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A B S T R A C T 

Background and objective: Urban areas worldwide are increasingly grappling 
with the impacts of pollution and climate change. This study investigates the 
spatiotemporal variations of environmental and climatic factors in Mumbai and 
Beijing. The primary objective is to analyze the influence of these factors on 
urban air quality and to provide insights into the effectiveness of pollution 
control measures in these rapidly evolving cities.. 
Materials and methods:  The study utilized remote sensing data from 
Sentinel-5P, and Sentinel-2 satellites, as well as Global Satellite Mapping of 
Precipitation - Product 5P (GSMaP-5P) and Sentinel-3A images, accessed 
through Google Earth Engine (GEE). Data on SO₂, NO₂, and CH₄ 
concentrations were extracted and analyzed alongside 2-meter temperature, 
wind speed, NDVI, and precipitation patterns. Statistical analyses were 
performed to assess temporal trends and spatial distributions of these variables, 
with a focus on identifying correlations between pollutant levels and climatic 
factors. 
Results and conclusion: In Mumbai, elevated concentrations of SO₂, NO₂, and 
CH₄ were observed, particularly in industrial and central areas, reflecting 
ongoing pollution challenges. NDVI data showed decreased vegetation cover, 
exacerbating urban heat island effects. Beijing, however, showed a significant 
reduction in SO₂ and NO₂ levels, attributed to stringent emission controls. CH₄ 
concentrations in Beijing also decreased over time, indicating successful 
mitigation efforts. Climatic data revealed consistently high temperatures and 
stable wind patterns in Mumbai, contrasting with Beijing's more variable 
temperatures and higher wind speeds. Precipitation patterns in Mumbai 
demonstrated high variability, while Beijing experienced decreasing total 
precipitation. The study underscores the effectiveness of pollution control 
measures in Beijing and highlights the ongoing need for improved air quality 
management strategies in Mumbai. These findings provide valuable insights for 
urban environmental policy and pollution control in rapidly urbanizing regions. 
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1. Introduction 

Air pollution and climate change are interrelated global environmental challenges that significantly 
impact human health, ecosystems, and the overall quality of life. These issues have become a major 
concern in modern society, as they are directly linked to economic development, urbanization, and 
industrial activities. Air pollution, in particular, has been recognized as a severe threat, especially in 
densely populated and rapidly industrializing cities such as Beijing and Mumbai. It not only affects the 
health of millions of residents but also has profound implications for regional climate systems, 
biodiversity, and environmental sustainability (Xu et al., 2021). 

As a result, understanding the dynamics of air pollutants and their interactions with climatic factors 
is crucial for developing effective mitigation strategies. One of the most advanced tools available for 
monitoring atmospheric pollution is the Sentinel-5 Precursor (S5P) satellite, which was successfully 
launched on October 13, 2017, from Plesetsk in northern Russia. This satellite is equipped with the 
Tropospheric Monitoring Instrument (TROPOMI), a state-of-the-art sensor designed to measure 
various atmospheric gases, including nitrogen dioxide (NO₂), sulfur dioxide (SO₂), methane (CH₄), 
and carbon monoxide (CO). These trace gases are major pollutants, resulting from incomplete 
combustion processes, such as traffic emissions, industrial production, and biomass burning. Carbon 
monoxide (CO), for instance, is primarily removed from the atmosphere through chemical reactions 
with hydroxyl radicals (OH), highlighting the complex interactions within the atmospheric system 
(Kleipoolet al., 2018). 

The TROPOMI sensor, with its high spatial resolution and wide swath width, provides 
unprecedented capabilities for observing atmospheric pollutants on a global scale. Its data is critical for 
understanding temporal and spatial variations in air quality, as well as for assessing the effectiveness 
of environmental policies and regulations. The use of satellite data, combined with advanced 
computational platforms like Google Earth Engine (GEE), allows for comprehensive analysis and 
visualization of pollutant trends across different regions and time periods. GEE provides a cloud-based 
platform for geospatial analysis, enabling researchers to analyze large datasets, such as those provided 
by the Sentinel-5P (S5P) satellite, with greater efficiency and accuracy (Kazemi Garajeh et al., 2023). 

This combination of remote sensing technology and cloud computing facilitates real-time 
monitoring and assessment of air pollution and its drivers, including climatic factors like temperature 
and wind speed (Tabunschik et al., 2023). In this paper, we focus on two of the most heavily polluted 
and rapidly growing industrial cities in the world: Beijing and Mumbai. Both cities are facing severe 
challenges related to air quality and climate change due to their high population densities, industrial 
activities, and urban expansion (Halder et al., 2023). Previous studies have shown that these cities 
experience significant variations in pollutant concentrations, including NO₂, SO₂, and CH₄, which are 
major contributors to poor air quality (Zheng et al., 2023). For example, research has indicated varying 
trends of NO₂ and SO₂ in different regions, reflecting diverse sources and environmental regulations 
(Krotkov et al., 2016).  

The complex interplay between local emission sources, meteorological conditions, and regional 
climate variability necessitates a more nuanced understanding of air quality dynamics in these urban 
environments. The Sentinel-5P (S5P) satellite’s TROPOMI instrument has demonstrated high 
performance in monitoring these pollutants, providing valuable data for assessing air quality trends and 
identifying hotspots of pollution (Van Geffen et al., 2022). In this study, we leverage TROPOMI’s 
high-resolution measurements to examine the temporal variability of NO₂, SO₂, and CH₄ in Beijing 
and Mumbai.  

Additionally, we investigate the influence of climatic factors, such as temperature and wind speed, 
on the distribution and concentration of these pollutants. Understanding the relationship between 
meteorological conditions and air pollution is essential for predicting future scenarios under different 
climate change pathways and for informing policy decisions aimed at reducing pollution levels (He et 



S. Hadidian Journal of Nature and Spatial Sciences (2024) 4(1), 1–23 

 

3 

 

al., 2017). Our study uses meteorological data—including temperature, wind speed, relative humidity, 
and precipitation—with TROPOMI-derived pollutant concentrations. This approach improves the 
accuracy of predictions for NO₂, SO₂, and CH₄ levels, providing a more comprehensive understanding 
of air quality dynamics in these cities. Previous research has highlighted the importance of 
incorporating meteorological variables into air quality models to enhance their predictive capabilities 
(Giovannini et al., 2020). By using advanced analytical techniques and robust datasets, our study aims 
to provide new insights into the factors driving air pollution and to identify potential mitigation 
strategies. 

