تف¬جوشی پلاسمای جرقه¬ای (SPS) پودر آلیاژ آلومینیوم 3000 و 5000 تهیه شده از بازیافت قوطی¬های مستعمل نوشیدنی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینهادی رضازاده 1 , مازیار آزادبه 2 *
1 - دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند تبریز، تبریز، ایران
2 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند تبریز، تبریز، ایران
کلید واژه: پودر آلومینیوم, تف¬جوشی پلاسمای جرقه¬ای, خواص مکانیکی, قطعات بالک نانوساختار,
چکیده مقاله :
مقدمه: در تحقیق حاضر، قطعات بالک آلومینیم با روش تفجوشی پلاسمای جرقهای پودر آلیاژهای آلومینیوم 3004 و 5182 که یکی از روشهای نوین متالورژی پودر برای تولید قطعات فلزی است، تولید شدند. پودر آلیاژ آلومینیوم از طریق بازیافت قوطیهای آلومینیومی مستعمل نوشیدنی که متشکل از آلیاژ 5182 برای قسمت سر و 3004 برای قسمت بدنه قوطی هستند؛ با استفاده از دستگاه آسیای گلولهای سیارهای حاصل شده بود. روش: پودرهای آلیاژ 5182 و آلیاژ 3004 تحت شرایط؛ بهترتیب در دمای 530 و 570 درجه سانتیگراد، با نرخ گرمایش ℃/min20، تحت خلأ به مدتزمان 30 دقیقه و فشار اعمالی تکمحوره تا حداکثر MPa 35 در قالب گرافیتی با قطر 25 میلیمتر، هر کدام بطور جداگانه به روش پلاسمای جرقهای تفجوشی شدند. محصول تفجوشی، قطعات قرصی شکل با قطر 25 میلیمتر و ضخامت 17 میلیمتر بودند. ابتدا چگالی هر قرص به روش ارشمیدس تعیین شد. سپس برای بررسی استحکام کششی از هر کدام از آلیاژهای ساخته شده، بترتیب ازنواحی بالا، وسط و پائین سطح مقطع هر قرص سه نمونه استخراج شد. ریزساختار بررسی و خواص مکانیکی نظیر استحکام کششی و سختی تعیین گردید. یافته ها: چگالی نمونه 5182 و 3004 به ترتیب 61/2 و g/cm371/2 به دست آمده، همچنین میانگین سختی برای نمونه 5182 و نمونه 3004 بهترتیب، 11±109 و HV8±231 و میانگین استحکام کششی برای این دو آلیاژ بهترتیب 7±194 و MPa17±243 اندازهگیری شده است. تفجوشی هر دو آلیاژ با مکانیزم تفجوشی فاز مایع فراجامد تحت فشار انجام شده است. مطالعات ریزساختاری و شکست نگاری حاکی از پیدایش ساختار گرادیانی است، بطوریکه در ناحیه پائینی هر دو نمونه ساختار متراکمتری بدلیل تجمع فاز مایع بوجود آمده است. ضمنا فازهای ناپایدار در ریزساختار آلیاژ تفجوشی شدهی 3004 ریزتر از آلیاژ 5182 است که بدلیل متراکم بودن بیشتر آن آلیاژ است. |
نتیجه گیری: با توجه به ریزساختار و موفولوژی شکست میتوان نتیجه گرفت که قابلیت تفجوشی آلیاژ 3004 بهتر از آلیاژ 5182 است و هم چنین خواص فیزیکی و مکانیکی بهتری دارد. ضمنا گرادیان بهوجود آمده در فرآیند تفجوشی قوس پلاسما از اهمیت بهسزایی برخوردار است، که این رخداد بهویژه در آلیاژ 5182 بوضوح قابل ردیابی و تعقیب است.
Introduction: In this research, aluminum bulk pieces were produced by spark plasma sintering of 3004 and 5182 alloys powder. Aluminum alloy powder was previously produced in a planetary ball milling machine by mechanical milling of UBCs, which consist of Al 5182 for the lid and Al 3004 for the body.
Methods: Sintering was done at 530 °C for 5182 alloy powders and 570 °C for 3004, (with heating rate of 20 °C/min), in vacuum atmosphere for 30 min under pressure of up to 35 MPa in graphite die. The density of produced cylindrical samples (Φ=25 and h=17 mm in size) was determined by Archimedes principle. Tensile strength was obtained through three extracted tensile samples from top, center, and bottom of each sintered part. Microstructure of metallographic sections revealed, then hardness measurements were conducted on them.
Findings: The density of sintered Al 3004 and 5182 was 2.71 and 2.61 g/cm3, respectively, and the average hardness was 231±8 and 109±11 Vickers, correspondingly., The average tensile strength of the sintered alloys obtained equal 243±17 and 194±7 MPa, respectively. Fracture morphology indicates a microstructural gradient, which can be in consequence of liquid phase settling, especially in 5182 aluminum alloy. Al 3004 also shows suitable sinter ability and the size of distributed metastable in it is fine.
