بررسی اثر زمان سنتز همرسوبی ماده کاتدی LiNi0.8Co0.15Al0.05O2 و ارزیابی ساختاری و الکتروشیمیایی آن در باتری لیتیوم-یون
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینسحر زیرکی 1 , بابک هاشمی 2 , کمال جانقربان 3 , محسن بابایی 4 , رحیم اقراء 5
1 - دانشجو دکتری رشته مهندسی مواد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران
2 - استاد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران
3 - استاد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران
4 - دکترا، رئیس گروه ذخیرهسازهای انرژی، پژوهشکده مکانیک- پژوهشگاه فضایی ایران
5 - دانشیار، رئیس پژوهشکده مکانیک- پژوهشگاه فضایی ایران
کلید واژه: الکتروشیمیایی, باتری لیتیوم-یون, LiNi0.8Co0.15Al0.05O2, همرسوبی,
چکیده مقاله :
مقدمه: باتری لیتیوم-یون شامل اجزای مختلفی میباشد که در این میان کاتد جزء مهم و مؤثری در کارایی آن میباشد. تاکنون ترکیبات مختلفی بهعنوان کاتد در باتریهای لیتیوم-یون مورد استفاده قرار گرفتهاند که از میان آنها ترکیب NCA (LiNi0.8Co0.15Al0.05O2) توجه زیادی را به دلیل ظرفیت ویژه بالا و حفظ آن به خود جلب کرده است. البته ظرفیت برگشتپذیر کاربردی خیلی کمتر از مقدار تئوری میباشد که از عوامل آن در کاهش ظرفیت میتوان به مهاجرت کاتیون نیکل به لایه لیتیومی (ترکیب کاتیونی) و تخریب ساختار لایهای NCA اشاره کرد. با توجه به این مسئله سنتز مناسب این ساختار میتواند به افزایش ظرفیت و طول عمر باتری کمک کند.
روش: در این پژوهش پیش ماده Ni0.8Co0.15Al0.05(OH)2 با روش همرسوبی با استفاده از آمونیاک به عنوان کمپلکس دهنده برای کنترل واکنش در شرایط دمایC ˚60 و pH=12 تولید شد و سپس به روش حالت جامد و عملیات حرارتی کلسینه و تفجوشی به ترتیب در دمای 550 و ˚C800 تحت اتمسفر اکسیژن ماده کاتدی NCA سنتز گردید. برای مقایسه، سنتز پیش ماده Ni0.8Co0.15(OH)2 و سپس افزودن هیدروکسید آلومینیوم به روش حالت جامد نیز انجام شد. اثر نحوه سنتز و زمان سنتز بر نتایج الکتروشیمیایی مورد بررسی قرار گرفت
یافتهها: در نمونه با مدت زمان سنتز همرسوبی 4 روز و سپس دو مرحله تفجوشی، پیکهای آندی و کاتدی در نمودار ولتامتری سیکلی به خوبی تشکیل شدند. ظرفیت و برگشت پذیری ظرفیت بهتر و همچنین مقاومت کمتر و ضریب نفوذ لیتیوم بیشتری به دست آمد.
نتیجهگیری: نتایج نشان دادند که استفاده از آمونیاک به عنوان عامل کمپلکس در سنتز همرسوبی برای یون آلومینیوم مناسب است. همچنین افزایش زمان سنتز همرسوبی به کامل شدن ساختار لایه ای و در نتیجه افزایش ظرفیت کمک میکند. انجام دو مرحله عملیات حرارتی تفجوشی نیز در کاهش ترکیب کاتیونی و افزایش ظرفیت اثرگذار است.
Introduction: Cathode is an important component in the performance of Li-ion batteries. Various compounds have been used as cathodes in Li-ion batteries, among which NCA (LiNi0.8Co0.15Al0.05O2) has attracted a lot of attention due to its high specific capacity and capacity retention. However, the applied reversible capacity is lower than the theoretical value, which is because of the migration of Ni cation to the Li layer (cation mixing). Therefore, proper synthesis of this structure can help to increase the capacity and battery lifetime
Methods: In this research, the precursor of Ni0.8Co0.15Al0.05(OH)2 were synthesized by co-precipitation method using ammonia as complexing agent at the temperature and pH of 60˚C and 12 and then NCA cathode powder was obtained by solid state method and calcination and sintering at 550 and 800˚C respectively, under oxygen atmosphere. For comparison, the synthesis of Ni0.8Co0.15(OH)2 and then addition of aluminum hydroxide by solid state method was done. The effects of synthesis method and time were studied.