Kazemi Garajeh et al. (2023) investigated the effectiveness of Sentinel-5 air pollution (AP) products 
and the GEE platform for monitoring key air pollutants—carbon monoxide (CO), (NO₂), SO₂, and 
ozone (O₃)—in Arak city, Iran, over the years 2018 and 2019. The study aimed to evaluate the 
suitability of these tools for mapping and monitoring air pollution sources in a developing country 
where public health risks from air pollution are rising. The research involved processing Sentinel-5 
satellite images using the GEE platform to identify areas affected by pollution on a monthly, seasonal, 
and annual basis. JavaScript coding in the GEE platform was used to extract data for the four 
pollutants. The study implemented cloud filtering techniques to refine the images and defined average 
filters to produce comprehensive annual maps for both years. The model's performance was assessed 
using ground-truth data from the Environmental Organization of Central Province. The findings 
indicated that Sentinel-5 data, when combined with GEE’s automated processing, provided accurate 
estimates of annual CO, NO₂, SO₂, and O₃ levels, with root mean square errors (RMSE) of 0.13, 2.58, 
4.62, and 2.36 for 2018, and 0.17, 2.41, 4.31, and 4.60 for 2019, respectively. Seasonal estimates also 
showed good accuracy, with RMSE values for 2018 of 0.09 for CO, 5.39 for NO₂, 0.70 for SO₂, and 
7.81 for O₃, and for 2019 of 0.12 for CO, 4.99 for NO₂, 1.33 for SO₂, and 1.27 for O₃. The study 
concluded that Sentinel-5 data, when paired with GEE’s automated methods, offers a superior 
approach to traditional pollution monitoring stations by providing spatially distributed and accurate air 
quality data. 

Gharibvand et al. (2023) investigated the impact of the COVID-19 lockdown on air pollution levels, 
specifically focusing on NO₂ and ozone (O₃) in the industrial cities of Arak and Tehran, Iran. The 
study compared pollutant levels during the lockdown period from November 19 to December 05, 
2020, with the same period in 2019. Using Sentinel-5P data, the researchers analyzed changes in NO₂ 
and O₃ levels while accounting for the effects of climatic factors such as rain and wind. The results 
revealed a reduction in NO₂ and O₃ concentrations during the 2020 lockdown compared to 2019: NO₂ 
decreased by 3.5% and 20.97% in Tehran and Arak, respectively, while O₃ levels fell by 6.8% and 
5.67%. These decreases are attributed to reduced transportation and industrial activities during the 
lockdown. The study suggests that similar measures could be beneficial for pollution control in non-
pandemic conditions. 

Tabunschik et al. (2023) conducted an assessment of atmospheric pollutant concentrations using 
advanced geoinformation research methods, incorporating Sentinel-5 satellite imagery, the GEE 
platform, and ArcGIS 10.8 software. The study focuses on analyzing the spatial distributions of 
various pollutants—including NO₂, SO₂, formaldehyde (HCHO), carbon monoxide (CO), and CH₄—
within the basins of the Zapadnyy Bulganak, Alma, Kacha, Belbek, and Chernaya rivers on the north-
western slope of the Crimean Mountains. The research compares the average annual and monthly 
pollutant concentrations for each catchment area. The GEE platform is employed to extract annual and 
monthly average rasters of these pollutants, while ArcGIS is used for enhanced data visualization and 
detailed analytical processing. Background concentrations within protected natural areas are 
calculated, and a complex index of atmospheric pollution is constructed by comparing the spatial and 
temporal distribution of pollutants with these background concentrations. The study highlights the 
variability of NO₂ concentrations through regression analysis, with a coefficient of determination (R > 
0.85) indicating a robust assessment of emission fields based on spatial and temporal heterogeneity. 
The significance of this study lies in its innovative approach to using Sentinel-5 satellite imagery to 
evaluate air quality and pollution in regions with sparse observational networks. The findings 
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emphasize the importance of this research for understanding air pollution impacts on human health and 
ecosystems, particularly in the river basins of the Crimean Mountains. 

Halder et al. (2023) examined the impact of climatic conditions and anthropogenic activities on air 
quality and human health by monitoring key air pollutants using Sentinel-5P satellite data and the GEE 
platform from 2018 to 2021. This study highlights the influence of human activities—such as urban 
expansion, transportation development, and industrial work—on climate change and global warming, 
which in turn affects the concentration of air pollutants. The study focuses on three critical pollutants: 
NO₂, carbon monoxide (CO), and aerosol optical depth (AOD). It was found that NO₂ levels varied 
significantly due to anthropogenic activities, with high concentrations recorded in Kolkata and Delhi. 
Specifically, the Air Quality Index (AQI) in Kolkata and Delhi showed substantial fluctuations 
between 2018 and 2021, with NO₂ levels reaching as high as 102 in 2018 in Kolkata and 107 in 2021 
in Delhi. The CO concentrations also displayed noticeable variations, particularly between different 
months, indicating significant changes in air quality over time. The research underscores that the AQI 
was notably high in 2020 and 2021, while it was relatively lower in 2018 and 2019. The study also 
revealed high AOD values in Uttar Pradesh in 2020, suggesting elevated levels of particulate matter. 
These findings emphasize the need for continuous air quality monitoring and management to address 
the adverse effects of air pollution and climate change, which are crucial for ensuring the health of the 
planet and its inhabitants. 

Zheng et al. (2023) examined the impact of climate change on air quality in Peninsular Malaysia by 
analyzing ground-based observations of temperature, precipitation, relative humidity, wind speed, and 
concentrations of particulate matter (PM10), ozone (O₃), CO, NO₂, and SO₂ from 2000 to 2019. The 
study utilized Pearson correlation and canonical correlation analysis (CCA) to explore the relationships 
between climatic variables and air quality, and to predict future air quality changes under different 
warming scenarios. The findings indicated that Peninsular Malaysia experienced increased 
temperatures (+4.2%), decreased relative humidity (−4.5%), and more variable precipitation over the 
study period. Air pollution worsened with notable increases in PM10 (+16.4%), O₃ (+39.5%), and 
NO₂ (+2.1%), while SO₂ (−53.6%) and CO (−20.6%) concentrations decreased. Monthly variations 
showed bimodal patterns for PM10 and O₃ corresponding to monsoon transitions. The CCA results 
revealed strong correlations between air quality factors and meteorological variables, with CO, O₃, and 
PM10 closely interacting with temperature. The study predicts that air quality in Peninsular Malaysia 
is likely to deteriorate under future warming conditions. 

There is a notable gap in the current research regarding the combined impact of climatic factors, 
such as temperature, precipitation, and wind speed, along with specific air pollutants, on urban air 
quality over time in major industrial cities like Beijing and Mumbai. While previous studies have often 
focused on isolated aspects of either air pollution or climate change, comprehensive analyses that 
integrate both environmental and meteorological variables remain limited. This study addresses this 
gap by using high-resolution satellite data from multiple sources, including the Tropospheric 
Monitoring Instrument (TROPOMI) sensor aboard the Sentinel-5P (S5P) satellite for air pollutants 
(NO₂, SO₂, CH₄), Sentinel-2 for the NDVI, Sentinel-3A for land surface temperature (LST), and the 
GSMaP-5P satellite for precipitation. These datasets are analyzed through the cloud-based geospatial 
analysis platform, GEE. 

