بررسی ضریب خودنفوذی، زاویه پیوندی و نسبت اکسیژنهای پلزن و غیر پلزن در شیشه زیستفعال کلسیم فسفاتی CaO50P2O5-50: مطالعه با شبیهسازی دینامیک مولکولی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوین
1 - دانشیار، گروه مهندسی مواد، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.
کلید واژه: شیشه زیستفعال کلسیم فسفاتی CaO50P2O5-50, شبیهسازی دینامیک مولکولی, اکسیژن پلزن و غیر پلزن, ساختار بیشکل, اندازه و زاویه پیوند.,
چکیده مقاله :
شیشههای زیستفعال به دلیل داشتن خواص زیستی بالقوه در تحریک رشد بافت سخت و بهبود روند ترمیم آن، در کاربردهای درمانی ارتوپدی بسیار ارزشمند هستند. در این پژوهش با استفاده از نرمافزار لمپس، شیشه زیستفعال کلسیم فسفاتی 50P2O5-50CaO به روش دینامیک مولکولی، شبیهسازی گردید و ساختار کوتاهبرد و میانبرد آن، توسط آزمونهای مشخصهیابی بررسی شد. طبق نتایج، اندازه پیوند P-O برابر با (A)1/47 و 1/56 و برای پیوند O-O و Ca-O به ترتیب برابر با (A)2/53 و 2/29 گزارش شد و زوایای O-P-O، P-O-P و Ca-O-Ca به ترتیب برابر با 160، 110/1 و 80 و برای زاویه O-Ca-O برابر با 60 و 90 اندازهگیری گردید. ضرایب نفوذ در دماهای 1500، 2000 و 2500 به ترتیب برابر با (m2/s)3/33*10-16، 5*10-16 و 10-14*1/66*10 و برای اتم P برابر با (m2/s)3/33*10-16، 1/66*10-16 و 16-10*5/33 محاسبه شد. مطالعه ساختار میانبرد شیشه زیستفعال، حاکی از نسبت اکسیژنهای پلزن و غیر پلزن برابر با 28/47 و 71/53 درصد و میانگین عدد همآرایی اتمهای Ca و P به ترتیب در شعاع قطع (A)3/0 و 2/0 برابر با 4/25 و 3/7 بود و چگالی شیشه زیستفعال برابر با (g/cm3)2/13 اندازهگیری گردید.
Bioactive glasses are highly valuable in orthopedic therapeutic applications due to their inherent bioactive properties, ability to stimulate tissue regeneration, and enhancement of the healing process. In this study 50P2O5-50CaO calcium phosphate bioactive glass was synthesized by melt-quenching method, and molecular dynamic simulation was used to evaluate properties. The structural and mechanical properties were analyzed using computational techniques (LAMMPS). The results showed that the P-O bond lengths were 1.47A, and. 1.65A, the O-O bond length was 2.53A, and the Ca-O was 2.39A. The O-P-O, P-O-P, and Ca-O-Ca bond angles. were measured at 160, 110.1, and 80, respectively, and the O-Ca-O was measured at 60, and 90. The calcium(Ca) diffusion coefficient in 1500K, 2000K, and 2500K was 3.33*10-16m2/s, 5*10-16m2/s, and 1/.66*10-16m2/s, and for phosphorus(P) was 3.33*10-16m2/s, 1.66*10-14m2/s, and 5*10-16m2/s, respectively. The study of the mid-range structure of bioactive glass indicated that the ratio of bridging and non-bridging oxygens were 28.47% and 71.53%, and the average number of arrangement for Ca and P atoms at cut-off radius of 3.0A and 2.0A, were 4.25, and 3.7, and the density was measured as 2.13g/cm3.
1. Vaiani L, Boccaccio A, Uva AE, Palumbo G, Piccininni A, Guglielmi P, et al. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. Functional Biomaterials 2023;14(3):146. https://www.mdpi.com/2079-4983/14/3/146/htm.
2. Salinas AJ, Vallet-Regí M. Evolution of Ceramics with Medical Applications. Z Anorg Allg Chem. 2007;633(11–12):1762–73. https://doi.org/10.1002/zaac.200700278.
3. تقی زاده توفیقی، ویدا. ساعتچی، احمد. نصر اصفهانی، مجتبی. تهیه و مشخصهیابی نانو پودر شیشه–سرامیک زیستفعال و مطالعه زیستفعالی آن. فصلنامه علمی-پژوهشی مواد نوین، 1392؛ 4(11): 81-88. https://dorl.net/dor/20.1001.1.22285946.1392.4.11.7.2.
