تولید لولههای کامپوزیتی Cu-Al2O3 به روش الکتروفرمینگ و بررسی تأثیر ذرات آلومینا بر مقاومت به خوردگی لولهها
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمحمد حسین پایدار 1 , محمدرضا نوریان 2
1 - هیات علمی دانشگاه شیراز
2 - بخش مهندسی مواد، دانشگاه شیراز
کلید واژه: مقاومت به خوردگی, ذرات آلومینا, الکتروفرمینگ, لوله, کامپوزیت Cu-Al2O3,
چکیده مقاله :
در این پژوهش با استفاده از روش الکتروفرمینگ و با کمک یک میله چرخان از جنس فولاد ضد زنگ به عنوان کاتد و آلیاژ مس فسفر به عنوان آند، لوله های کامپوزیتی Cu-Al2O3 تولید شدند. در ادامه با استفاده از تصاویر میکروسکوپ الکترونی (SEM)، الگوی پراش اشعه X و آزمونهای خوردگی، به ترتیب میکروساختار، مورفولوژی سطحی، تأثیر افزودنیها بر فرآیند و مقاومت به خوردگی لولههای کامپوزیتی تولیدی بررسی شد. الگوی پراش اشعه X حضور ذرات آلومینا در زمینه مس و عدم واکنش آنها با یکدیگر را به اثبات رساند. با توجه به تصاویر SEM، نشان داده شد که میزان حضور ذرات آلومینا در زمینه مس تابعی از غلظت آن در حمام الکتروفرمینگ است و در غلظت 15 گرم بر لیتر، در شرایط این تحقیق، بیشترین مقدار حضور در زمینه مس را دارد. نتایج آزمون پلاریزاسیون پتانسیودینامیک تافل که در محلول 5/3 درصد وزنی سدیم کلراید انجام شد، نشان داد که با افزایش میزان پودر آلومینا در ساختار لولهها، پتانسیل خوردگی به سمت مقادیر مثبت میل کرده، چگالی جریان خوردگی مقادیر منفیتری را به خود اختصاص داده و همچنین نرخ خوردگی کمتر می شود. همچنین نتایج آزمون طیف سنج امپدانس الکتروشیمیایی، افزایش مقاومت به خوردگی به واسطه حضور ذرات آلومینا در ساختار را نشان داد.
In this research, Cu-Al2O3 composite tubes were fabricated by electroforming method using a rotating stainless steel rod as cathode and Cu-P alloy as anode. The microstructure, surface morphology, and the effect of alumina second phases on corrosion resistance of the fabricated tubes were investigated by the means of SEM images, X-ray diffraction, and corrosion tests, respectively. X-ray diffraction pattern proved the existence of alumina particles in the copper matrix of the fabricated tubes and also proved that no chemical reaction occurred between these two phases. SEM images indicated that the amount of alumina particles in the copper matrix is a function of its concentration in the electroforming bath, so that it would be maximum when 15 g alumina per liter was used, in the condition of the present study. The results of potentiodynamic polarization test carried out in 3.5 wt. % NaCl solution illustrated that corrosion potential and corrosion current density changed to positive and negative values, respectively, and corrosion rate decrease at all by increasing the amount of alumina particles in copper matrix of the tubes. Electrochemical impedance analysis also proved that corrosion resistance increase due to the presence of alumina in copper matrix.
[1] S. Lampman, "ASM Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials", Materials Park (OH): ASM International, 1990.
[2] J. Zhu, L. Liu, H. Zhao, B. Shen, and W. Hu, "Microstructure and performance of electroformed Cu/nano-SiC composite", Materials & design, vol. 28, no. 6, pp. 1958-1962, 2007.
[3] J. Zhu, L. Liu, G. Hu, B. Shen, W. Hu, and W. Ding, "Study on composite electroforming of Cu/SiCp composites", Materials Letters, vol. 58, no. 10, pp. 1634-1637, 2004.
[4] W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction. John wiley & sons New York, 2007.