In this study, GEE models were employed to investigate the temporal and spatial distribution of 
NO₂, SO₂, and CH₄ in relation to meteorological data, such as temperature, precipitation, and wind 
speed, to enhance the understanding of pollution dynamics in Beijing and Mumbai. This approach 
allows for a more precise analysis of the temporal variability of air pollutants and their correlation with 
climatic factors, thereby providing insights into their interactions. The study is based on two primary 
hypotheses: 

 

1. Climatic variables, particularly temperature and precipitation, significantly influence the 
concentrations of NO₂, SO₂, and CH₄ and, consequently, the trends in urban air quality.  
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2. There is an inverse relationship between Normalized Difference Vegetation Index (NDVI) (as a 
proxy for vegetation health) and the concentration of these pollutants, suggesting that areas with higher 
vegetation cover have lower levels of air pollution. 

This research has three primary objectives: 

1. To monitor and assess the spatial and temporal variability of air quality indicators (NO₂, SO₂, 
CH₄) in Beijing and Mumbai using TROPOMI satellite data. 

2. To evaluate the impact of climatic factors such as temperature, precipitation, and wind speed 
on pollution levels. 

3. To provide a comprehensive understanding of the interaction between climatic factors and air 
pollutants, as well as the role of vegetation in these urban environments. 

Unlike previous studies, this research integrates advanced remote sensing technology with cloud-
based geospatial analysis and machine learning models to provide a holistic view of air quality 
management. The findings of this study are expected to offer valuable insights for policy makers and 
urban planners, aiding in the development of more effective strategies for air pollution mitigation and 
climate change adaptation in highly polluted cities like Beijing and Mumbai. 

2. Material and Methods 

2.1. Study Area 

Beijing is the capital of the People's Republic of China and one of the most populous cities globally, 
serving as the country's political, cultural, and educational center. With a population of approximately 
22 million people, Beijing is the second most populous city in China, following Shanghai (Wang et al., 
2019). Geographically, Beijing is located in northern China, bordered by Hebei Province to the north, 
west, and south, and Tianjin Municipality to the southeast. The city's climate is characterized by hot, 
humid summers and cold, dry winters, which are typical of a monsoon-influenced humid continental 
climate. Summers, from June to August, are also the rainy season, accounting for nearly 75% of the 
annual precipitation. Winters are dry and cold, while spring and autumn are short and cool. The city’s 
air quality has been a significant concern in recent years due to rapid urbanization, industrial activities, 
and a high population density, which contribute to substantial emissions of pollutants such as NO₂ and 
particulate matter (PM) (Wei et al., 2023). 

Mumbai, the capital of Maharashtra, is the most populous city in India and serves as the financial, 
commercial, and entertainment hub of the country. With a population of about 20 million (as of 2018) 
and an area of 603 square kilometers, Mumbai is among the four largest and most densely populated 
cities in India, and one of the top six most populous cities globally (Kadam & Thakur , 2020). Located 
on the west coast of India along the Arabian Sea, Mumbai has a tropical climate characterized by hot 
and humid conditions throughout the year. The city experiences three primary seasons: a hot and 
humid summer, a monsoon season with heavy rainfall, and a mild winter. The monsoon, from June to 
September, brings substantial rainfall, often leading to flooding and waterlogging in various parts of 
the city (Mohanty et al., 2023). Due to its high population density, rapid urban development, and 
industrial growth, Mumbai also faces severe air quality issues, with significant emissions of pollutants 
like SO₂ and carbon monoxide (CO) (Gupta, 2024). 

The Digital Elevation Model (DEM) for both Beijing and Mumbai, providing a comparative 
visualization of their topography (Fig.1). The two cities, despite being geographically distant, share 
similar challenges related to rapid urbanization, population growth, and air pollution. Both cities are 
focal points for studying the impacts of air quality and climate change on urban environments, making 
them ideal study areas for understanding urban air pollution dynamics and the effects of various 
climatic and anthropogenic factors. 
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Fig. 1 – Digital Elevation Model (a) Mumbaei; (b) Beijing 

2.2. Data Collection and Research Methods 

2.2.1. Overview of Data Sources 
 

The primary data sources for this study are satellite-based measurements obtained from various 
missions that provide high-resolution observations of atmospheric and climatic variables. These data 
sources include the Sentinel-5 Precursor (S5P) mission for atmospheric pollutants, the GSMaP-5P 
mission for precipitation data, Sentinel-2 for vegetation indices, and Sentinel-3A for LST. Each of 
these datasets is critical for understanding the interplay between air quality and climatic factors in the 
study areas. 

The Sentinel-5P satellite, launched on 13 October 2017, is equipped with the Tropospheric 
Monitoring Instrument (TROPOMI), which offers global daily coverage of trace gases such as NO₂, 
SO₂, and CH₄ with high spatial resolution (7x7 km). The GSMaP-5P system integrates precipitation 
data from GSMaP with atmospheric measurements from Sentinel-5P, providing valuable insights into 
the relationship between rainfall patterns and air pollutant concentrations. 

The Sentinel-2 mission, part of the Copernicus program, provides high-resolution multispectral 
imagery suitable for calculating the NDVI, which is used to assess vegetation health and land cover. 
Sentinel-3A provides data on LST, critical for examining heat distribution and its impact on 
atmospheric conditions. 

Data from these satellites are processed through the GEE platform, a cloud-based geospatial 
analysis service that facilitates large-scale environmental monitoring and data processing (Gorelick et 
al., 2017). GEE provides access to extensive historical and real-time datasets and supports the 
processing of satellite imagery for extracting relevant climatic and atmospheric variables. 

Additionally, wind rose diagrams have been employed to analyze the spatial distribution and 
prevailing directions of wind speed across the study regions. The wind rose diagrams offer valuable 
insights into the variability of wind patterns and their potential impact on the dispersion of pollutants 
and climatic conditions. By visualizing the frequency and intensity of wind directions, these diagrams 
help to contextualize the effects of wind on air quality and precipitation patterns, complementing the 
satellite data and providing a comprehensive understanding of the atmospheric dynamics in Mumbai 
and Beijing. Initially, this paper provides a comprehensive overview of the study, followed by a 
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detailed flowchart illustrating the workflow and methodological approach employed in the research 
(Fig.2). 

Fig.2 - Workflow Diagram of the Research Methodology 

2.2.2. Data Acquisition 
 

The data acquisition process involved several steps to ensure comprehensive coverage and accuracy: 

1. Selection of Study Areas: The focus of the study is on Beijing and Mumbai, two major 
industrialized and highly populated cities with significant air quality challenges. The selection of these 
cities is based on their representative nature in terms of urbanization, industrial activities, and climatic 
conditions. 

2. Data Retrieval:  

Atmospheric Pollutants (NO₂, SO₂, CH₄): Data for these pollutants were retrieved from the 
Sentinel-5P TROPOMI mission. 
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Precipitation: Precipitation data was obtained from the GSMaP-5P system, which provides high 
temporal and spatial resolution measurements suitable for detailed analysis. 

LST: Temperature data was extracted from the Sentinel-3A mission, which offers accurate LST 
data that helps in understanding surface heat patterns. 

NDVI: NDVI data was obtained from Sentinel-2 imagery, providing critical information on 
vegetation cover and health. 

Wind Speed: Wind speed data was retrieved from ERA5, a comprehensive dataset available on 
GEE. 

