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A B S T R A C T 

Background and objective: Remote sensing image data are often used as input 
in digital soil mapping (DSM). DSM nowadays is very popular rather than 
conventional soil maps it is an important tool in soil survey and sustainable 
agriculture planning. Spatial distribution of soil information in each pixel using 
laboratory observation data of soil samples plays an important role. The 
purpose of this study is to prepare a digital soil map using remote sensing. 
Materials and methods:  Ninety soil samples were collected at a depth of up 
to 50 cm from various Physiography land units made with the help of the basis 
of slope and Land use Land cover (LULC) as well as physiography. Sentinel 2 
satellite data (10 m.) and Aster DEM (30 m.) have been used to prepare the 
digital soil map. Soil samples were analyzed to determine the Macro (N, P, and 
K) Micro (Fe, Zn, Cu, Mn, S, and Br) Nutrients and Some Physico (Texture, 
Bulk density, depth) Chemical Properties (pH, EC, and OC). 
Results and conclusion: Six textural classes identified were sandy clay loam 
and sandy clay, clay, clay loam, loam, and sandy loam. The bulk density, and 
the depth varied from 1.08 to 1.8 Mg m-3, and 14 to 90 cm. respectively. The 
pH, EC, and OC are varied from 5 to 8.36, 0.1 to 1.2 ds/m, and 0.03 to 1.47 
respectively. Nitrogen (N), Phosphorus (P), and Potassium(K) varied from 125 
to 476 kg/ha., 4.44 to 77.78 kg/ha, and 79.6 to 504 kg/ha respectively. The 
digital soil database along with all its properties called a physiographic soil map 
which has been prepared with the help of the inverse distance weightage (IDW) 
interpolation method, which will help to select crops and get the best 
sustainable cultivation. 
 

 

1. Introduction 

The compilation of geographically referenced soil databases based on quantitative correlations 
between spatially distributed environmental data taken from the field and measurements made in a 
laboratory is referred to as digital soil mapping (Dharumarajan et al., 2019; McBratney et al., 2003). 
The digital soil map is a raster-based map composed of 2-dimensional cells (grid) in which each 
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pixel has a spatial location and contains soil physical and chemical parameters and nutrients. 

Digital soil maps illustrate the spatial distribution of soil classes or properties and can document 
the uncertainty of soil prediction. Digital soil mapping better captures observed spatial variability 
and reduces the need to aggregate soil types based on a set mapping scale (Minasny & McBratney 
2016; Zhu et al., 2001). The use of geospatial techniques for mapping soils is broadly covered by 
the term “digital soil mapping” (DSM). Digital soil mapping is defined as the creation of 
geographically referenced soil databases based on quantitative relationships between spatially 
explicit environmental data and measurements made in the field and laboratory (McBratney et al., 
2003). 

Creation and population of a geo-referenced soil database using field and laboratory observation 
methods combined with environmental data produced through quantitative relationships of the 
International Working Group on Digital Soil Mapping (WG-DSM).  

“Production of soil class or property maps using GIS and/or Remote Sensing software” – 
anonymous Digital soil mapping (DSM) represents “the creation and population of spatial soil 
information systems by the use of field and laboratory observational methods coupled with spatial 
and non-spatial soil inference systems” (Digital Soil Mapping: An Introductory Perspective 2007). 
The availability and accessibility of geographic information systems (GIS), global positioning 
systems (GPS), remotely sensed spectral data, topographic data derived from digital elevation 
models (DEMs), predictive or inference models, and software for data analysis have greatly 
advanced the science and art of soil survey. 

Conventional soil mapping now incorporates point observations in the field that are geo-
referenced with GPS and digital elevation models visualized in a GIS. However, the important 
distinction between digital soil mapping and conventional soil mapping is that digital soil mapping 
utilizes quantitative inference models to generate predictions of soil classes or soil properties in a 
geographic database (raster). Models based on data mining, statistical analysis, and machine 
learning organize vast amounts of geospatial data into meaningful clusters for recognizing spatial 
patterns. 

 Soil maps have two types one is conventional mapping and another one is Digital Soil Mapping, 
this idea develop in recent eras due to its functional ability. In conventional mapping, there is no 
basic difference between two soil groups whereas in Digital Sol Mapping this problem is resolved 
because in this case, every pixel has its soil information. DSM is focal on those marginal areas. 
Digital soil maps demonstrate the spatial distribution of information (soil classes) which can help 
with the uncertainty of the soil prediction. Digital soil mapping (DSM) can be used to create basic 
soil surveys, corrected and refine the existing soil database, generate specific soil interpretations, 
and estimate the risk (Carré et al., 2007). 