4. Upadhyay A, Pradhan L, Yenurkar D, Kumar K, Mukherjee S. Advancement in ceramic biomaterials for dental implants. Int J Appl Ceram Technol. 2024;21(4):2796–817. https://doi.org/10.1111/ijac.14772.
5. Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. Nanomaterials 2023;13(16):2287. https://www.mdpi.com/2079-4991/13/16/2287/htm.
6. Jafari N, Habashi MS, Hashemi A, Shirazi R, Tanideh N, Tamadon A. Application of bioactive glasses in various dental fields. Biomater Res. 2022;26(1):31. https://spj.science.org/doi/10.1186/s40824-022-00274-6.
7. Ravindranadh K. Bioactive glasses for technological and clinical applications. Int. J. Chem. Sci. 2016;14(3):1339-1348.
8. Christie JK, Ainsworth RI, Hernandez SER, De Leeuw NH. Structures and properties of phosphate-based bioactive glasses from computer simulation: a review. Mater Chem B. 2017;5(27):5297–306. https://pubs.rsc.org/en/content/articlehtml/2017/tb/c7tb01236e.
9. Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL, et al. Binary CaO–SiO2 gel‐glasses for biomedical applications. 2004;14(1):467–86. https://doi.org/10.1177/095929892004014004013.
10. Van Hong N. Structure and Density Heterogeneities of Silica Glass: Insight from Datamining Techniques. Silicon. 2024;16(17): 6135-6142. https://link.springer.com/article/10.1007/s12633-024-03148-9.
11. Kasuga T. Unique Nature of Phosphate and Borate Bioactive Glasses. Phosphate and Borate Bioactive Glasses. 2022:1–9. https://doi.org/10.1039/9781839164750-00001.
12. Li C, Wang C, Boccaccini AR, Zheng K. Sol-gel processing and characterization of binary P2O5-CaO and ternary P2O5-CaO-Li2O mesoporous phosphate bioactive glasses. Non-Crystalline Solids: X. 2023;1(17):100159. https://doi.org/10.1016/j.nocx.2023.100159.
13. Jain S, Raghavendra G, Naik RH, Daloji L, Azeem PA. Exploring the Versatility of Phosphate-Based Bioactive Glass for Biomedical Applications. Lecture Notes in Mechanical Engineering. 2023;673–85. https://link.springer.com/chapter/10.1007/978-981-97-0918-2_54.
14. Pickup DM, Ahmed I, Guerry P, Knowles JC, Smith ME, Newport RJ. The structure of phosphate glass biomaterials from neutron diffraction and31P nuclear magnetic resonance data. Physics: Condensed Matter. 2007;19(41):415116. https://iopscience.iop.org/article/10.1088/0953-8984/19/41/415116.
15. Abedalwafa M, Wang F, Wang L. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci. 2013;34(2):123-140. https://lesencres.com/wp-content/uploads/2023/02/PCL.
16. Atila A, Ouldhnini Y, Ouaskit S, Hasnaoui A. Atomistic insights into the mixed-alkali effect in phosphosilicate glasses. Physical Review B. 2022;105(13):134101. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.134101.
17. Fan G, Diao J, Jiang L, Zhang Z, Xie B. Molecular Dynamics Analysis of the Microstructure of the CaO-P2O5-SiO2 Slag System with Varying P2O5/SiO2 Ratios. Mater Trans. 2015;56(5):655–60. https://doi.org/10.2320/matertrans.M2014363.
18. Martinez A, Izquierdo-Barba I, Vallet-Regi M. Bioactivity of a CaO−SiO2 Binary Glasses System. Chemistry of Materials. 2000;12(10):3080–8. https://pubs.acs.org/doi/abs/10.1021/cm001107o.
19. Mead RN, Mountjoy G. A Molecular Dynamics Study of the Atomic Structure of (CaO)x(SiO2)1-x Glasses. Physical Chemistry B. 2006;110(29):14273–8. https://pubs.acs.org/doi/abs/10.1021/jp0628939.
20. Du J, Cormack AN. Atomistic Simulations of Glasses: Fundamentals and Applications. Atomistic Computer Simulations of Inorganic glasses: Methodologies and Applications. 2019;1–530. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118939079.
21. Montazerian M, Zanotto ED, Mauro JC. Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews. 2020;65(5):297–321. https://doi.org/10.1080/09506608.2019.1694779.