Findings: Results showed that in the sample with a synthesis time of 4 days and then 2 sintering stages, anodic and cathodic peaks in cyclic voltammetry can be seen clearly. Besides, better capacity and capacity retention, lower charge resistance, and higher Li diffusion were achieved.
Conclusion: Results indicate that ammonia as a complexing agent in co-precipitation synthesis is suitable for the Al ion. Moreover, increasing the synthesis time helps to have complete layered structures, which is followed by better capacity. Two times sintering is also effective in reducing the cation mixing.
[1] Q. Sa, “Synthesis and impurity study of high performance LiNixMnyCozO2 cathode materials from lithium ion battery recovery stream,” Worcester Polytechnic Institute, Massachusetts, 2015.
[2] D. Li, “Aging mechanisms of Li-ion batteries : seen from an experimental and simulation point of view,” Technische Universiteit Eindhoven, Eindhoven, 2017.
[3] M. Lengyel, “Optimization of layered battery cathode materials synthesized via spray pyrolysis,” Washington University in St. Louis, 2014.
[4] I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications,” Renew. Sustain. Energy Rev., vol. 13, pp. 1513–1522, 2009, doi: 10.1016/j.rser.2008.09.028.
[5] W. A. van Schalkwijk and B. Scrosati, Advances in lithium-ion batteries. New York: Kluwer Academic Publishers, 2002.
[6] M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries: science and technologies. New York: Springer Science & Business Media, 2010.
[7] M. Nurullah, “High energy density cathode active materials for lithium-ion batteries,” Northeastern University, 2015.
[8] C. Liu, Z. G. Neale, and G. Cao, “Understanding electrochemical potentials of cathode materials in rechargeable batteries,” Mater. Today, vol. 19, no. 2, pp. 109–123, 2016, doi: 10.1016/j.mattod.2015.10.009.
[9] J. D. Steiner, F. Lin, and A. Morris, “Understanding and controlling the degradation of nickel-rich lithium-ion layered cathodes,” Virginia Polytechnic Institute and State University, 2018.
[10] T. Q. Duong, “Progress report for energy storage research and development,” Washington, D.C., 2003.
[11] E. Flores, P. Novák, and E. J. Berg, “In situ and operando raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes,” Front. Energy Res., vol. 6, 2018, doi: 10.3389/fenrg.2018.00082.
[12] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, “Comparative issues of cathode materials for Li-ion batteries,” Inorganics, vol. 2, pp. 132–154, 2014, doi: 10.3390/inorganics2020132.
[13] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials : present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015, doi: 10.1016/j.mattod.2014.10.040.
[14] H. Koga, “Study of Li-rich lamellar oxides as positive electrode materials for lithium-ion batteries,” University of Bordeaux, 2014.
[15] A. Yerramilli, “Synthesis and characterization of lithium-ion cathode materials in the system (1-x-y) LiNi0.8Co0.15Al0.05O2.xLi2MnO3.yLiCoO2,” Colorado State University, 2013.
[16] J. Xu, S. Dou, H. Liu, and L. Dai, “Cathode materials for next generation lithium ion batteries,” Nano Energy, vol. 2, no. 4, pp. 439–442, 2013, doi: 10.1016/j.nanoen.2013.05.013.
[17] A. Rougier, I. Saadoune, P. Gravereau, F. Willmannb, and C. Delmas, “Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials,” Solid State Ionics, vol. 90, pp. 83–90, 1996, .https://www.semanticscholar.org/paper/Effect-of-cobalt-substitution-on-cationic-in-LiNi1-Rougier-Saadoune/3b125b7a58cab5716c2e11134f274e00de4aa7eb
[18] T. Ohzuku, A. Ueda, and M. Kouguchi, “Synthesis and characterization of LiAI1/4Ni3/4O2 (R3m) for lithium-ion (shuttlecock) batteries,” J. Electrochem. Soc., vol. 142, no. 12, pp. 4033–4039, 1995.