[5] I. Ibrahim, F. Mohamed, and E. Lavernia, "Particulate reinforced metal matrix composites—a review", Journal of materials science, vol. 26, no. 5, pp. 1137-1156, 1991.
[6] A. Macke, B. Schultz, and P. Rohatgi, "Metal matrix composites", Adv. Mater. Processes, vol. 170, no. 3, pp. 19-23, 2012.
[7] D. B. Miracle et al., ASM handbook. ASM international Materials Park, OH, 2001.
[8] K. U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering. Wiley-VCH, 2006.
[9] L. Hihara and R. Latanision, "Corrosion of metal matrix composites", International Materials Reviews, vol. 39, no. 6, pp. 245-264, 1994.
[10] H. H. Lou and Y. Huang, "Electroplating", Encyclopedia of Chemical Processing. Taylor and Francis, pp. 839-848, 2007.
[11] J. McGeough, M. Leu, K. P. Rajurkar, A. De Silva, and Q. Liu, "Electroforming process and application to micro/macro manufacturing", CIRP Annals, vol. 50, no. 2, pp. 499-514, 2001.
[12] D. A. Kreckel, "Process for electroforming nickel foils", ed: Google Patents, 1976.
[13] J. Zhu, L. Liu, B. Shen, and W. Hu, "Mechanical properties of Cu/SiCp composites fabricated by composite electroforming", Materials letters, vol. 61, no. 13, pp. 2804-2809, 2007.
[14] J. Zhu, H. Liu, L. Liu, H. Zhao, B. Shen, and W. Hu, "Preparation and characterisation of electroformed Cu/nano Al2O3 composite", Materials science and technology, vol. 23, no. 6, pp. 665-670, 2007.
[15] ف. فیروزفر، "تولید کامپوزیت سه جزئی Ni/C/SiC به روش الکتروفرمینگ و بررسی خواص مکانیکی و رفتار خوردگی آن"، کارشناسی ارشد، مهندسی مواد، دانشگاه شیراز، واحد بین الملل، 1389.
[16] ع. جهانبین، "تولید کامپوزیت Cu/SiCp به روش الکتروفرمینگ و بررسی خواص مکانیکی و رفتار خوردگی"، پایان نامه کارشناسی ارشد، بخش مهندسی مواد - دانشکده مهندسی، دانشگاه شیراز، 1397.
[17] Y. Zhou, H. Zhang, and B. Qian, "Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating", Applied surface science, vol. 253, no. 20, pp. 8335-8339, 2007.
[18] C. D. A. Inc., Copper Tube Handbook, Industry Standard Guide for the Design and Installation of Copper Piping Systems, New York, 2019.
[19] S. R. Allahkaram, S. Golroh, and M. Mohammadalipour, "Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating", Materials & Design, vol. 32, no. 8-9, pp. 4478-4484, 2011.
[20] C. Loto and R. Loto, "Effect of dextrin and thiourea additives on the zinc electroplated mild steel in acid chloride solution", Int. J. Electrochem. Sci., vol. 8, pp. 12434-12450, 2013 .
[21] ص. کفاش یزدی و م. ا. بحرالعلوم، "بررسی تاثیر دانسیته جریان و غلظت مواد افزودنی بر خواص پوشش نانو ساختار روی تولید شده به روش آبکاری الکتریکی"، مواد نوین، جلد 3، شماره 1، صفحه 33-23، 1391.
[22] H. Zhao, L. Liu, Y. Wu, and W. Hu, "Investigation on wear and corrosion behavior of Cu–graphite composites prepared by electroforming", Composites Science and Technology, vol. 67, no. 6, pp. 1210-1217, 2007.
[23] Lasia, A. (2002). Electrochemical impedance spectroscopy and its applications. In Modern aspects of electrochemistry (pp. 143-248): Springer.
[24] G. Cicileo, B. Rosales, F. Varela, and J. Vilche, "Comparative study of organic inhibitors of coppercorrosion", Corrosion Science, vol. 41, no. 7, pp. 1359-1375, 1999.
_||_