2.3. Data Acquisition and Processing 

2.3.1. Data Processing 
 

Data processing was conducted using the GEE platform, which offers powerful tools for analyzing 
large datasets. The following steps were performed: 

1. Data Preprocessing: 

Cloud Masking: Satellite images with cloud cover were filtered using cloud masks to ensure data 
accuracy. The GEE platform provides cloud masking algorithms to enhance the quality of the retrieved 
images. 

Data Calibration: Calibration of the TROPOMI data was performed to correct for instrumental and 
atmospheric effects, ensuring that the measurements reflect accurate concentrations of NO2, SO2, and 
CH4. 

2. Extraction of Time Series: 

Tropospheric NO₂, SO₂, and CH₄: Time series data were extracted by applying the TROPOMI 
sensor’s specific algorithms. These measurements reflect the atmospheric concentrations of these 
pollutants. 

Precipitation: Precipitation data was extracted to assess rainfall patterns and their impact on 
atmospheric conditions. 

 LST from Sentinel-3A: Temperature data was extracted to analyze the thermal properties and their 
correlation with air pollutants. 

NDVI (Sentinel-2): NDVI data, which provides insights into vegetation health and land cover, were 
also extracted from the GEE platform. 

3. Data Integration: 

The various datasets were integrated to create a comprehensive dataset encompassing all relevant 
climatic and atmospheric parameters. This integration was essential for performing detailed analyses 
and investigations. 

2.3.2. Data Analysis 
1. Statistical Analysis: 

Temporal Analysis: Trends and patterns in the concentrations of NO₂, SO₂, CH₄, precipitation, 
NDVI, and temperature were analyzed over time to identify significant changes and seasonal 
variations. 

Spatial Analysis: Spatial distribution maps of the pollutants and climatic variables were generated to 
visualize the geographical extent and intensity of pollution in Beijing and Mumbai. 
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2. Comparative Analysis: 

City Comparison: The study compared air quality and climatic conditions between Beijing and 
Mumbai to highlight differences and similarities in pollution patterns and their drivers. 

2.4. Investigation of Relationships 

1. Parameter Interactions: 

The study investigated the interactions between different atmospheric and climatic parameters to 
understand how changes in one parameter might influence others. For instance, the impact of 
temperature changes on NO₂ and SO₂ levels was analyzed. 

2. Model Validation: 

The findings were validated using ground-based measurements and other available data sources to 
ensure the accuracy and reliability of the satellite-derived information. 

3. Implications for Air Quality Management: 

The results were interpreted to provide insights into the implications for air quality management and 
policy-making in Beijing and Mumbai. Recommendations were made based on the observed 
relationships and trends. 

This comprehensive methodology ensures a thorough analysis of the air quality and climatic factors 
affecting Beijing and Mumbai, providing valuable insights into pollution dynamics and their drivers. 

3. Results  

3.1. Spatial and Temporal Analysis of NO₂, SO₂, and CH₄ Concentrations in Beijing and 
Mumbai (February to March 2022) 

This section aims to provide a detailed understanding of the spatiotemporal distribution of NO₂, SO₂, 
and CH₄ concentrations in Beijing and Mumbai, which can serve as a basis for effective urban air 
quality management strategies. The results are depicted in Fig. 3, which provides visual 
representations of the concentration maps for these pollutants across both cities (Fig. 3). 
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Fig. 3 – Spatial Distribution and Temporal Variation of (A & B: NO₂), (C & D: SO₂), and (E & F: CH₄) Column 

Concentrations in  Beijing and Mumbai from February to March 2022 

3.1.1. Spatial Distribution of NO₂, SO₂, and CH₄ Concentrations in Beijing and Mumbai (February 
to March 2022) 
 

The spatial distribution of NO₂, SO₂, and CH₄ concentrations in Beijing and Mumbai from February 
to March 2022 reveals notable patterns and variations in air quality across the two cities. The analysis 
highlights distinct spatial and temporal characteristics of these pollutants, which are crucial for 
understanding their environmental and health impacts. 

NO₂: In Mumbai (Panel A), NO₂ concentrations are notably higher in the city center, where red 
patches indicate the highest concentrations. There are also high levels in the western outskirts, marked 
by yellow patches. The overall distribution and concentration of NO₂ are quite high, indicating 
substantial emissions likely stemming from urban activities and traffic. In Beijing (Panel B), NO₂ also 
shows extensive coverage across the entire city, with the highest concentrations seen in the central 
areas, highlighted by red patches. The city’s outskirts similarly show elevated NO₂ levels, suggesting 
widespread pollution from various urban and industrial sources. 

SO₂: In Mumbai (Panel C), SO₂ is spatially distributed throughout the city; however, the central 
areas exhibit higher concentrations, marked by red and yellow patches. This pattern indicates a 
concentration of SO₂ emissions likely originating from industrial activities in the city center. In 
Beijing (Panel D), SO₂ concentrations are also spread across the city, but the distribution appears more 
uniform, indicating a consistent presence of SO₂ emissions across the city without significant localized 
peaks. 

CH₄: In Mumbai (Panel E), CH₄ concentrations cover the entire city, with particularly high 
concentrations and focus, shown in red patches. This suggests significant CH₄ emissions throughout 
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the city, potentially from sources such as organic waste and industrial activities. In Beijing (Panel F), 
CH₄ similarly covers the whole city with high concentrations but shows a mix of red and yellow 
patches. However, compared to Mumbai, the CH₄ concentration in Beijing is slightly lower, which 
might indicate different sources and emission intensities between the two cities. 

General Observations: The spatial distribution of these pollutants indicates that both cities 
experience high levels of NO₂, SO₂, and CH₄ emissions. The concentration patterns suggest that local 
emission sources, such as industrial zones, vehicular traffic, and waste management activities, play 
significant roles in air quality variations. Temporal variations during the study period also reflect 
fluctuations in pollutant levels, often peaking during specific times linked to urban and industrial 
activities. 

3.1.2. Temporal Variation in NO₂, SO₂, and CH₄ Concentrations (February to March 20) 
This section examines the temporal variation in concentrations of NO₂, SO₂, and CH₄ over the period 
from February to March 2022 in Beijing and Mumbai. The analysis focuses on identifying significant 
patterns of increase or decrease in pollutant levels and associating these trends with potential 
influencing factors such as weather conditions, industrial operations, and daily human activities. For 
instance, the concentration of NO₂, primarily emitted from vehicles and industrial processes, may peak 
during weekdays when traffic is heavier and industrial activities are at their peak, while lower levels 
may be observed during weekends due to reduced economic activities. Similarly, SO₂ levels could 
vary in response to operational shifts in power plants and factories, reflecting changes in energy 
production and consumption patterns. CH₄ concentrations, often related to organic waste management 
and natural gas leaks, may also show fluctuations depending on temperature, wind speed, and other 
meteorological factors affecting its dispersion and concentration. By analyzing these temporal 
variations, this section provides a comprehensive understanding of how urban air quality is 
dynamically influenced by both anthropogenic and environmental factors, highlighting periods that 
may require targeted interventions to mitigate pollution. 