[19] A. Abdellahi, A. Urban, S. Dacek, and G. Ceder, “The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides,” Chem. Mater., vol. 28, p. 3659−3665, 2016, doi: 10.1021/acs.chemmater.6b00205.
[20] D. Qian, B. Xu, and K. Carroll, “Performance improvement of lithium lanthanum titanate (LLT) coated LiNi0.8Co0.15Al0.05O2 A combination of first-principles calculations and experimental studies,” Electrochem. Soc., no. 12, pp. 627–627, 2011.
[21] J. S. Weaving et al., “Development of high energy density Li-ion batteries based on,” J. Power Sources, vol. 98, pp. 733–735, 2001, doi: https://doi.org/10.1016/S0378-7753(01)00700-5. https://arxiv.org/pdf/1804.08451
[22] N. M. Trease et al., “Identifying the distribution of Al in LiNiCoAlO,” Chem. Mater, vol. 28, no. 22, pp. 8170–8180, 2016, doi: 10.1021/acs.chemmater.6b02797.
[23] J. S. Weaving et al., “Development of high energy density Li-ion batteries based on,” J. Power Sources, vol. 98, pp. 733–735, 2001, doi: https://doi.org/10.1016/S0378-7753(01)00700-5.
[24] W. Min, G. Rong, Z. Dong, K. Du, Y. Bing, and Q. Liu, “Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method,” Chinese Chem. Lett., vol. 22, pp. 1099–1102, 2011, doi: 10.1016/j.cclet.2011.01.041.
[25] M. W.-M. S. Albrecht, J.Ku¨mpersb, M. Krufta, S. Malcusa, C. Voglerc, M. Wahlb and AH.C., “Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1_x(Ni1_y_zCoyMz)O2 (M = Al, Mg),” J. Power Sources, vol. 121, pp. 178–183, 2003, doi: 10.1016/S0378-7753(03)00175-7.
[26] S. Madhavi, G. V. S. Rao, B. V. R. Chowdari, and S. F. Y. Li, “Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2,” J. Power Sources, vol. 93, pp. 156–162, 2001, doi: https://doi.org/10.1016/S0378-7753(00)00559-0.
[27] Y. Chen et al., “Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries,” RSC Adv., vol. 3, pp. 29233–29239, 2017, doi: 10.1039/C7RA04206J.
[28] Z. Qiu, Y. Zhang, P. Dong, S. Xia, and Y. Yao, “A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material,” Solid State Ionics, vol. 307, pp. 73–78, 2017, doi: 10.1016/j.ssi.2017.04.011.
[29] M. T. Tung and V. D. Luong, “Electrochemical properties of LiNi0.8Co0.1Mn0.1O2 synthesized by sol-gel and co-precipitation methods,” Vietnam J. Chem., vol. 54, no. 6, pp. 724–729, 2016, doi: 10.15625/0866-7144.2016-00394.
[30] M. Lee, Y. Kang, S. Myung, and Y. Sun, “Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation,” Electrochim. Acta, vol. 50, pp. 939–948, 2004, doi: 10.1016/j.electacta.2004.07.038.
[31] A. Purwanto, C. S. Yudha, U. Ubaidillah, H. Widiyandari, and T. Ogi, “NCA cathode material : synthesis methods and performance enhancement efforts,” Mater. Res. Express, vol. 5, no. 12, pp. 122001–122023, 2018, doi: 10.1088/2053-1591/aae167.
[32] Y. Kim and D. Kim, “Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method,” Appl. Mater. Interfaces, vol. 4, p. 586−589, 2012, doi:https://doi.org/10.1021/am201585z. https://www.semanticscholar.org/paper/Synthesis-of-high-density-nickel-cobalt-aluminum-by-Kim-Kim/3a83040c477017bc965c77f8cbff950004c789b7
[33] H. Z. Zhang, C. Liu, D. W. Song, L. Q. Zhang, L. J. Bie, and To, “A new synthesis strategy towards enhancing the structure and cycle stabilities of LiNi0.80Co0.15Al0.05O2 cathode material,” J. Mater. Chem. A, vol. 5, no. 2, pp. 835–841, 2017, doi: 10.1039/C6TA08084G.
