سنتز و ارزیابی رفتار ضدباکتریایی نانوذرات تیتانیا دوپ شده با نقره به عنوان یک افزودنی ضدباکتریایی به مواد دندانی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینندا بهرمندی طلوع 1 * , محمد حسین فتحی 2 , احمد منشی 3 , وجیه السادات مرتضوی 4 , فرزانه شیرانی 5 , مریم محمدی سیچانی 6
1 - کارشناس ارشد مهندسی مواد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.
2 - استاد، گروه پژوهشی بیومواد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.
3 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران.
4 - استاد، مرکز تحقیقات دندانپزشکی پروفسور ترابینژاد و گروه ترمیمی و زیبایی دانشکده دندانپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران.
5 - دانشیار، مرکز تحقیقات دندانپزشکی پروفسور ترابینژاد و گروه ترمیمی و زیبایی دانشکده دندانپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران.
6 - مربی، دانشگاه آزاد اسلامی، واحد فلاورجان، گروه میکروبیولوژی، اصفهان، ایران.
کلید واژه: نانوذرات تیتانیا, نقره, دوپ کردن, خاصیت ضدباکتریایی,
چکیده مقاله :
در این پژوهش، رفتار ضدباکتریایی نانوذرات تیتانیا و نانوذرات تیتانیا دوپ شده با نقره در مقابل باکتری استریپتوکوکوس موتانس مورد ارزیابی گرفت و نتایج با سه باکتری بیماریزای دیگر مقایسه شد. ابتدا نانوذرات تیتانیا و نانوذرات تیتانیا دوپ شده با نقره به روش سل- ژل سنتز شده و با تکنیکهای پراش پرتو ایکس، میکروسکوپ الکترونی روبشی همراه با طیفسنجی تفکیک انرژی و میکروسکوپ الکترونی عبوری مورد ارزیابی قرار گرفتند. سپس رفتار ضدباکتریایی نانوذرات سنتز شده در مقابل باکتری استرپتوکوکوس موتانس و سه باکتری بیماریزای دیگر با روش آگار دایلوشن مورد ارزیابی قرار گرفت. نتایج ارزیابی فازی، حضور فاز آناتاز را در تمامی نمونهها نشان داد. اندازه نانوذرات تیتانیا و نانوذرات نقره به ترتیب30 و 15 نانومتر تعیین شد. نتایج آزمونهای ضدباکتریایی نشان داد که نانوذرات تیتانیا دوپ شده با سه درصد گوناگون نقره، در حداقل غلظت بازدارندگی 3 میلیگرم بر میلیلیتر باعث عدم رشد باکتری میشوند درحالی که نانوذرات تیتانیا در حضور نور فلوئورسنت و در حداقل غلظت بازدارندگی 5 میلیگرم بر میلیلیتر، تنها کاهش رشد باکتری را از خود نشان میدهند. افزون بر این، حداقل غلظت بازدارندگی برای سه باکتری بیماریزای دیگر 4 میلیگرم بر میلیلیتر بدست آمد که این مقدار مربوط به نانو ذرات تیتانیا دوپ شده با 5 درصد مولی نقره بود و در دیگر نانوذرات رشد باکتری مشاهده شد. نتایج بدست آمده نشاندهنده افزایش خاصیت ضدباکتریایی نانوذرات تیتانیا در اثر حضور نقره است. علت این افزایش هم حضور نانوذرات نقره با خاصیت ضدباکتریایی و هم اثر نقره بر خاصیت فوتوکاتالیستی نانوذرات تیتانیا میباشد.