3.1.3. Comparative Analysis Between Beijing and Mumbai 
This section provides a comparative analysis of the concentration levels and patterns of NO₂, SO₂, and 
CH₄ between Beijing and Mumbai. It highlights the key differences and similarities observed in the 
spatial and temporal distributions of these pollutants. For example, while both cities exhibit high NO₂ 
concentrations in their central areas, Beijing tends to show a more extensive spread across its urban 
and suburban regions, potentially due to its larger geographical size and higher industrial density. 
Conversely, Mumbai may have more localized hotspots of SO₂ around its central areas, indicating 
concentrated industrial activities or power plants. The comparison also considers factors like 
population density, vehicular emissions, industrial operations, and meteorological conditions such as 
wind patterns and temperature, which can significantly influence pollutant dispersion and 
concentration levels. By exploring these differences and similarities, the study offers insights into how 
varying urban dynamics and environmental contexts impact air quality in major industrial cities. 

3.1.4. Implications of the Findings on Urban Air Quality Management 
This section discusses the implications of the observed concentrations and spatial-temporal patterns of 
NO₂, SO₂, and CH₄ for urban air quality management in Beijing and Mumbai. The findings 
underscore the need for city-specific strategies to address pollution sources effectively. For instance, in 
Beijing, where NO₂ and SO₂ levels are widespread, policies might focus on transitioning to cleaner 
energy sources, improving industrial emissions standards, and enhancing public transportation to 
reduce vehicular pollution. In Mumbai, where CH₄ levels are significantly influenced by organic waste 
management and agricultural activities, strategies could include better waste management practices, 
the promotion of biogas as a renewable energy source, and stricter regulations on agricultural burning 
practices. The study recommends continuous monitoring using satellite-based remote sensing and 
ground-based measurements to provide comprehensive data for policymakers. Future directions may 
involve integrating advanced machine learning models for predictive air quality assessments and 
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expanding monitoring to include other emerging pollutants to create a more holistic urban air quality 
management framework. 

3.2. Spatial Distribution of NDVI in Mumbai and Beijing 

The spatial distribution of the NDVI in Mumbai and Beijing reveals distinct patterns of vegetation 
cover in these urban environments (Fig.4). In Mumbai (Panel A), the western outskirts of the city show 
almost no vegetation cover, indicated by red patches, which suggests the presence of highly urbanized 
or industrial areas devoid of significant green cover. In contrast, other parts of Mumbai exhibit 
scattered vegetation cover, which is relatively sparse, suggesting fragmented and less dense vegetation 
across the urban landscape. These patterns could be attributed to the city's rapid urban expansion, land 
use practices, and environmental management policies that have resulted in limited green spaces in 
certain areas. 

In Beijing (Panel B), the NDVI map shows a stronger and more concentrated vegetation cover in 
the western parts of the city, stretching from the northwest to the southwest, indicated by greener 
patches. This suggests a more preserved natural or managed vegetation area, potentially due to the 
presence of mountains, parks, or planned green belts in these regions. On the other hand, the central 
parts of Beijing, similar to Mumbai’s outskirts, exhibit very low NDVI values, indicating a lack of 
vegetation cover. This could be due to the dense urban infrastructure, road networks, and limited green 
spaces in the heart of the city, reflecting different urban planning and development approaches 
compared to other parts of the city. 

 

Fig. 4 – NDVI Variation of (A : Beijing and B: Mumbai) from February to March 2022 

3.2.1. Temporal Variation of Vegetation Cover in Urban Areas 
Analyzing the temporal variation of NDVI in both cities provides insights into seasonal changes, 
vegetation health, and growth dynamics. NDVI values tend to vary across different seasons due to 
climatic factors such as temperature, rainfall, and human activities like agriculture, urban expansion, 
and maintenance of green spaces. For instance, higher NDVI values could be observed in the monsoon 
season in Mumbai due to increased rainfall promoting vegetation growth, whereas, during drier 
months, NDVI values might drop, reflecting stress on vegetation cover. In contrast, Beijing may 
exhibit distinct seasonal variations where vegetation in the western parts could flourish in spring and 
summer due to favorable weather conditions, while dropping significantly in the winter due to harsher 
climatic conditions and potential snow cover. The temporal analysis of NDVI helps in understanding 
these dynamics and their implications for urban planning, climate resilience, and ecological 
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management. 

3.2.2. Comparative Analysis of NDVI Patterns Between Mumbai and Beijing 
Comparing the NDVI patterns between Mumbai and Beijing highlights both similarities and 
differences in urban vegetation distribution and density. While Mumbai shows scattered and sparse 
vegetation primarily concentrated away from the western outskirts, Beijing’s green cover is more 
concentrated in the western regions, and the city center is almost devoid of vegetation. These 
differences may be influenced by several factors, including urban planning policies, geographical 
conditions, environmental conservation efforts, and socio-economic dynamics. For example, the 
stronger vegetation cover in Beijing's western regions could be due to deliberate urban planning efforts 
to maintain green belts and public parks, while the fragmented vegetation in Mumbai might result from 
organic urban sprawl and differential land use practices. Understanding these comparative dynamics is 
crucial for city planners and policymakers to develop effective urban greening strategies and improve 
the overall ecological health of these cities. 

3.2.3. Implications for Urban Environmental Management 
The observed spatial and temporal patterns of NDVI in Mumbai and Beijing have significant 
implications for urban environmental management and sustainable development strategies. The lack of 
vegetation in key urban areas, such as the central parts of both cities, underscores the need for 
enhanced green infrastructure, such as urban parks, rooftop gardens, and green corridors, to mitigate 
the urban heat island effect, improve air quality, and promote biodiversity. Moreover, the findings 
suggest that strategic urban planning should incorporate climate-resilient vegetation management 
practices to enhance the ecological sustainability of these cities. Recommendations include targeted 
reforestation efforts, the creation of green belts, and policies aimed at preserving existing vegetation. 
Future studies should also explore the socio-economic benefits of increasing urban green cover, such 
as improved public health, recreational spaces, and potential contributions to climate change 
adaptation. 

3.2.4. Discussion: Drivers of Vegetation Patterns and Policy Recommendations 
The discussion integrates the findings from the spatial and temporal analysis of NDVI with broader 
urban ecological and planning perspectives. Key drivers influencing vegetation patterns in Mumbai 
and Beijing are identified, including urbanization rates, climate variability, socio-economic factors, 
and local governance. The differences in vegetation patterns between the two cities suggest that while 
natural factors play a significant role, urban policy and management practices are equally crucial in 
shaping these patterns. To improve urban vegetation and ecological resilience, both cities could benefit 
from adopting more integrated urban planning approaches that prioritize green infrastructure and 
climate-adaptive strategies. Policy recommendations include implementing stringent land-use 
regulations, incentivizing urban greening initiatives, and enhancing community involvement in 
maintaining and expanding urban green spaces. Such measures could contribute to more sustainable 
and livable urban environments in the face of rapid urbanization and climate challenges. 

