سنتز نانوذرات هیدروکسی آپاتیت متخلخل به روش سل-ژل با استفاده از پلیمرهای آلی مختلف
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینفاطمه زارع دهنو 1 , راضیه حیاتی 2 * , فاطمه حیدری 3
1 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه یاسوج، یاسوج، ایران
2 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه یاسوج
3 - گروه مهندسی مواد، دانشگاه یاسوج، یاسوج، ایران
کلید واژه: سل-ژل, هیدروکسی آپاتیت, نانو ذرات متخلخل, ژلاتین, کیتوزان,
چکیده مقاله :
در سالهای اخیر استفاده از نانو ذرات متخلخل هیدروکسی آپاتیت بـه علـت خـواص برتـر آنهـا،
کاربرد وسیعی در رهایش دارو و مهندسی بافت استخوان پیدا کردهاند. در این مطالعه، با استفاده از پلیمرهای ژلاتین،کیتوزان مصنوعی و کیتوزان طبیعی پوست میگو،نانوذرات متخلخل هیدروکسی آپاتیتبه روش سل ژل تهیه و زیست فعالی آنها بررسی شد. شناسایی فازی و ریزساختاری با آنالیزهای پراش پرتو ایکس (XRD) و میکروسکوپهای الکترونی روبشی (SEM) و گسیل میدان (FE-SEM) انجام شد. اندازه گیری سطح ویژه و توزیع تخلخلها توسط آنالیز BET انجام گردید و دادهها بر اساس نمودارهای BJH و ایزوترمهای جذب/واجذب گزارش شد. زیست فعالی نمونههای تف جوشی شده با غوطهوری آنها در محلول شبیهسازی شده بدن به مدت 28 روز در دمای ◦C37 ارزیابی شد. طبق نتایج میکروسکوپ الکترونی گسیل میدان، پودرهای سنتز شده بصورت آگلومرههایی با ذرات نانومتری در محدوده nm 25-10بودند. نتایج نشان داد این نانو ذرات عمدتاً بصورت مزوحفره بوده و نمونه هیدروکسی آپاتیت سنتز شده با ژلاتین در مقایسه با نمونههای سنتز شده با استفاده از کیتوزان طبیعی و مصنوعی اندازه ذرات کوچکتر و همچنین تخلخلهای ریزتر و یکنواختتر داشت و بعد از غوطهوری نمونهها در محلولSBFبلورهای آپاتیت بیشتر و یکنواختتری نسبت به نمونههای دیگر روی سطح آن نشسته بود.
Due to superior properties, in recent years porous nano particles of hydroxyapatite are widely used in drug delivery and bone tissue engineering. In this study, porous nanoparticles of hydroxyapatite were synthesized via sol gel method by using organic polymers of gelatin, synthetic chitosan and the natural chitosan from shrimp shell. Structural and microstructural analyses were performed with X-ray diffraction (XRD) and scanning electron microscopy (SEM & FESEM). The surface area and pore size distribution were measured with BET method and the results were reported from the BJH and adsorption/desorption plots. The bioactivity of the samples was evaluated by immersing the samples in SBF solution. The FE-SEM results showed that the synthesized hydroxyapatite nano powders were agglomerates with the average particle size of 10-25 nm. BET results showed that hydroxyapatite nano particles were mainly mesoporous and gelatin addition resulted in finer particles and smaller pores with a narrow size distribution. Additionally, after immersing the samples in SBF solution, the weight differences and the SEM images showed that the hydroxyapatite samples which were synthesized by adding gelatin had higher bioactivity and more uniform apatite powders were deposited on this sample.
1- I. Armentano., et al., "Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability", Vol. 95, pp. 2126-2146, 2010.
2- Szcześ, A., L. Hołysz, and E. Chibowski, "Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science", Vol. 249, pp. 321-330, 2017.
3- مهدیه مظفری، نرگس جوهری، محمدحسین فتحی، "داربست کامپوزیتی پلی کاپرولاکتون - هیدروکسی آپاتیت: بررسی تاثیر درصد ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آن ها بر خواص مکانیکی و زیست تخریب پذیری داربست"، مجله مواد نوین، جلد3، شماره4، ص132، تابستان1394.
