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A new voltammetric sensor for determination of uric acid (UA) by Cupper 
complex- multiwalled carbon nanotube (Cu-complex-CNT) nanocomposite modified 
carbon paste electrode (CPE) is reported. The electrocatalytic behavior of the 
Cu-complex-CNT nanocomposite modified CPE was studied in pH 2.0 phosphate 
buffer solution by chronoamperometry (CA) and cyclic voltammetry (CV) in the 
presence of uric acid. Due to the excellent electrocatalytic activity, enhanced 
electrical conductivity and high surface area of the Cu-complex-CNT, determination 
of uric acid with well-defined peaks was achieved at the Cu-complex-CNT modified 
electrode. The catalytic peak current obtained, was linearly dependent on the 
UA concentrations in the range of 0.66 – 350.0µM with sensitivity of 0.05 µA 
µM-1. The detection limits for UA were 0.075µM, The diffusion coefficient for the 
oxidation of UA at the modified electrode was calculated as (4.1±0.05) ×10−5 cm2 
s−1. The proposed sensor was successfully examined in real sample analysis with 
urine and human serum and revealed stable and reliable recovery data.
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INTRODUCTION
Uric acid (2,6,8-trihydroxypurine, UA), is main 

final products of the cellular metabolic breakdown 
of purine nucleotides, adenosine and guanosine 
in the human body [1]. Uric acid is an important 
analyze in clinical field and plays a significant role 
in bioelectrochemistry and clinical diagnostics ap-
plications. Normal UA serum levels range from 41 
to 88mgmL−1 and urinary excretion is usually 250–
750mg per day [2]. It has been shown that abnor-
mal concentration levels of UA in the human body 
could be caused by such diseases like Lesch–Nyan 
syndrome, chronic renal, gout, cardiovascular and 
kidney damage [3,4]. Hence, monitoring the con-
centration of UA in biological fluids may be used as 
an early warning of the presence of kidney diseases. 
There are many methods for the determination of 
UA, such as enzymic colorimetric [5], chemical [6], 
chemiluminescence [7], fluorescence [8], voltam-
metric–colorimetric [9], high-performance liquid 

chromatography (HPLC) [10,11], and enzymat-
ic–spectrophotometric [12]. These methods suffer 
from some disadvantages, such as the complex op-
erating process, expensive instruments and strict 
pre-disposal. In recent years electrochemical pro-
cedures because of their simplicity, less time con-
suming, ease of miniaturization, high sensitivity 
and relatively low cost as compared to other tech-
nique have been extensively investigated for the de-
termination of UA. In general, the electrochemical 
methods for monitoring UA could be classified as 
non-enzymatic and enzymatic methods.

Enzymatic methods include irreversibly oxidi-
zation of uric acid with uricase [13,14] to produce 
allantois and H2O2 [15] and then the determination 
of H2O2. But this technique is expensive and diffi-
cult. In order to overcome these difficulties, many 
efforts have been carried out for developing nov-
el materials used for modifying the electrode and 
various modified electrodes using nanoparticles 
[16,17], polymer film [18], metal oxide nanopar-
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ticles [19], ionic liquid [20] and carbon nano ma-
terials [21] have been constructed. In recent years, 
much attention has been given to the development 
of novel nanostructures, which are used for signal 
amplification in electrochemical sensors [22-29]. 
Nanomaterials are usually used to take advantage 
of a larger surface area for biomolecules to be im-
mobilized [30-39]. Carbon nanotubes (CNTs) have 
received enormous attention in the recent years due 
to their unique structural, mechanical, geometric 
and chemical properties. Because of high surface 
area and electronic properties of carbon nanotubes 
they used in construction of electrochemical sen-
sors [40,41] as a promote electron transfer. Also, 
the copper can be used for many applications in-
cluding buffer layer and contact for device fabrica-
tion, photocatalytic etc [42].

In this paper, we proposed for the first time the 
application of a modified CPE using MWCNTs 
and CU complex for determination of UA. Low 
detection limits and high sensitivity for UA was ob-
tained due to the high electrocatalytic properties of 
MWCNTs and Cu complex. We evaluated Analyti-
cal performance of this sensor for determination of 
UA by voltammetry. Finally, this sensor has been 
used for the determination of UA in urine and hu-
man serum as real sample. 