2. Material and Methods 

2.1. Study area 

The Maniyari River basin is a part of Shivnath catchment (Part of Mahanadi). The river maniyari 
rises from Satpura Maikal hill, in the North West of the Central plateau. So, the Maniyari River 
flows through all the three ideal stages of the life cycle hilly, plateau, and plain. The study area 
covered three districts namely Kabirdham, Mungeli, and Bilaspur. 

The latitude and Longitude of the study area are 21°55' 0" N to 22° 32'0" N and 81°15' 0" E to 
82° 5' 0" E. Total area of the study region is approximately 3790 sq. km. with a total of population 
of near about10 lakhs. Summer temperatures peak at 43º C, with a mild winter temperature of 11ºC. 
And the average annual rainfall is 1128.34 mm, which is less than the 1292 mm average rainfall in 
Chhattisgarh. Figure 1 depicts the study area. 
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Figure 1- Location map of the study area 

2.2. Data collection and research methods 

The database is one of the prime raw materials to finish a work. Both primary and secondary 
database has been used to prepare soil productivity and to find out the best productive way to find 
out the crop. And secondary data like topographical sheet, Sentinel 2 satellite imagery with the 
resolution of 10 m., and Aster DEM have been collected from a survey of India and USGS Earth 
Explorer respectively. Figure 2 shows the process of digital soil methodology map and all of the 
primary and secondary data sources are included in Table 1. 

Table 1-  Sources of data 

Data types Data sources Details 

Soil Sample Field Survey Top soil up to 20 cm. 

Topo sheet Survey of India 64F-06 to 16, 64F16,64G13, 64J03,64J04, 64K01 

Satellite imageries NRSC, ISRO Sentinal 2 (30 m) 
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Figure 2 - Flowchart methodology for digital soil map 

 

3. Results and discussion 

3.1. Slope and Physiography 

A slope map has been prepared with the help of the Aster Digital Elevation Model (DEM) with a 
resolution of 30 m. there are five classes of slope category has been accounted for in the preparation 
of the physiographic unit map Figure 3. 

The elevation range of this study area was found from 135 m. to 1015 m. Fives physiography 
classes have been estimated based on relief features as well as elevation. A soil sample has been 
collected with the help of the physiographic unit map. 
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Figure 3 - Digital elevation model, slope and topography 

3.2. Land use Land cover 

 LULC map has been prepared with the help of the visual image interpretation technique. Ground 
truth verification has been completed to verify the doubtful areas. Accuracy abasement has been 
done using 50 Ground control points with the help of GPS. The area of the LULC varies from one 
land use to another. In the study area there are 12 LULC classes have been identified. Agriculture 
land covered 60.13 %, forest 27.66%, Open scrub 3.16 %, and Built-up rural 2.96 % area of the 
total Geographical area. LULC is depicted in Figure 4 and Table 2. 
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Figure 4 - LULC (2020) 

Table 2 -  LULC Classes 

LULC 2020 Area (sq. km) Area (%) 

Agriculture Cropland 2281.72 60.36 

Barren Rocky 4.26 0.11 

Forest 1051.45 27.82 

Scrub Land 194.16 5.14 

Water body 126.09 3.34 

Built up 119.54 3.16 

 
 

3.3. Physiographic land Unit      

There are 19 primary physiographic land units that have been identified with the combination of 
topography, slope, and LULC map. Ninety soil samples have been collected according to the 
physiographic unit, some broad unit has contained more than one sample like PLS11 plain 
agriculture land has approximately 50 samples because of their soil textural differences as well as 
HLS12 hilly forest areas have more than ten samples to identify the soil nature. Physiographic unit 
details and maps are shown in Tables 3, and 4 and Figures 5, and 6. 
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Table 3 -  Physiographic unit details and code 

Sl. No. Land Facets Topography LULC  Unit code 

1 

Hill Surface (HLS) 

Steep sloping  

(40-50%) 

Hilly (H) 

Agriculture Land HLS11 

2 Forest HLS12 

3 Scrub Land HLS13 

4 

Pleatue summit surface (PDS) 

Moderate  

sloping  

(7-10%) 

Agriculture Land PDS11 

5 Forest PDS12 

6 Scrub Land PDS13 

10 

Pediment Fringe surface (PFS) 
Gently sloping  

(2-7%) 