[34] K.-M. Nam, H.-J. Kim, D.-H. Kang, Y.-S. Kim, and S.-W. Song, “Ammonia-free coprecipitation synthesis of Ni-Co-Mn hydroxides precursor for high-performance battery cathode materials,” Green Chem., vol. 17, no. 2, pp. 1127–1135, 2015, doi: 10.1039/C4GC01898B.
[35] A. Van Bommel and J. R. Dahn, “Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia,” Chem. Mater., vol. 21, no. 8, pp. 1500–1503, 2009, doi: https://doi.org/10.1021/cm803144d.https://www.semanticscholar.org/paper/Analysis-of-the-Growth-Mechanism-of-Coprecipitated-Bommel-Dahn/df00753bab912b2bf0bd39b04f66b386af50d181
[36] H. Xie et al., “Synthesis of LiNi0.8Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties,” J. Mater. Chem. A, vol. 3, no. 2015, pp. 20236–20243, 2015, doi: 10.1039/C5TA05266A.
[37] J. A. Dean, Lange’s handbook of chemistry, Fifteenth. New York: McGRAW-HILL, 1999.
[38] A. D. Fortes, J. P. Brodholt, I. G. Wood, L. Vočadlo, and H. D. B. Jenkins, “Ab initio simulation of ammonia monohydrate (NH3·H2O) and ammonium hydroxide (NH4OH),” J. Chem. Phys., vol. 115, no. 15, pp. 7006–7014, 2001, doi: 10.1063/1.1398104.
[39] V. Bianchi et al., “Electrochemical investigation of the Li insertion – extraction reaction as a function of lithium deficiency in Li1−xNi1+xO2,” Electrochim. Acta, vol. 46, pp. 999–1011, 2001, doi: https://doi.org/10.1016/S0013-4686(00)00681-2.
[40] S. Sivaprakash, S. B. Majumder, S. Nieto, and R. S. Katiyar, “Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries,” J. Power Sources, vol. 170, pp. 433–440, 2007, doi: 10.1016/j.jpowsour.2007.04.029.
[41] M. M. Loghavi, H. Mohammadi-Manesh, and R. Eqra, “Y2O3-decorated LiNi0.8Co0.15Al0.05O2 cathode material with improved electrochemical performance for lithium-ion batteries,” J. Electroanal. Chem., vol. 848, p. 113326, 2019, doi: doi: 10.1016/j.jelechem.2019.113326.
[42] M. A. Omodifard, B. Hashemi, and M. Babaiee, “Effect of neodymium and yttrium oxides on the structural and electrochemical properties of LiFePO4/C composite as cathode of lithium ion batteries synthesized by solid state method,” J. New Mater., vol. 11, no. 42, pp. 107–122, 2021.
[43] D. Y. Wan et al., “Effect of Metal (Mn ,Ti) Doping on NCA cathode materials for lithium ion batteries,” J. Nanomater., 2018, doi: 10.1155/2018/8082502.
[44] M. M. Loghavi, R. Eqra, and H. Mohammadi-manesh, “Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0.05O2 composite for the cathode of lithium-ion battery,” J. Electroanal. Chem., vol. 862, p. 113971, 2020, doi: 10.1016/j.jelechem.2020.113971.
[45] C. Xu et al., “A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode,” J. Alloy. Compd., no. 2018, pp. 428–435, 2018, doi: 10.1016/j.jallcom.2017.12.193.
[46] C. S. Yudha, S. U. Muzayanha, H. Widiyandari, F. Iskandar, W. Sutopo, and A. Purwanto, “Synthesis of LiNi0.85Co0.14Al0.01O2 cathode material and its performance in an NCA/graphite full-battery,” Energies, vol. 12, p. 1886, 2019, doi: doi:10.3390/en12101886.
[47] K. He, Z. Ruan, X. Teng, and Y. Zhu, “Facile synthesis and electrochemical properties of spherical LiNi0.85-xCo0.15AlxO2 with sodium aluminate via co-precipitation,” Mater. Res. Bull., vol. 90, pp. 131–137, 2017, doi: 10.1016/j.materresbull.2017.01.039.