EXPERIMENTAL
Reagents and solutions

The UA was purchased from Sigma-Aldrich 
and used as received. The stock solution of UA 
solution (0.01 M) was prepared by dissolving ap-
propriate amount of UA in a small volume of .1 mol 
L−1 NaOH olution and diluted to reach desired con-
centration. The solution was kept in a refrigerator 
in the dark. More dilute solutions were prepared 
by serial dilution phosphate buffer solutions. Mul-
tiwall carbon nanotubes (MWCNT), with nano-
tube diameters, OD = 20–30 nm, wall thickness = 
1–2 nm, length = 0.5–2 m and purity of >95% was 
purchased from Aldrich. A series of buffer solution 
including H3PO4 were prepared and pHs were ad-
justed using NaOH (0.1 M) in the range from 1.0 to 
6.0. The other reagents used were analytical reagent 
grade and all solutions were prepared with double 
distilled deionized water. All the chemicals were 
used without further purification.

Apparatus
IR spectrum was recorded on a FT-IR JASCO 

680-PLUS spectrometer (20 spectra/sec, 16 cm-1 

resolution, MCT-W detector) using KBr pellets 
from 4000-400 cm-1. The surface morphology of 
the composites was analyzed with KYKY, EM 3200 
Scanning Electron Microscopy (SEM). Electro-
chemical measurements were performed with an 
SAMA500 Electroanalyser (SAMA Research Cen-
ter, Iran) controlled by a personal computer. The 
three-electrode cell system consisted of carbon 
past working electrode (modified or unmodified), 
a saturated calomel electrode (SCE) as reference 
electrode and a Pt wire electrode as the auxilia-
ry electrode. All the electrochemical experiments 
were carried out under a pure nitrogen atmosphere 
at room temperature. 

Synthesis of [Cu(Cip)(phen)](NO3).4H2O
A solution of 1,10-phenantroline (49.6 mg, 0.25 

mmol) was added to a suspension of sodium cip-
rofloxacinate (102.5 mg, 0.25 mmol). After 10 min 
of vigorous stirring, a solution of Cu(NO3)2.3H2O 
(60.5 mg, 0.25 mmol) was added. The solvent used 
to be a mixture of MeOH: H2O (1:1) and the final 
volume was 50 mL. The pH was adjusted to 7.84 
with 1 M NaOH. The solution was irradiated by 
sonochemical with the power of 60 W and tem-
perature 50 °C for 30 min. The obtained precipitates 
were filtered, subsequently washed with water and 
then dried. The elemental analysis and IR spectra of 
the nano-structure produced by the sonochemical 
method as well as the bulk material produced by 
literature [43]. Anal. Calc. for C29H33N6O10FCu: C, 
49.15%; H, 4.66%; N, 11.86%. Found: C, 48.67%, 
H, 4.73%; N, 11.79%, Cu, 8.81%. IR (KBr): ν(O–H 
and N–H) = 3600-2300 cm-1; ν(C=O) = 1730 cm-1; 
ν(C=N) = 1610 cm-1; ν(arC–C) = 1514 cm-1.

Fig. 1 shows a representative SEM image 
of [Cu(Cip)(phen)](NO3).4H2O nanoparticles. 
Sphere-like [Cu(Cip)(phen)](NO3).4H2O nanopar-
ticles with a size of ~50 nm were directly synthe-
sized by ultrasonic method. The SEM image shows 
that there are some small holes inside the product, 
which indicate that it can be used in catalysis.

Preparation of the modified electrode
Modified electrode was made by hand mixing of 

CU complex, graphite powder and MWCNT (1.0, 
89 and 10 percent respectively) with a mortar and 
pestle. Paraffin (Dc 350, Merck) was added to the 
above mixture using a 5mL syringe and mixed for 
20min until a uniformly wetted paste was obtained. 
The paste was then packed into the end of a glass 
tube (ca. 2mm i.d. and 10 cm long). Electrical con-
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tact was made by inserting a copper wire into the 
glass tube at the back of the mixture. When a new 
surface was necessary, it was obtained by pushing 
an excess of paste out of the tube and polishing it 
on a weighing paper. The efficiency of the modified 
electrode for the determination of real samples was 
maintained for more than one week. Unmodified 
carbon paste was made in the same way without 
adding Cu complex and carbon nanotube to the 
mixture and was used for comparison purposes.