4-M. Vallet‐Regí, F. Balas, and D. Arcos, "Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition", Vol. 46(40), pp. 7548-7558, 2007.
5- Z. Namazi, et al",. Facile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System. Iranian Journal of Pharmaceutical Research", Vol. 18(3), pp. 1196-1211, 2019.
6- N. F. Mohammad, R. Othman, and F.Y. Yeoh, "Controlling the pore characteristics of mesoporous apatite materials: Hydroxyapatite and carbonate apatite. Ceramics International", Vol. 41(9, Part A), pp. 10624-10633, 2015.
7- J. Rojas-Trigos, et al., "Sol-Gel Synthesis of Calcium-Deficient Hydroxyapatite: Influence of the pH Behavior during Synthesis on theStructural, Chemical Composition and Physical Properties, in powder technology", 2018.
8- S. Safi, F. Karimzadeh, and S. Labbaf, "Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen. Materials Science and Engineering", Vol. 92, pp. 712-719, 2018.
9- C.-H. Ooi, et al., "Mesoporous hydroxyapatite derived from surfactant-templating system for p-Cresol adsorption: Physicochemical properties, formation process and adsorption performance. Powder Technology", Vol. 342, pp. 725-734, 2019.
10- J. Kamieniak, et al., "Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template. Ceramics International", Vol. 43(7), pp. 5412-5416, 2017.
11- W. P. S. L. Wijesinghe, et al., "Preparation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. New Journal of Chemistry", Vol. 42(12), pp. 10271-10278, 2018.
12- A. Huang, et al., "Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. Journal of Materials Research and Technology", Vol. 8(3), pp. 3158-3166, 2019.
13- J. Anita Lett, et al., "Tailoring the morphological features of sol–gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Advances", Vol. 9(11), pp. 6228-6240, 2019.
14- نازنین معروف، فاطمه کریم آقالو، الهه وحید دست رنجی، حمید نظریان، هانیه نوجه دهیان، " بررسی خواص فیزیک و شیمیایی داربست کامپوزیتی کیتوسان-ژلاتین-هیدروکسی آپاتیت تهیه شده به روش خشکاندن انجمادی"، مجله دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی، دوره 29 ،ویژهنامه، ص393-385، زمستان 1390.
15- F. Croisier, and C. Jérôme, "Chitosan-based biomaterials for tissue engineering. European Polymer Journal", Vol. 49(4), pp. 780-792, 2013.
16- N.-C. Cheng, et al., "Genipin-Crosslinked Cartilage-Derived Matrix as a Scaffold for Human Adipose-Derived Stem Cell Chondrogenesis. Tissue engineering. Part A", Vol. 19(3-4), pp. 484–496, 2012.
17- بازرگان لاری, ر.، "تهیه کایتوسن از پوست میگو جهت جذب یون های فلزات سنگین از محلول های آبی توسط کایتوسن و هیدرکسی آپاتیت"، پایان نامه دکترا، دانشگاه شیراز، شیراز، 1390.
18- M. Tavangar, et al., "Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds. Ceramics International", Vol. 46(7), pp. 9086-9095, 2020.
19- T. Kokubo, et al., "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res", Vol. 24(6), pp. 721-34, 1990.
20- Reporting Physisorption Data for Gas/Solid Systems, in Handbook of Heterogeneous Catalysis. p. 1217-1230.
21- A. Ruksudjarit, et al.,"Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Current Applied Physics", Vol. 8(3), pp. 270-272, 2008.
22- T. Kokubo, and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity? Biomaterials", Vol. 27(15), pp. 2907-2915, 2006.
23- محمد رضا فروغی، مرتضی صادقی، محسن رادمهر، سعیدکرباسی، علی اصغربهنام قادر، عباس سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانوکریستال هیدروکسی آپاتیت / پلی هیدروکسی بوتیرات برای کاربرد در مهندسی بافت استخوان"، فصلنامه فرآیندهای نوین در مهندسی مواد، سال ششم، شماره اول، ص21-17، بهار 1391.
24- F . Mohandes, and M. Salavati-Niasari, "Influence of morphology on the in vitro bioactivity of hydroxyapatite nanostructures prepared by precipitation method. New J. Chem", Vol. 38, 2014.
_||_