[1] K.A. AlSaffar, and L.M. Bdeir, “Recycling of aluminum beverage cans.” Journal of Engineering and Sustainable Development, vol. 12(3), pp. 157-163, 2008. ISSN 1813-7822
[2] M.E. Schlesinger, “Aluminum recycling.” CRC press; 2006. https://doi.org/10.1201/9781420006247
[3] K. Liu, and X.G. Chen, “Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening.” Materials & Design, vol. 84, pp. 340-350, 2015. https://doi.org/10.1016/j.matdes.2015.06.140
[4] N. Jamaly, N. Haghdadi, and A.B. Phillion, “Microstructure, macrosegregation, and thermal analysis of direct chill cast AA5182 aluminum alloy.” Journal of Materials Engineering and Performance, vol. 24, pp. 2067-2073, 2015. https://doi.org/10.1007/s11665-015-1480-7
[5] A. von Hehl, P. Krug, “Aluminum and aluminum alloys.” Structural materials and processes in transportation, pp. 49-112, 2013. DOI:10.1002/9783527649846
[6] J.R. Groza, “Nanocrystalline powder consolidation methods.” InNanostructured Materials, William Andrew Publishing, pp. 173-233, 2007. https://doi.org/10.1016/B978-081551534-0.50007-5
[7] H. He, C. Ma, B. Song, R. Zhao, P. Zhao, H. Wang, D. Han, H. Lu, H. Xu, R. Zhang, and L. An, “A novel sintering method of Al2O3/SiCw ceramic composites with improved wear resistance: Oscillatory pressure‐assisted sinter forging.” Ceramics International, vol. 49(21), pp. 34223-34231, 2023. https://doi.org/10.1016/j.ceramint.2023.08.136
[8] C. Muñoz-Rodríguez, L. Feng, E.M. Palmero, T. Mix, J. Rial, F. Olsson, B. Skårman, H. Vidarsson, P.O. Larsson, T.G. Woodcock, and A. Bollero, “Fabrication of bulk τ MnAl–C magnets by hot-pressing from ε-phase gas-atomized and milled powder.” Journal of Alloys and Compounds, vol. 847, pp. 156361, 2020. https://doi.org/10.1016/j.jallcom.2020.156361
[9] D. You, Y. Wang, C. Yang, and F. Li, “Comparative analysis of the hot-isostatic-pressing densification behavior of atomized and milled Ti6Al4V powders.” Journal of Materials Research and Technology, vol. 9(3), pp. 3091-3108, 2020. https://doi.org/10.1016/j.jmrt.2020.01.055
[10] S.B. Alemán-Córdova, L. Ceja-Cárdenas, J.C. Méndez-García, and S. Diaz-de La Torre, “Densification of silicon nitride powder by spark plasma extrusion.” Ceramics International, vol. 47(6), pp. 7966-7973, 2021. https://doi.org/10.1016/j.ceramint.2020.11.147
[11] B. Matović, J. Maletaškić, T. Prikhna, V. Urbanovich, V. Girman, M. Lisnichuk, B. Todorović, K. Yoshida, and I. Cvijović-Alagić, “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering.” Journal of the European Ceramic Society, vol. 41(9), pp. 4755-4760, 2021. https://doi.org/10.1016/j.jeurceramsoc.2021.03.047
[12] J. Noh, Q. Bai, R. Shen, and D. Kim, “Laser-induced shock wave sintering of silver nanoparticles on flexible substrates.” Applied Surface Science, vol. 546, pp. 149097, 2021. https://doi.org/10.1016/j.apsusc.2021.149097
[13] W. Huang, H. Qiu, Y. Zhang, F. Zhang, L. Gao, M. Omran, and G. Chen, “Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering.” Ceramics International, vol. 49(3), pp. 4855-4862, 2023. https://doi.org/10.1016/j.ceramint.2022.09.376
[14] A. Montón, F. Maury, G. Chevallier, C. Estournès, M. Ferrato, and D. Grossin, “Densification of surface-modified silicon carbide powder by spark-plasma-sintering.” Journal of the European Ceramic Society, vol. 41(15), pp. 7543-7551, 2021. https://doi.org/10.1016/j.jeurceramsoc.2021.07.036
[15] M. Tokita, “Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization.” Ceramics, vol. 4(2), pp. 160-198, 2021. https://doi.org/10.3390/ceramics4020014
[16] B. Singarapu, D. Galusek, A. Durán, and M.J. Pascual, “Glass-ceramics processed by spark plasma sintering (SPS) for optical applications.” Applied Sciences, vol. 10(8), pp. 2791, 2020. https://doi.org/10.3390/app10082791