RESULTS AND DISCUSSION
Electrochemical properties of Cu-complex - CNTPE

Cyclic voltammograms of Cu-complex - CNTPE in 
PBS (pH 2) at different scan rates are shown in Fig. 
2. A pair of reduction and oxidation peak at 0.178 
and 0 .201 was appeared and 0.23m V potential 
peak separation was obtained. The corresponding 
plot for the anodic peak current (Ipa) and catodic 
peak current (Ipc) as a function of scan rate (υ) is 
shown as inset in Fig. 2B was linearly dependent 
on the scan rate (υ) over the range of 5–450mVs−1, 
with the regression equation Ipa (µA) = 0.0164υ + 
0.9765 (correlation coefficient, r = 0.9933) and Ipc 
(µA) = –0.165υ – 0.9229 (correlation coefficient, r 
= 0.9972), indicating a surface-controlled electrode 
processes. From the behavior of the modified Cu-com-

plex - CNTPE with scan rate, we can conclude that 
the electrode reaction was a diffusion less system 

and a reversible electron transfer. The peaks can be 
attributed to redox reaction of Cu (II) to Cu (I), as-
sumed to be a reversible one-electron transfer:

( ) ( )Cu II e  Cu I←
→+   (1)                                                          

The influence of scan rate on the redox peak po-
tential was also studied.  Based on the results with 
the increase of scan rate, potential of the oxidation 
peak shifted positively and potential of the reduc-
tion peak shifted negatively. Laviron and coworker 
[44] demonstrated that the kinetic electrochemical 
parameters (ks and) could be derived:
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Please insert Fig. 2. 
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Fig. 1. SEM image of [Cu(Cip)(phen)](NO3).4H2O nanoparticles.
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Voltammetric behaviors of UA 
Electrochemical behaviors of the UA (200 µM) 

in 0.1M PBS of pH 2 was carefully investigated at the 
surfaces of bare CPE, Cu-complex- CPE and Cu-complex- 
CNTPE using cyclic voltammetriy. CPE electrodes 
showed a weak and a broad oxidation peak for a UA 
at 0.608V (see Fig. 3) suggesting slow electron trans-
fer kinetics. In contrast, when Cu-complex -CPE was ap-
plied well defined sharp peak appeared. As is shown, 
the oxidation peak for UA at the Cu-complex -CPE is 

several times larger than unmodified electrode. This 
increase is due to the catalytic effect of Cu complex. 
At last, when carbon nanotubes added to electrode 
composite, the peak showed an increase because of 
large specific surface area and high electrical con-
ductivity of carbon nanotubes. It was also noted that 
the reduction current responses to the oxidation 
product of UA on the three type electrodes were all 
negligible, which indicated that the electrochemical 
redox of UA at these electrodes was irreversible. 

 
Fig. 2 

  

Fig. 2. (a) CVs of Cu-complex-CNTPE electrode in pH (2) at various scan rates (from inner to outer curve): 5, 15, 25, 50, 75, 100, 150, 200, 
250, 300, 350, 400 and 450 mV s−1. (b) The plot of peak currents vs. scan rates.
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Effect pH on the oxidation of UA
The acidity of electrolyte has a significant in-

fluence on the UA electrooxidation because pro-
tons take part in the electrode reaction. The effect 

of pH on  Cu-complex - CNTPE signal were carefully 
investigated by cyclic voltammetry using 0.1 mol 
L−1 buffer solutions at pH levels ranging from 1 to 
6. The results were shown in Fig. 4A. Based on the 

 

 
Fig. 3 

  

 
Fig. 4 

  

Fig. 3. (a) CV at BCPE, (b) Cu-complex-CPE (c) Cu-complex-CNTPE electrodes in the presence of UA (250.0 µM), (d) and (e) as (c) and (a) 
in absence of UA in PBS (0.1 M) at pH 2.0. Scan rate: 50 mV s−1.

Fig. 4. (a) Effect of pH on the peak separation and peak current for the oxidation of UA (250 µM); pH= 1.0 – 6.0. Scan rate, 50 mVs−1. 
(b) Plot of peak currents vs. pH. (c) Plot of peak potential vs. pH.



109

M. M. Foroughi  / platform based on cupper complex-multiwalled carbon nanotube nanocomposite

J. Nanoanalysis., 7(2): 104-114, Spring 2020

results, the peak current UA increases slightly with 
an increase in the solution pH until it reaches 2 and 
then decrease. It can be seen from Fig. 4B that the 
highest peak current was obtained at pH 2. It was 
observed that as pH of the medium was gradually 
increased, peak potentials for the oxidation of UA 
shifted towards less positive values, showing that 
protons have taken part in their electrode process-
es. Out of these, phosphate buffer solution with pH 
2 gave the best response in terms of peak current 
and peak shape and negatively shifts, hence was 
chosen as optimal pH for further studies. Plot of Ep 
vs. pH for UA in the working pH range was shown 
in Fig. 4C. As can be seen, the Ep of UA has linear 
relationship with pH of the buffer solution regard-
ing following equations:

UA: Ep (V) = 0.0567 − 0.7321pH                      
 (R2 = 0.9991)                                    (5)

Regarding the observed slopes of 0.0567 mV/
pH for UA which was close to the anticipated Nern-
stian value for a two-electron, two-proton electro-
chemical reaction [28]. It can be concluded that 
equal number of electrons and protons are involved 
in the electrode reactions. 