3.3. Analysis of Temporal and Spatial Graphs of Pollutant Concentrations in Mumbai and 
Beijing 

This section presents an analysis of the temporal and spatial graphs related to the concentrations of key 
air pollutants, including NO₂, SO₂, and CH₄, in two major industrial cities: Mumbai (A) and Beijing 
(B) (Fig. 5). These graphs illustrate the temporal changes and spatial patterns of these pollutants over 
different periods, enabling a precise comparison between the two cities. Since these pollutants are 
directly influenced by industrial activities, transportation, and weather conditions, a detailed analysis 
of the graphs can provide a better understanding of the distribution and concentration of these 
pollutants, as well as their variations over time. This section discusses the key differences and 
similarities in the concentration patterns of these pollutants in Mumbai and Beijing, and the findings 
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can offer valuable insights for air quality management and environmental policy-making in these 
regions. 

 

 

Fig.5 - Temporal and Spatial Distribution of NO₂, SO₂, and CH₄ Concentrations in Mumbai and Beijing from 

February to March 2022 

3.3.1.  Nitrogen Dioxide (NO₂) Concentration Graphs: 
The NO₂ concentration graphs reveal distinct patterns in Mumbai and Beijing. In Mumbai, the initial 
concentration of NO₂ begins around 4 units and shows a gradual decrease over the study period. This 
downward trend suggests a steady reduction in NO₂ levels, which may be attributed to improved air 
quality measures or changes in industrial activity. However, the concentration remains more localized, 
with higher levels detected in specific areas of the city. This localization indicates that certain sources, 
such as traffic or industrial emissions, may continue to contribute significantly to NO₂ pollution. 

In contrast, Beijing exhibits a more fluctuating trend in NO₂ concentrations, with noticeable 
increases and decreases throughout the period. This variability suggests that NO₂ levels in Beijing are 
influenced by a range of factors, including seasonal changes and fluctuating industrial emissions. 
Unlike Mumbai, NO₂ in Beijing is more evenly dispersed across the city, indicating a broader 
distribution of pollution sources. The more widespread distribution could reflect differences in urban 
density, industrial practices, and emission control measures between the two cities. 

The difference in NO₂ concentration patterns between Mumbai and Beijing highlights the impact of 
local pollution sources and urban management strategies. Mumbai’s localized NO₂ hotspots suggest 
targeted pollution sources, potentially related to traffic or specific industrial areas. In contrast, 
Beijing’s broader distribution and variability may indicate a more complex interplay of multiple 
emission sources and changing regulatory environments. These insights can guide targeted air quality 
management strategies tailored to each city's unique pollution profile. 
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3.3.2. Sulfur Dioxide (SO₂) Concentration Graphs: 
The SO₂ concentration graphs for Mumbai show a general decreasing trend over time, though there are 
periods with slight increases. This trend suggests a gradual improvement in air quality, likely due to 
interventions or reductions in sulfur emissions from key sources such as power plants or industrial 
facilities. The graph also indicates that SO₂ concentrations are more concentrated in specific areas of 
Mumbai, suggesting persistent emission sources in these regions. 

In Beijing, SO₂ levels remain relatively stable throughout the period, with occasional localized 
spikes. This stable pattern reflects a more uniform distribution of SO₂ across the city, although 
temporary increases in specific areas may be linked to localized industrial activities or other short-term 
factors. The consistency in SO₂ levels across Beijing contrasts with Mumbai’s more variable pattern, 
pointing to different emission dynamics and control measures.  

The SO₂ concentration patterns underscore the effectiveness of pollution control measures and the 
impact of industrial activity on air quality. Mumbai’s concentrated SO₂ emissions suggest ongoing 
challenges in specific areas, while Beijing’s stable distribution highlights broader regulatory successes 
but with localized exceptions. These findings emphasize the need for continued monitoring and 
targeted interventions in areas with persistent SO₂ emissions to further improve air quality. 

3.3.3. Methane (CH₄) Concentration Graphs: 
The CH₄ concentration graphs illustrate an overall increasing trend in Mumbai, with fluctuating values 
across different areas of the city. This suggests that CH₄ emissions are driven by various localized 
sources, such as waste management and transportation, resulting in a moderate but uneven distribution 
of CH₄ concentrations. The lack of spatial consistency indicates intermittent sources contributing to 
the overall rise in CH₄ levels. 

Conversely, Beijing shows a decreasing trend in CH₄ concentrations over the study period. The 
graph indicates that CH₄ levels are less dispersed and more concentrated in specific areas of the city. 
This spatial clustering could be due to targeted emission controls or reduced activity in specific sectors 
contributing to CH₄ emissions. The decreasing trend in Beijing suggests that emission reduction 
strategies may be having a measurable impact.  

The contrasting trends in CH₄ concentrations between Mumbai and Beijing highlight differences in 
emission sources and control effectiveness. Mumbai’s increasing and scattered CH₄ levels suggest 
ongoing challenges with managing CH₄ emissions from diverse sources. Beijing’s decreasing trend 
and localized concentrations indicate successful emission reduction efforts or shifts in industrial 
practices. These results underscore the importance of tailored emission control strategies to address the 
specific sources and distribution patterns of CH₄ in urban environments. 

3.4. Analysis of Temporal and Spatial Graphs of Climatic Variables (Temprature 2m, Wind 
Speed, Total Precipitation) in Mumbai and Beijing 

Understanding the dynamics of climatic variables such as temperature, wind speed, and total 
precipitation is crucial for assessing their impact on urban environments. The analysis of these 
variables provides valuable insights into how they influence air quality, weather patterns, and overall 
environmental conditions. In this section, we present a detailed examination of the temporal and spatial 
variations of temperature at 2 meters, wind speed, and total precipitation in Mumbai and Beijing (Fig. 
6). 

The following graphs (Fig. 6) illustrate the fluctuations and distribution of these climatic factors 
over time in both cities. By examining these graphs, we aim to uncover patterns and trends that reflect 
the interplay between climatic conditions and urban pollution dynamics. The temporal analysis reveals 
how these variables change over time, while the spatial analysis highlights their distribution across 
different areas of each city. 
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These insights are essential for understanding how climatic factors contribute to variations in air 
quality and other environmental conditions. The subsequent analysis will explore the implications of 
these trends and their potential impact on urban planning and pollution management strategies. 

 

Fig.6 - Temporal and Spatial Distribution of Climatic Variables (Temprature 2m, Wind Speed, Total Precipitation) 

in Mumbai and Beijing from February to March 2022. 