[17] P. Cavaliere, B. Sadeghi, and A. Shabani, “Spark plasma sintering: process fundamentals.” Spark plasma sintering of materials: advances in processing and applications, pp. 3-20, 2019. https://doi.org/10.1007/978-3-030-05327-7_1
[18] M. Asadikiya, C. Zhang, C. Rudolf, B. Boesl, A. Agarwal, and Y. Zhong, “The effect of sintering parameters on spark plasma sintering of B4C.” Ceramics International, vol. 43(14), pp. 11182-11188, 2017. https://doi.org/10.1016/j.ceramint.2017.05.167
[19] P. Barick, D. Chakravarty, B.P. Saha, R. Mitra, and S.V. Joshi, “Effect of pressure and temperature on densification, microstructure and mechanical properties of spark plasma sintered silicon carbide processed with β-silicon carbide nanopowder and sintering additives.” Ceramics International, vol. 42(3), pp. 3836-3848, 2016. https://doi.org/10.1016/j.ceramint.2015.11.048
[20] D.M. Hulbert, A. Anders, D.V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E.J. Lavernia, and A.K. Mukherjee, “The absence of plasma in “spark plasma sintering.” Journal of Applied Physics, vol. 104(3), 2008. https://doi.org/10.1063/1.2963701
[21] J.P. Kelly, and O.A. Graeve, “Spark plasma sintering as an approach to manufacture bulk materials: feasibility and cost savings.” Jom, vol. 67, pp. 29-33, 2015. https://doi.org/10.1007/s11837-014-1202-x
[22] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and T. Asahina, “Processing of fine-grained aluminum foam by spark plasma sintering.” Journal of materials science letters, vol. 22, pp. 1407-1409, 2003. DOI:10.1023/A:1025751128104
[23] J.S. Kim, H.S. Choi, D.V. Dudina, J.K. Lee, and Y.S. Kwon, “Spark plasma sintering of nanoscale (Ni+ Al) powder mixture.” Solid State Phenomena, vol. 119, pp. 35-38, 2007. https://doi.org/10.4028/www.scientific.net/SSP.119.35
[24] Z.F. Liu, Z.H. Zhang, J.F. Lu, A.V. Korznikov, E. Korznikova, and F.C. Wang, “Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum.” Materials & Design, vol. 64, pp. 625-630, 2014. https://doi.org/10.1016/j.matdes.2014.08.030
[25] L. Cao, W. Zeng, Y. Xie, J. Liang, and D. Zhang, “Effect of powder oxidation on interparticle boundaries and mechanical properties of bulk Al prepared by spark plasma sintering of Al powder.” Materials Science and Engineering: A, vol. 742, pp. 305-308, 2019. https://doi.org/10.1016/j.msea.2018.11.024
[26] ه. رضازاده, م. آزادبه, "تولید پودر نانوکریستالی آلومینیوم از ضایعات آلیاژ آلومینیوم به روش بازیافت حالت جامد" فصلنامه علمی - پژوهشی مواد نوین، دوره 14، شماره 51، اردیبهشت 1402، صفحه 1-16 Doi 10.30495/jnm.2023.32501.2015
[27] C. Carrasco, G. Inzunza, C. Camurri, C. Rodríguez, L. Radovic, F. Soldera, and S. Suarez, “Optimization of mechanical properties of Al-metal matrix composite produced by direct fusion of beverage cans.” Materials Science and Engineering: A, vol. 617, pp. 146-155, 2014. https://doi.org/10.1016/j.msea.2014.08.057
[28] N. Malekpoor, and M. Azadbeh, “Mechanical Milling of Aluminum Chips, 3000 and 5000 series.” Metallurgical Engineering, vol. 20(4), pp. 270-282, 2017. DOI: 10.22076/ME.2018.49941.1099
[29] م. آزادبه, ع. صباحی نمین, ا. محمدزاده, ح. شفیعی, "بررسی تاثیر تفجوشی در فاز مایع بر چگالش و ریزساختار آلیاژ Cu-xZn " فصلنامه علمی - پژوهشی مواد نوین, دوره 4، شماره 12، مرداد 1392، صفحه 37-50.
[30] M. Mousapour, M. Azadbeh, and H. Danninger, “Effect of compacting pressure on shape retention during supersolidus liquid phase sintering of Cu base alloys.” Powder Metallurgy, vol. 60(5), pp. 393-403, 2017. https://doi.org/10.1080/00325899.2017.1357781
[31] D.R. Gaskell, “Introduction to the Thermodynamics of Materials.” MRS BULLETIN, pp. 975, 2004. https://doi.org/10.1557/mrs2004.272
[32]https://www.google.com/search?client=firefoxbd&sca_esv=3cf5305f7235dc23&sxsrf=ADLYWIIAtPRqshE6MdjbyJw4Vgy-6IWlmA:1715971521915&q=hardness+of+(Fe,+Mn)Al+6&spell=1&sa=X&ved=2ahUKEwiwkYiIrJWGAxWngf0HHT6cDywQBSgAegQIChAB&biw=1366&bih=607&dpr=1