Influence of scan rate on the electrochemical behav-
ior of UA

The influence of scan rate on the oxidation 
peak current of UA was investigated on Cu-complex 
- CNTPE by cyclic voltammetry. As can be seen 
in Fig. 5 A, the peak current intensity increases 
continuously with the increase of scan rate. Fur-

 
Fig. 5 

  

Fig. 5. (a) CVs of UA (50µM) at Cu-complex-CNTPE electrode in pH (2) at various scan rates (from inner to outer curve): 10, 20, 30, 40, 
50, 75, 100, 150, 200, 300, 400, 500, 600,800 and 1000 mV s−1. (b) The plot of peak currents vs. scan rates, (C)plot of peak potential vs. 

scan rates.
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thermore, the current was directly proportional to 
the square root of the scan rate over the range of 
10–1000 mV s−1 as shown in Fig. 5B, which pow-
erfully proposed that the redox reactions of UA are 
diffusion controlled. The influence of scan rate on 
the redox peak potential was also studied.  Based 
on the results with the increase of scan rate, the po-
tential of the oxidation peak shifted positively .La-
viron and coworker demonstrated that the kinetic 
electrochemical parameter (α) could be derived.

The relationship between the anodic peak po-
tential (Epa) and logarithm of the scan rate (log) 
for UA was also constructed and followed the lin-
ear regression equation of Epa (V) = 0.0589logv 
(mVs−1) + 0.47 (R = 0.9902) in the range from 75 to 
1000 mVs−1. For a completely irreversible electrode 

process, the relationship between Epa and logv is 
expressed as follows by Laviron:

Regarding the observed slopes of 0.0567 mV/pH for UA which was close to the anticipated 

Nernstian value for a two-electron, two-proton electrochemical reaction [28]. It can be 

concluded that equal number of electrons and protons are involved in the electrode reactions.  

Please insert Fig. 4. 
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Fig. 6. (a) Chronoamperograms obtained at Cu-complex-CNTPE in 0.1 M PBS (pH 2.0) for different concentration of UA. The numbers 
1–5 correspond to:s 0.0, 0.05, 0.1, 0.3 and 0.5 mM of EP. Insets: (c) Plots of I vs. t−1/2 obtained from chronoamperograms 1–5. (b) Plot 

of the slope of the straight lines against UA concentration.
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of D, the current for the electrochemical reaction 
with a mass transport limited rate is described by 
the Cottrell equation [45].

diffusion coefficient of D, the current for the electrochemical reaction with a mass transport 

limited rate is described by the Cottrell equation [45]. 

I = nFAD1 2⁄ Cbπ−1/2t−1/2                                                                                (8) 

 For example, under diffusion control, a plot of I vs. t−1/2 will be linear, and the slope of the 

linear region of the Cottrell’s plot can be used to estimate of the D for UA. The value of DUA 

was found to be 4.1 10−5 cm2 s−1.  

Please insert Fig. 6. 
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Fig. 7. (A) CV of UA at the Cu-complex- CNTPE electrode in phosphate buffer solution (pH 2.0) at the scan rate of 50 mV s−1. Concentra-
tions from inner to outer of curves: UA (0.0, 0.66, 1.66, 3.33,6.66, 13.3, 20.0, 26.6, 33.3, 461.6, 50.0, 58.3, 66.6, 75.0 ,83.3, 91.6, 100.0, 

116.6, 141.6, 166.6, 191.6, 216.6, 250, 283.3, 316.6 and 350). Insets: (B) Plots of I vs. Concentrations.
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Real Sample analysis
In order to evaluate the analytical applicability 

of the developed method for determination of UA, 
urine and blood were tested. The amounts of UA 
in urine and blood sample were determined by the 
standard addition method and are listed in Table 1. 
The recoveries were 95.4–100.28% for UA, respec-
tively. Therefore, a capability of the proposed elec-
trode for the determination of UA is clear. 

CONCLUSIONS
We have demonstrated a very simple and ef-

fective electrochemical approach to construct of a 
Cu-complex- CNTPE sensor and its application for de-
termination of UA. Compared with the unmodified 
CPE, the significant increase of peak current was 
observed at the Cu-complex - CNTPE, which clearly 
demonstrated that Cu complex and CNT could be 
used as an efficient promoter to enhance the kinet-
ics of the electrochemical process of UA. The op-
timization of the experimental conditions for LSV 
yielded a detection limit for UA of 0.075 µM better 
than or comparable those described in the litera-
ture (Table 2). In addition, the proposed sensor was 
successfully applied for determination of UA in 
urine and blood samples with satisfactory results.
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