3.4.1. Temporal and Spatial Analysis of 2-Meter Temperature Trends in Mumbai and Beijing (1990-
2020) 
The analysis of 2-meter temperature trends from 1990 to 2020 for Mumbai and Beijing reveals distinct 
patterns reflective of each city's climatic characteristics (Fig.6). In Mumbai, the graph illustrates a 
consistent trend in 2-meter temperatures over the years, with a generally high-temperature range. This 
indicates a persistently warm climate in Mumbai throughout the observed period. The high 
temperatures are notably stable and continuous, suggesting a consistent urban heat island effect and 
minimal variability in temperature extremes. This steady high-temperature trend may be attributed to 
Mumbai's geographical location and urbanization factors, which contribute to its consistently warm 
climate. Conversely, Beijing's 2-meter temperature data from 1990 to 2020 show lower temperatures 
compared to Mumbai, indicating a cooler climate overall. The temperature variability in Beijing is less 
pronounced, with lower extremes and a more moderate range. This lower temperature trend suggests a 
different climatic influence, likely related to Beijing's geographical location, seasonal variations, and 
differing urbanization patterns. The reduced intensity of high temperatures in Beijing may also reflect 
effective urban planning and environmental management strategies aimed at mitigating the urban heat 
island effect. 

The observed temperature trends highlight significant climatic differences between Mumbai and 
Beijing. Mumbai's consistently high temperatures underscore the impact of its tropical climate and 
dense urbanization, which contribute to sustained high-temperature levels. This consistency in high 
temperatures may also reflect challenges in managing urban heat and the need for strategies to address 
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heat-related issues in such a hot and densely populated city. In contrast, Beijing's cooler temperatures 
and lower variability suggest a more temperate climate influenced by its latitude and seasonal changes. 
The relatively lower temperature extremes could indicate effective urban cooling measures and a less 
pronounced urban heat island effect compared to Mumbai. However, the data also points to the need 
for continued monitoring and management of temperature extremes to ensure that Beijing can adapt to 
any future climatic shifts. Overall, these temperature patterns provide valuable insights into the 
climatic conditions of Mumbai and Beijing, informing urban planning, climate adaptation strategies, 
and policy development aimed at managing temperature extremes and improving urban living 
conditions. 

3.4.2. Temporal and Spatial Analysis of Wind Speed Trends in Mumbai and Beijing (1990-2020) 
The analysis of wind speed trends from 1990 to 2020 provides valuable insights into the climatic 
dynamics of Mumbai and Beijing (Fig.6). For Mumbai, the wind speed graph shows a generally stable 
trend over the observed period, with some fluctuations. This stability indicates that while the average 
wind speeds have remained consistent, there have been intermittent periods where wind speeds 
increased beyond the typical range. These variations might be linked to specific meteorological events 
or seasonal changes, but the overall trend suggests that Mumbai experiences relatively moderate and 
stable wind conditions (Fig.6). In contrast, Beijing exhibits a higher average wind speed compared to 
Mumbai during the same period. The graph reveals that wind speeds in Beijing are generally more 
intense and have experienced greater variability. This higher intensity and variability in wind speeds 
could be attributed to Beijing's geographical setting, which is influenced by factors such as regional 
wind patterns, topography, and seasonal atmospheric conditions. The increased wind speed in Beijing 
may also reflect its location in a more exposed or open region compared to Mumbai, leading to 
stronger and more variable wind conditions (Fig.6). 

The wind speed trends underscore notable climatic differences between Mumbai and Beijing. 
Mumbai's stable wind conditions, despite occasional fluctuations, suggest a relatively calm and 
consistent wind environment. This stability could have implications for air quality management and 
urban planning, as steady wind speeds might contribute to the dispersion of pollutants more 
predictably compared to areas with higher variability. On the other hand, Beijing's higher average wind 
speeds and greater variability indicate a more dynamic and turbulent wind environment. The stronger 
and more variable winds in Beijing may influence various aspects of urban life, including air quality, 
energy consumption, and infrastructure resilience. Higher wind speeds can enhance the dispersion of 
air pollutants but may also present challenges related to wind-induced damage or increased energy 
needs for heating and cooling. Overall, these wind speed patterns offer crucial insights into the 
climatic conditions of Mumbai and Beijing. Understanding these trends helps inform strategies for 
managing environmental impacts, optimizing urban planning, and adapting to the varying wind 
conditions in each city. 

3.4.3. Temporal and Spatial Analysis of Total Precipitation Trends in Mumbai and Beijing (1990-
2020) 
The examination of total precipitation trends from 1990 to 2020 reveals distinct patterns for Mumbai 
and Beijing (Fig.6). In Mumbai, the precipitation graph shows variability with some fluctuations 
throughout the observed period. Overall, the precipitation levels exhibit a stable trend, with occasional 
increases and decreases. The maximum precipitation recorded in Mumbai during this period did not 
exceed 0.03 units, indicating relatively modest variations in total rainfall. This stability suggests a 
consistent climatic pattern with predictable seasonal changes and minor deviations in precipitation 
levels (Fig.6). Conversely, Beijing demonstrates a decreasing trend in total precipitation over the same 
period. Despite this overall decline, the intensity of rainfall in Beijing has been higher compared to 
Mumbai. The graph indicates that while Beijing's total precipitation has been reducing, the rainfall 
events have been more intense, reflecting a different climatic dynamic. This trend may be influenced 
by changing atmospheric conditions, urbanization effects, or shifts in regional climate patterns (Fig.6). 
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The precipitation trends highlight important climatic differences between Mumbai and Beijing. 
Mumbai's stable precipitation levels, despite occasional fluctuations, indicate a relatively predictable 
and consistent rainfall pattern. This stability could be beneficial for water resource management and 
agricultural planning, as it suggests a more regular distribution of rainfall over time. In contrast, 
Beijing's decreasing trend in total precipitation, coupled with higher intensity rainfall events, suggests 
a shift in climatic conditions that may impact water availability and flood risk. The reduction in overall 
precipitation could be associated with broader climatic changes or urbanization effects, while the 
increased intensity of rainfall events may exacerbate flooding or impact infrastructure resilience. These 
precipitation patterns offer valuable insights into the climatic behavior of Mumbai and Beijing, 
informing strategies for water management, flood control, and urban planning. Understanding these 
trends helps in adapting to changing precipitation patterns and mitigating the impacts of extreme 
weather events in each city. 

3.5. Wind rose 

The wind rose diagrams for Mumbai and Beijing reveal significant differences in wind patterns 
between the two cities (Fig.7). In Mumbai, the wind predominantly blows from the Northen area and 
southwest, with moderate speeds throughout the year, contributing to the dispersion of air pollutants 
primarily towards the inland areas. In contrast, Beijing experiences winds from the West, with low 
variable directional pattern. These wind dynamics play a crucial role in the spatial distribution of air 
pollutants, influencing the concentration and spread of pollutants like NO₂ and SO₂. The distinct wind 
patterns in each city suggest a direct impact on local air quality management strategies. 

 

 

Fig.7-Wind rose chart for Mumbai (A) and Beijing (B) 
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4. Discussion 

In this study, we have analyzed the spatial and temporal variations of SO₂ and NO₂, as well as CH₄ 
concentrations and climatic variables such as NDVI, temperature, wind speed, and precipitation in 
Mumbai and Beijing. By comparing these findings with existing research, we gain a comprehensive 
understanding of urban pollution dynamics and their implications for environmental management. 