Agriculture Land PFS11 

11 Forest PFS12 

12 Scrub Land PFS13 

13 

Plain Surface (PLS) 

Very gentle  

sloping  

(1-2%) 

Agriculture Land PLS11 

14 Barren Land PLS12 

15 Forest PLS13 

16 Scrub Land PLS14 

17 

Residual Hill (RH) 

Moderate  

sloping  

(7-10%) 

Agriculture Land RH11 

18 Forest RH12 

19 Scrub Land RH13 

20 Water Body (WB) - - WB 

21 Built Up and Industry (BI) - - BI 

 

Table 4 -  Physiographic unit and their area 

Unit code Physiography LULC Area (Sq. km.) Area (%) 

HLS11 Hill Agriculture Land 31.49 0.83 

HLS12 Hill Forest 311.95 8.22 

HLS13 Hill Scrub Land 16.85 0.44 

PDS11 Pleatue Agriculture Land 92.87 2.44 

PDS12 Pleatue Forest 514.06 13.49 

PDS13 Pleatue Scrub Land 14.72 0.39 

PFS11 Piedmont Agriculture Land 146.13 3.85 

PFS12 Piedmont Forest 221.14 5.82 

PFS13 Piedmont Scrub Land 39.78 1.05 

PLS11 Plain Agriculture Land 2011.78 52.89 

PLS12 Plain Barren Land 10.73 0.28 

PLS13 Plain Forest 2.24 0.06 

PLS14 Plain Scrub Land 122.68 3.22 

RH11 Residual Hill Agriculture Land 0.51 0.01 

RH12 Residual Hill Forest 2.7 0.07 

RH13 Residual Hill Scrub Land 0.59 0.02 

Water Bodies Hill Water Body 0.85 0.02 

Built Up Piedmont Built Up and Industry 4.79 0.13 
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Figure 5- Physiographic unit with LULC distribution (2020) 

Figure 6 - Physiographic land units of the study area 

3.4. Digital Soil Database 

A database management system has been formulated on the Arc GIS platform which contains soil 
physical properties (Texture, Bulk density, depth) Chemical Properties (pH, EC, and OC), Macro 
(N, P, and K), and Micro (Fe, Zn, Cu, Mn, S, and Br) Nutrients on the basis of physiographic 
landscape unit. This database gives a lot of information regarding soil health as well as erosion 
Figure 7.  Soil sample size and the area or volume of representation should be considered when 
determining the location of field sampling sites and the timing of measurements (Bouma et al., 
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1989; Mohanty & Mousli, 2000). 

Figure 7- Physiographic soil map with database 

3.5. Digital soil map 

 The digital soil map is a raster-based map with a 2-dimensional composed of cells (pixels) map 
organized into a grid in which each pixel has a specific geographic location and contains soil data. 
Digital soil maps depict the spatial distribution of soil classes or properties and can document soil 
prediction uncertainty. Digital soil mapping captures observed geographical variability more 
accurately and eliminate the requirement to combine soil types based on a fixed mapping scale 
Figure 8. 

Figure 8 - Digital soil map 
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4. Conclusion 

This study showed the high potential of using remote sensing data and land information to improve 
the accuracy of a digital soil map. The resolution of the DEM, slope category, and type of LULC 
play an important role in the accuracy of the digital soil map. 

The results of this study showed that the majority of DSM studies that use remote sensing tools 
use the one-time remote sensing method and these one-time remote sensing variables are important 
predictors in DSM models. By combining topography, slope, and LULC map suitable land 
physiographic results were obtained. The soil sample size and area were also taken into 
consideration when determining the location of the sampling sites and the measurement time. The 
physical characteristics of the soil, chemical properties and nutrients of the soil based on the 
physiography of the land provided suitable information for the preparation of the digital soil map. 
Six soil textures were identified at different depths. 

According to the texture and type of soil, pH, EC, OC, Nitrogen (N), Phosphorus (P), and 
Potassium (K) are variables, which can be considered as variables for the type of land use. Based on 
the results, the current research shows that many variables affect soil texture and LULC changes, so 
soil management and conditions to preserve natural and human resources require more attention 
from executive organizations and responsible experts.  Therefore, paying attention to these changes 
and predicting the future leads to better decision-making and management, so considering all these 
factors leads to sustainable development and does not lead to destruction and pollution of the 
environment. 
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