22. Liu H, Zhao Z, Zhou Q, Chen R, Yang K, Wang Z, et al. Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus - Geoscience. 2022;354(S1):1–43. https://doi.org/10.5802/crgeos.116. 23. مشرقی، علی. بررسی اثر اندازه ذره بر پارامتر حجم به ازای اتم در نانوذرات اکسید تیتانیوم. فصلنامه علمی-پژوهشی مواد نوین، 1396؛ 8(29): 81-90. https://dorl.net/dor/20.1001.1.22285946.1396.8.29.7.6.
24. Sun H, Yang J, Zhang R, Xu L. Insight into the structure and transport properties of CaO-SiO2-P2O5 system during the phosphorus enrichment process: A molecular dynamics simulation. Non Cryst Solids. 2024;627:122818. https://doi.org/10.1016/j.jnoncrysol.2023.122818.
25. Yeo T min, Jeon JM, Hyun SH, Ha HM, Cho JW. Effects of Li2O on structure of CaO-SiO2-CaF2-Na2O glasses and origin of crystallization delay. Mol Liq. 2022 Feb 1;347:117997. https://doi.org/10.1016/j.molliq.2021.117997.
26. Pedone A, Bertani M, Brugnoli L, Pallini A. Interatomic potentials for oxide glasses: Past, present, and future. Non-Crystalline Solids: X. 2022;15:100115. https://doi.org/10.1016/j.nocx.2022.100115.
27. Anh NM, Hong N Van. Structural Properties of Liquid CaO–SiO2–P2O5 System. Mathematics – Physics. 2023;39(3):8–20. https://js.vnu.edu.vn/MaP/article/view/4760.
28. Suzuki Y, Takase K, Akiyama I, Suzuya K, Umesaki N, Ohtori N. Short-Range Structure of Vitreous P2O5 by MD Simulation. Mater Trans. 2001;42(11):2242–6. https://doi.org/10.2320/matertrans.42.2242.
29. Goj P, Stoch P. Influence of CaO on structural features of polyphosphate P2O5-Fe2O3-FeO glasses by molecular dynamics simulations. Non Cryst Solids. 2020;537:120014. https://doi.org/10.1016/j.jnoncrysol.2020.120014.
30. Hong N Van, Huong N Van, Lan MT. Glassy network structure of CaO-SiO2 and CaO-Al2O3-SiO2 systems. Bulletin of Materials Science. 2022;45(3):1–8.https://link.springer.com/article/10.1007/s12034-022-02715-3.
31. Fan G, Diao J, Jiang L, Zhang Z, Xie B. Molecular Dynamics Analysis of the Microstructure of the CaO-P2O5-SiO2 Slag System with Varying P2O5/SiO2 Ratios. Mater Trans. 2015;56(5):655–60. https://doi.org/10.2320/matertrans.M2014363.
32. Smith JM, King SP, Barney ER, Hanna J V., Newport RJ, Pickup DM. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content. Chemical Physics. 2013;138(3). https://doi.org/10.1063/1.4774330.
33. Cormack AN, Du J. Molecular dynamics simulations of soda–lime–silicate glasses. Non Cryst Solids. 2001;293–295(1):283–9. https://doi.org/10.1016/S0022-3093(01)00831-6.
34. Belashchenko DK, Ostrovskii OI. Computer simulation of noncrystalline P2O5, an ionic-covalent oxide. Inorganic Materials. 2002;38(1):48–55. https://link.springer.com/article/10.1023/A:1013603527862.
35. Du Y, Yuan Y, Li L, Long M, Duan H, Chen D. Insights into structure and properties of P2O5-based binary systems through molecular dynamics simulations. Mol Liq. 2021;339:116818. https://doi.org/10.1016/j.molliq.2021.116818.
36. Wetherall KM, Pickup DM, Newport RJ, Mountjoy G. The structure of calcium metaphosphate glass obtained from x-ray and neutron diffractionand reverse Monte Carlo modelling. Physics: Condensed Matter . 2008;21(3):035109. https://iopscience.iop.org/article/10.1088/0953-8984/21/3/035109.
37. Jen JS, Kalinowski MR. An ESCA study of the bridging to non-bridging oxygen ratio in sodium silicate glass and the correlations to glass density and refractive index. Non Cryst Solids. 1980;38–39(PART 1):21–6. https://doi.org/10.1016/0022-3093(80)90388-9.
38. Vollmayr K, Kob W, Binder K. Cooling-rate effects in amorphous silica: A computer-simulation study. Phys Rev B. 1996;54(22):15808. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.15808.