تولید داربست هیدروکسیآپاتیت - اسید هیالورونیک به روش تبخیر حلال
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینآرش یزدانی 1 * , ارمغان نوربخش 2
1 - دانشگاه صنعتی شاهرود، دانشکده مهندسی شیمی و مواد
2 - دانشگاه صنعتی شاهرود، دانشکده مهندسی شیمی و مواد
کلید واژه: داربست, هیالورونیک اسید, پلیونیلالکل, هیدروکسیآپاتیت, تبخیر حلال,
چکیده مقاله :
هدف از این مطالعه بررسی تأثیر همزمان پلیمرهای اسید هیالورونیک (HA)، پلی وینیل الکل (PVA)، ژلاتین (Gel) و نانوهیدروکسیآپاتیت (nHAp)که مینرالی استخوانی است. در این پژوهش برای اولین بار با روش تبخیر حلال ساده، داربست استخوانی nHAp و پلیمرهای زیستتخریبپذیر HA، PVA و Gel ایجاد شد. نمونههای کامپوزیتی دوجزئی PVA - nHAp، کامپوزیتهای سهجزئی Gel – PVA - nHAp و HA – PVA – nHAp و همچنین کامپوزیت چهار جزئی Gel – HA – PVA – nHAp با استفاده از فرایند تبخیر حلال ساده تهیه شد. بررسیهای فازی و شیمیایی داربست بهوسیله آزمونهای FTIR و XRD انجام شد. توزیع و اندازه تخلخلها و چگونگی ارتباط آنها به یکدیگر و همچنین ناهمواریهای سطح تخلخلها با استفاده از میکروسکوپ الکترونی روبشی SEM مطالعه گردید. همچنین آزمون استحکام فشاری ضربهای بر روی قرصهای تهیهشده از این کامپوزیت انجام شد. آزمون FTIR تشکیل ترکیب شیمیایی جدیدی را نشان نداد. بالاترین استحکام فشاری ضربهای مربوط به نمونهی چهار جزئی بود. بررسی آنالیز SEM تشکیل داربست برای نمونهی چهار جزئی که اندازهی تخلخلها را نشان داد، آنالیز XRD آمورف بودن نمونهها را نشان میدهد و با توجه به شباهت نمودار XRD استخوان طبیعی، همچنین اندازه تخلخلها و ذات روش تولید که منجر به تخلخلهای متصل به هم میشود، میتوان از این کامپوزیت بهعنوان پرکننده استخوان استفاده کرد.
The purpose of this study was to evaluate the simultaneous effect of Hyaluronic acid (HA) - Polyvinyl alcohol (PVA) - Gelatin (Gel), and nano Hydroxyapatite (nHAp), which is mineral in bone. In this study, for the first time, bone scaffold of nHAp and bioresorbable polymers (HA, PVA, and Gel) was prepared by solvent evaporation method. The composite specimens were prepared using nHAp-PVA, nHAp-PVA-Gel and nHAp-PVA-HA, four-component nHAp-PVA-HA-Gel, using a simple liquidation process. Phase and chemical analysis were investigated by FTIR and XRD tests. The distribution and porosity size and their relationship to each other as well as the roughness of porosity were studied using scanning electron microscopy. The compressive strength test was also performed on tablets prepared from this composite. The FTIR test did not indicate the formation of a new chemical compound. The compressive strength indicated that the four minor sample had the highest numerical value. Investigating the SEM analysis of the formation of scaffolds for a four-part sample, which shows porosity percentage, porosity size and bonding, suggest the suitability of this sample for tissue engineering applications. The analysis of the XRD is an amorphous specimen and, given the similarity of the natural bone XRD diagram, this composite can be used as a bone filler.
References:
[1] E. Kon et al., “Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical‐size defects of sheep long bones,” J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater., vol. 49, no. 3, pp. 328–337, 2000.
[2] حیدری, “ساخت و مقایسه دار بست های هیدروکسی آپاتیت طبیعی و مصنوعی ساخته شده به روش فشار ایزواستاتیک سرد,” فصلنامه علمی-پژوهشی مواد نوین, vol. 9, no. 33, pp. 113–124, 2018.
[3] م. مظفری, ن. جوهری, and م. ح. فتحی, “داربست کامپوزیتی پلیکاپرولاکتون-هیدروکسی آپاتیت: بررسی تاثیر درصد ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آنها بر خواص مکانیکی و زیستتخریبپذیری داربست,” فصلنامه علمی-پژوهشی مواد نوین, vol. 5, no. 20, pp. 131–142, 2015.
[4] J. C. Doadrio, D. Arcos, M. V Cabanas, and M. Vallet-Regı, “Calcium sulphate-based cements containing cephalexin,” Biomaterials, vol. 25, no. 13, pp. 2629–2635, 2004.
[5] N. J. Kaljahi, B. Ghanbarzadeh, J. Dehghannya, and A. Akbar, “Plasticized Starch Based Bionanocomposites
Containing Cellulose Nanowhiskers and Titanium Dioxide Nanoparticles: Study of Structure and Water Vapor Permeability,” Sci. Technol., vol. 27, no. 3, pp. 179–192, 2014.
[6] Y. Pan and D. Xiong, “Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial,” J. Mater. Sci. Mater. Med., vol. 20, no. 6, pp. 1291–1297, 2009.
[7] G. Kogan, L. Šoltés, R. Stern, and P. Gemeiner, “Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications,” Biotechnol. Lett., vol. 29, no. 1, pp. 17–25, 2007.
[8] D. Bakoš, M. Soldan, and I. Hernandez-Fuentes, “Hydroxyapatite–collagen–hyaluronic acid composite,” Biomaterials, vol. 20, no. 2, pp. 191–195, 1999.
[9] F. Wang, E. Guo, E. Song, P. Zhao, and J. Liu, “Structure and properties of bone-like-nanohydroxyapatite/gelatin/polyvinyl alcohol composites,” Adv. Biosci. Biotechnol., vol. 1, no. 03, p. 185, 2010.
[10] S. Subramaniam, Y.-H. Fang, S. Sivasubramanian, F.-H. Lin, and C. Lin, “Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration,” Biomaterials, vol. 74, pp. 99–108, 2016.
[11] معروف et al., “بررسی خواص فیزیکوشیمیایی داربست کامپوزیتی کیتوسان-ژلاتین-هیدروکسی آپاتیت تهیه شده به روش خشکاندن انجمادی,” مجله دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی, vol. 29, no. 5, pp. 390–398, 2012.
_||_