q′.                                                                                                 (25) 

So, the electronic wave function in each part of the system is obtained. 
 

B. Direct method 

In this section we show how to obtain the electron wave function of 
disordered graphene directly. We begin by Eq. (12) and rewrite it as follows  

2( )  A B q    
                                                                                            (26) 

In Eq.(26), matrix (EI − H′) is break up into three matrix, A, B and ε. So, we 

have, 

. . . . .. . . . .. . . . .

2 2
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. . . . .
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0 2 0 ... 0
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y
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y
N N

k

k

A k I

k

k

  
 
  
 
 

   
 
 

  
 

   
 

(27) 

Where matrix A is a diagonal matrix with (N +2)(N +2) dimension and this 

elements refer to Hamiltonian of the isolated rectangle parts without connection 
with nearest-neighbors and effect of left and right leads. 

Matrix B is a three diagonal matrix with (N+2)(N+2) dimension and its 

diagonal elements are zero. The off diagonal non-zero elements refer to nearst-

neighbor hopping, each part is in connection with its neighbor. This matrix is like 
the matrix representation of the creation and annihilation operators of the 

quantum harmonic oscillator in orthonormal number basis. 

So, the eigen-values and the eigen-vectors of the annihilation and creation 
operators are useful to analyze the matrix B. The matrix B become: 

. . . . .. . . . .. . . . .
. . . . .

,

0 2 ... ... 0

2 0 2 ... 0

. . . . .

0 ... 2 0 2

0 ... ... 2 0
N N

B

 
 
 
 
 
 
 
  

 

(28) 

Matrix ε is a diagonal matrix with energy elements like matrix A, the 
difference is that the leads have contributed in. We have, 
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. . . . .. . . . .. . . . .
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(29) 

The state vectors |ψ⟩ and |q⟩ in number basis become 

0 0
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q
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
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(30) 

The eigen values of B matrix are achieved 

, 2 ( )
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m m
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N


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Where we use 1m m  . 

Then eigen vectors of B matrix become 
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In which, 2

1

1 ( )
1

N

m

n

nm
C Sin

N






 . 

According to A matrix is diagonal, eigen values and eigen vectors of B 

matrix, can be considered as the eigen values and eigen vectors of A matrix, 
Therefore, the wave function can be defined in terms of eigen vectors of matrix 

A and B , as follows 

1

N

m

m

D m


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                                                                                                        (33) 

Substitute Eq.(33) in Eq.(26) gives 
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Where 

'

1 ' 1

' '
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Where 
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So we obtain 
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Respect to Eq.(37) and (34) we achieve 

  

2
, ' '

' 1

N

m m m m

m

MD m q D


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                                                                                (38) 

where 

  
2 2(2 )y mM k    

                                                                                                (39) 
Above equation in matrix form is 

 
1 2 1D M m q M D   

                                                                                       (40)  

This equation is solved by perturbation method. The solution of equation to 
the second order is, 

(0) 2 1
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D M q

D M q M M q
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

      

(41) 

According to this relations, the electronic wave function in the number basis 

becomes 

1 1 ' 1

'
'

1

N N N

n m m m

m m n

n m
n D n m D C Sin n n

N


 

  

 
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 
 

                          (42) 
By using the wave function, transmission probability of the system is 

achieved. 

 

3. Transmission Probability and Conductivity 

The electron transmission wave function can be used to describe many of the 

physics of transport. In this section we want to study the effect of disorder on the 
electronic transmission by electronic transmission wave function. So, the 

electronic transmission probability become 
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T t t

                                                                                                               (43) 
Here t is the transmission matrix across the system which is the ratio of output 

to input current density, like this 
/ ,out int j j

                                                                                                           (44) 

The current density in relative quantum mechanics is 

,i ij                                                                                                              (45) 
Using the output and input wave functions, transmission coefficient is 

achieved 
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Where 

2 2tan / ,x y R x yk k K k k   
                                                                                (47) 

Thus transmission probability become 
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If it is assumed that in y direction, periodic boundary conditions are satisfied, 

the wave number is /yk m W  and the number of published modes in y 

direction is 

  

,
f

W
M Int



 
  

                                                                                                            (49) 

That f  is fermi wave length. 

The zero temperature linear conductance is given by the Landaure formula 

[21], 
1

2
0 0

0

, 4 / ,

M

m

m

G g T g e





 
                                                                                         (50) 

Hence with respect to Eq.(48), conductivity is obtained, 
2
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(51) 

The Fano factor is another quantity which can be evaluated by transmission 
coefficient. It is given by the expression 
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(53) 

      

 4. Conclusion 
We have studied the effect of disorders on the transmission electron wave 

function by using a new method based on small rectangular approximation and 

obtained the wave function of the system by Green’s function and direct methods. 
The transmission probability of the disordered graphene is calculated. 

Conductivity and Fano factor using Landau formula is obtained. This method can 

be used for different type of disorders. 
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