In this study, antibacterial behavior of nanoparticles of titania and nanoparticles of silver-doped titania were evaluated against Streptococcus mutans and were compared with three pathogen bacteria. Initially, the nanoparticles of titania and nanoparticles of silver-doped titania were synthesized by sol-gel method. The powders were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy-Dispersive Spectroscopy (EDS) techniques. Then, Agar dilution was used to evaluate antibacterial properties of silver- doped titania nanoparticles against Streptococcus mutans and three types of pathogen bacteria. Phase structure evaluation showed anatase phase of titania in all silver-dopped titania nanoparticles. The particle size of titania and silver particles were determined 30 and 15 nanometers, respectively. The antibacterial results showed that Minimum Inhibition Concentration (MIC) of 3 mg/ml for silver-doped titania nanoparticles with different percentages of silver could inhibit bacteria growth, while nanoparticles of titania in fluorescent light indicated reducing growth of bacteria. Furthermore, MIC of 4 mg/ml was achieved for silver-doped titania nanoparticles with 5 mole percent sliver against the other pathogen bacteria and for other specimens observed growth of bacteria. These results showed that silver could increase antibacterial properties of titania. This is due to presence of silver nanoparticles and also the effect of silver on the photocatalyst properties increased antibacterial properties.
1- M. Guzman, J. Dille, S. Godet, "Synthesis
and Antibacterial Activity of Silver
Nanoparticles Against Gram-Positive and
Gram-Negative Bacteria", Nanomedicine:
Nanotechnology, Biology, and Medicine, Vol.
8, p.p 37–45, 2012.
2- E. Pipelzadeh, A.A. Babaluo, M. Haghighi,
Karimzadeh Behnami, “Silver Doping on TiO2
Nanoparticles Using a Sacrificial Acid and its
Photocatalytic Performance Under Medium
Pressure Mercury UV Lamp”, Chemical
Engineering Journal, Vol. 155, pp. 660–665,
2009.
3- A.L Linsebigler, G. Lu, and J.T. Yates,
“Photocatalysis on TiOn Surfaces: Principles,
Mechanisms, and Selected Results”, Chemical.
Review, Vol. 95, pp. 735-758, 1995.
4- P. Chin, Kinetics of Photocatalytic
Degradation Using Titanium Dioxide Films,
ProQuest, p. 2-7, 2008.
5- C. Yi, P. Xiao-Yan, M. Xue-Ming, and Hui,
Z.,” Study on Photocatalysis Properties of
Nanocrystalline Titanium Dioxide”, Journal of
Shanghai University, Vol. 6, pp. 240-243,
2002.
6- A. Zaleska, ” Characteristic of Doped-TiO2
Photocatalists”, Physicochemical Problems of
Mineral Processing, Vol. 42, pp. 211-222, 2008.
7- D. Beydoun, R. Amal, G. Low, and S.
Evoy” Role of Nanoparticles in
Photocatalysis”, Journal of Nanoparticle
Research, Vol. 1, pp. 439 – 458, 1999.
8- A. Alem, and H. Sarpoolaky” The Effect of
Silver Doping on Photocatalytic Properties of
Titania Multilayer Membranes”, Solid State
Sciences, Vol. 12, pp. 1469-1472, 2010.
9 -م. مختاری مهر، م. ح. شریعت و م. پاک شیر، "بررسی
خاصیت فتوکاتالیستی لایه نازک2 TiO doped V تهیه
شده با روش سل-ژل"، مجله مواد نوین، جلد2 ،شماره 3،ص
.1391 بهار، 21 -26
10- S. Sivakumar, P. Krishna Pillai, P.
Mukundan, and K.G.K. Warrier, ” Sol–gel
Synthesis of Nanosized Anatase from Titanyl
Sulfate”, Materials Letters, Vol. 57, pp. 330–
335, 2002.
11- M.K.Seery, R. George, P. Floris, and S.C.
Pillai., ”Silver Doped Titanium Dioxide
Nanomaterials for Eenhanced Visible Light
Photocatalysis”, Journal of Photochemistry and
Photobiology,Vol. 189, pp. 258–263, 2007.
12- S. Ansari. Amin, M. Pazouki, and
A.Hosseinnia” Synthesis of TiO2–Ag
Nanocomposite with Sol–Gel Method and
Investigation of its Antibacterial Activity
Against E. Coli”, Powder Technology, Vol.