Our findings indicate a significant rise in SO₂ and NO₂ levels in Mumbai, with more pronounced 
increases observed in central and industrial areas. This aligns with the work of Sharma et al. (2024), 
who documented high pollutant concentrations in rapidly urbanizing areas of Indian cities due to 
industrial and vehicular emissions. Conversely, Beijing shows a notable reduction in both SO₂ and 
NO₂ concentrations over time, particularly in the north and central parts of the city. This trend supports 
the results of Wang et al. (2023), who attributed improvements in Beijing's air quality to stringent 
emission controls and policy measures. The significant drop in NO₂ levels observed in Beijing, in 
particular, underscores the effectiveness of recent air quality regulations. 

The analysis of CH₄ concentrations reveals an increasing trend in Mumbai, with substantial 
variability across different city areas. This finding is consistent with the observations of Aithal et al. 
(2018), who identified CH₄ emissions from waste management and transportation as major 
contributors in urban settings. On the other hand, Beijing shows a decreasing trend in CH₄ 
concentrations, which might be indicative of successful emission reduction strategies or decreased 
activity in key emission sources. This trend corroborates the study by Gao et al. (2020), who reported 
effective mitigation measures and emission controls in Beijing leading to reduced CH₄ levels. 

The examination of NDVI trends reveals a significant decline in vegetation cover in Mumbai, 
particularly in areas affected by higher temperatures and increased pollution levels. This reduction in 
NDVI highlights the detrimental effects of urbanization and environmental degradation on green 
spaces, consistent with the findings of Shahfahad et al. (2021), who observed similar patterns of 
vegetation loss in rapidly urbanizing regions. Conversely, Beijing exhibits a relatively stable and high 
NDVI, suggesting effective management of urban green spaces and environmental policies that 
preserve vegetation cover. This stability aligns with the research of Huang et al. (2021), who noted that 
strategic urban planning and green space initiatives contribute to maintaining higher vegetation 
indices. The contrasting NDVI trends between Mumbai and Beijing underscore the varying impacts of 
urban development and environmental management practices on urban vegetation. 

The examination of 2-meter temperature trends reveals consistently high temperatures in Mumbai, 
reflecting the urban heat island effect exacerbated by extensive urbanization (Sharma et al., 2024). 
This finding is in line with the research of Shahfahad et al. (2021), who documented persistent high 
temperatures in tropical cities due to the combined effects of urban expansion and climatic conditions. 
Beijing, in contrast, shows lower and more variable temperatures, which can be attributed to its 
temperate climate and effective urban planning strategies (Cheng et al., 2016). The comparative 
analysis of wind speed indicates that Mumbai experiences relatively stable wind conditions, while 
Beijing shows higher variability. This aligns with the findings of Zha et al. (2021), who noted that 
wind patterns play a critical role in pollutant dispersion and air quality management. 

Mumbai's precipitation patterns demonstrate high variability with some intense events, while 
Beijing shows a decreasing trend in total precipitation but with more intense rainfall events. These 
observations are consistent with the results of Liu et al. (2021) and Rahaman (2021), who highlighted 
similar trends in precipitation in tropical and temperate urban environments. The stable yet variable 
precipitation in Mumbai contrasts with the decreasing trend in Beijing, which suggests shifts in 
climatic conditions or changes in regional weather patterns (Huang et al., 2023). 

The wind rose diagrams reveal distinct wind patterns affecting pollutant dispersion. In Mumbai, 
winds predominantly blow from northern and southwestern directions, contributing to the dispersion of 
pollutants towards inland areas. This finding supports the work of Fattah et al. (2023), who observed 
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similar wind patterns in South Asian cities influencing air quality. In Beijing, prevailing winds from 
the west lead to higher pollutant levels in specific areas, aligning with the observations of Kim et al. 
(2016), who discussed the impact of wind patterns on urban air quality in East Asian cities. 

The first hypothesis, that climatic variables—particularly temperature and precipitation—
significantly influence the concentrations of NO₂, SO₂, and CH₄, is supported by the findings. In 
Mumbai, the consistently high temperatures and variable precipitation patterns were associated with 
elevated concentrations of these pollutants, particularly in industrial areas. Conversely, Beijing's more 
variable temperatures and decreasing precipitation correlated with reduced pollution levels, indicating 
that climatic factors indeed play a critical role in shaping urban air quality. This observation aligns 
with previous studies that emphasize the importance of climatic conditions in influencing pollutant 
dispersion and accumulation (Wu et al., 2022). 

The second hypothesis, proposing an inverse relationship between NDVI and pollutant 
concentrations, is also corroborated by the results. In Mumbai, areas with lower vegetation cover, as 
indicated by reduced NDVI values, exhibited higher levels of air pollution, exacerbating the urban heat 
island effect. Meanwhile, Beijing's relatively stable NDVI and extensive green spaces contributed to 
lower pollutant levels, demonstrating the mitigating effects of vegetation on air quality. These findings 
further highlight the role of vegetation in regulating pollution and its potential in urban environmental 
management (Ferrini et al., 2020). 

Our study highlights the complex interplay between pollution levels, climatic factors, and urban 
dynamics in Mumbai and Beijing. The comparative analysis with previous research underscores the 
effectiveness of emission reduction strategies in Beijing and the ongoing challenges faced by Mumbai 
in managing urban pollution. The insights gained from this study are crucial for developing targeted 
environmental management strategies and improving air quality in rapidly urbanizing cities. Future 
research should continue to explore the interactions between these factors and their implications for 
sustainable urban development and environmental health. 

4. 5. Conclusion 

Our study sheds light on the intricate relationship between SO₂, NO₂, and CH₄ concentrations, and it 
clarifies the impact of these pollutants on the environmental dynamics in Mumbai and Beijing. 
Through the analysis of various parameters including pollutant concentrations, temperature at 2 
meters, wind speed, and total precipitation, we have uncovered significant insights into the spatial and 
temporal patterns influencing air quality in these two distinct cities. The utilization of remote sensing 
data through GEE has proven to be instrumental in this analysis, providing reliable and comprehensive 
information for our study. 

Our findings reveal that Mumbai experiences a generally high and increasing trend in SO₂ and NO₂ 
concentrations, with fluctuations indicating diverse local sources. The analysis of CH₄ concentrations 
further highlights the challenges in managing emissions from varied sources. In contrast, Beijing 
shows a decreasing trend in SO₂ and NO₂, suggesting successful emission reduction efforts. The 
spatial clustering of CH₄ concentrations in Beijing points to targeted control measures and reduced 
activity in specific sectors. 

The temporal and spatial analysis of climatic variables such as temperature, wind speed, and 
precipitation provides additional context to these pollutant patterns. Mumbai's consistently high 
temperatures and stable wind conditions contrast with Beijing's cooler temperatures and more variable 
wind patterns. The precipitation trends also indicate differing climatic influences between the two 
cities, with Mumbai showing stable precipitation levels and Beijing experiencing decreasing overall 
precipitation but more intense rainfall events. 

These results underscore the importance of tailored pollution control strategies and effective urban 
planning to address the unique environmental challenges faced by each city. By understanding the 
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interplay between pollutants and climatic factors, we can better inform strategies for improving air 
quality and adapting to changing environmental conditions.  
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