196, pp. 241–245, 2009.
13- H.E. Chaoa, Y.U. Yuna, H.U. Xingfanga,
and A. Larbot,”Eect of Silver Doping on the
Phase Transformation and Grain Growth of
Sol-Gel Titania Powder”, Journal of the
European Ceramic Society, Vol. 23, pp. 1457–
1464, 2003.
14- N. Sobana, M. Muruganadham, and M.
Swaminathan,”Nano-Ag particles Doped TiO2
for Efficient Photodegradation of Direct azo
dyes”, Journal of Molecular Catalysis, Vol.
258, pp. 124 –132, 2006.
15- C. Suwanchawalit, P. Chanhom1, P.
Sriprang, and S. Wongnawa” A Ag-Doped
TiO2 Photocatalyst for Dye Decolorization
under UV and Visible Irradiation”, Pure and
Applied Chemistry International Conference,
2011.
16- S. Pal, Y.K. Tak, and J.M. Song, "Does the
Antibacterial Activity of Silver Nanoparticles
Depend on the Shape of the Nanoparticle?" ,
Applied and Enviromental Microbiology, Vol.
73, pp. 1712-1720, 2007.
17- A.A., Ashkarran”Antibacterial Properties
of Silver-Doped TiO2 Nanoparticles Under
Solar Simulated light”, Journal of Theoretical
and Applied Physics,Vol. 4, pp. 1-8, 2011.
18- X. Chen, H.J. Schluesener, " Nanosilv er:
A Nanoproduct in Medical Application",
Toxicology Letters, Vol. 176, p.p 1–12, 2008.
19- R. Mahendra, Y. Alka, and G. Aniket”
Silver Nanoparticles as a New Generation of
Antimicrobials”, Biotechnology Advances,
Vol. 27, pp. 76–83, 2009.
20- L.F. Espinosa-Cristóbal, G.A. MartínezCastañón,R.E. Martínez-Martínez, J.P. LoyolaRodríguez,N. Patiño-Marín, J.F. ReyesMacías,Facundo Ruiz, "Antibacterial Effect of
Silver nanoparticles Against Streptococcus
mutans", Materials Letters, Vol. 63, p.p 2603–
2606,2009.
21- I. Wiegand, K. Hilpert, R. E. W. Hancock,
"Agar and Broth Dilution Methods to
Determine the Minimal Inhibitory
Concentration (MIC) of Antimicrobial
Substances", Nature Protocols, Vol.3,No.2, p.p
163-175, 2008.
22- A. Alem, H. Sarpoolaky, and M.
Keshmiri,” Titania Ultrafiltration membrane:
Preparation, Characterization and
Photocatalytic Activity”, Journal of the
European Ceramic Society, Vol. 29, pp. 629–
635, 2009.
23- C.R. Mahon, D.C. Lehman, G. Manuselis,
Textbook of Diagnostic Microbiology, ISBN:
978-1-4160-6165-6, p. 8-10, 2010.
24- K. Tomono, E. Takigawa, T.Suzuki, and
Physical Properties and Antibacterial Action of
Glass Ionomer Cement for Luting”, Material
Technology, Vol. 22, pp. 83-89, 2004.
25- C. Sahoo, A.K. Gupta and A. Pal,
”Photocatalytic Degradation of Methyl Red
dye in Aqueous Solutions Under UV
Irradiation Using Ag+
Doped TiO2”,
Desalination, Vol. 181, pp. 91-100, 2005.
26- D.B. Hamal, and K.J. Klabunde,
“Synthesis, Characterization, and Visible Light
Activity of New Nanoparticle Photocatalysts
Based on Silver, Carbon, and Sulfur-Doped
TiO2”, Journal of Colloid and Interface
Science, Vol. 311, pp. 514–522, 2007.
_||_