بهینه سازی تولید بتاکاروتن رودوتورلا موسیلوژینوسا جدا شده از پساب کارخانه چرم
محورهای موضوعی : زیست فناوری میکروبیشیدا بیرانوند 1 , محدثه لاری پور 2 * , جمیله نوروزی 3
1 - کارشناس ارشد، گروه بیوتکنولوژی میکروبی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
2 - استادیار، گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
3 - استاد، گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
کلید واژه: بهینه سازی, آنتیاکسیدان, بتاکاروتن, رودوتورولا,
چکیده مقاله :
سابقه و هدف: مخمرها به دلیل تولید رنگدانههای مفید برای انسان در بیوتکنولوژی از ارزش خاصی برخوردار هستند. گونههای رودوتورولا به مقدار زیاد بتاکاروتن تولید میکنند. این مطالعه با هدف به حداکثر رساندن تولید بتاکاروتن با قیمت ارزان از یک گونه مخمری بومی انجام شد.مواد و روشها: مجموعه چهار جدایه مورد بررسی، در طی سه مرحله نمونه برداری از پساب کارخانه چرم، بر روی محیطهای اختصاصی جدا شدند. سپس با استفاده از آزمونهای بیوشیمیایی و PCR دو جدایه Aa1 و Aa4 شناسایی شدند. مقادیر تولید رنگدانه توسط جدایه شناسایی شده و سویه استاندارد در شرایط مختلف نمک، منبع نیتروژن، منبع کربن، هوادهی، دما، دامنه های مختلف pH ارزیابی گردید. جذب نوری رنگدانه در nm 470 توسط دستگاه اسپکتوفتومترخوانده شد.یافتهها: از میان چهار جدایه، تنها جدایه Aa1 توانایی تولید رنگدانه کارتنوییدی را داشت. شناسایی ژنتیکی دو جدایه Aa1 و Aa4 شباهت 98 درصدی آن ها به گونههای رودوتورولا موسیلاژینوسا و دباریومایسس هانسنی را تایید نمود. نتایج نشان داد، حداکثر مقدار بتاکاروتن پس از بهینه سازی به ترتیب 75.6 و 32.7 میکروگرم بر میلیلیتر برای رودوترولا موسیلاژینوسا و رودوتورولا گلوتینیس (سویه استاندارد) به دست آمد.نتیجه گیری: جداسازی گونه بومی و بهینه سازی فعالیتهای کاربردی آن در آزمایشگاه، نه تنها در تولید محصولات صنعتی با کیفیت بالاتر بسیار مفید است بلکه استفاده از گونه بومی بسیار اقتصادی میباشد.
Background & Objectives: Yeasts have a special value for human in biotechnology because of the production of pigments. Rhodotorula species produce high amounts of beta-carotene. The aim of this study was to maximize the production of beta-carotene at least prices from native yeast species. Materials & Methods: The four isolation evaluated were isolated from specific environments during three stages of sampling from the waste leather factory. Subsequently, two isolates of Aa1 and Aa4 were identified using the biochemical test and PCR technique. The production of beta-carotene was determined by the identified isolates and a standard strain in different conditions of salt, nitrogen source, carbon source, aeration, temperature, and pH. Optical absorption of the pigment was read through spectrophotometer at 470 nm. Results: Among the four isolates, only the isolate Aa1 is capable to produce carton-free pigment. The genetic identification of the two isolates Aa1 and Aa4 confirmed 98% similarity to those of Rhodotorula mucilaginosa and Debaryomyces hanseni, respectively. The results showed that the maximum production of beta-carotene was obtained after optimization of 75.6 μg/ml for Rhodotorula mucilaginosa and 32.7 μg/ml for Rhodotorula glutinis (standard strain). Conclusion: The isolation of native species and the optimization of its functional activities in the laboratory is not only useful in the production of high-quality industrial products, but also the use of the native species is highly economical.
on antioxidant properties in food industry. J Sci Technol. 2017; 14(67): 62-53. [In Persian]
2. Miguel D, Sieiro T, Poza C, Villa T. Analyse of canthaxanthin and pigments from Gordonina
jacobaea mutants. J Agric Food Chem. 2001; 49(35): 1200-1202.
3. Edge R, McGravy D, Truscott T. The carotenoids as antioxidants-are view. J Photochem.
Photobiol. 1997; 41(32): 189-200.
4. Venil c, Erumalsamyl G. An in sightful over view on microbial pigment prodigiosin.
Electronic J Biol. 2009; 5(3): 49-61.
5. Edge R, McGarvey D, Truscott T. The carotenoidsas antioxidants a review. J Photochem
Photobiol. 1997; 41(4): 189-200.
6. Woodside J, McGrath A, Lyner N, McKinley M. Carotenoidsand health in older people. J
Maturitas. 2015; 80(3): 63-68.
7. Eugenia M, Talos D, Panaitescu M. Studies onmetabolic role of Rhodotorula rubra 120 r
carotenoid pigments. Rou Biotechnol Lett. 1997; 2(5): 55-60.
8. Nelis H, De Leenheer A. Microbial sources of carotenoid pigments used in food and feeds. J
Appl Bacteriol. 1991; 70(4): 181-191.
9. Bhosale P, Gadre R. Production of b-carotene by amutant of Rhodotorula glutinis. Appl
Microbiol Biotechnol. 2001; 20(5): 195-230.
10. Sympson K, Nakayama T, Chichester C. Biosynthesis of yeast carotenoids. J Bacteriol.
1964; 88(6): 1688-1694.
11. Buzzini P. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG
3853 from substrates containing concentrated rectified grape must as the sole carbohydrate
source J Indust Microbiol Biotech. 2000; 24 (9): 41-45.
12. Costa I, Martelli H, Dasilva I, Pomeroy D. Production of β-carotene by a Rhodotorula strain.
Biotechnol Lett. 1987; 9(8): 373-375.
13. Martin A, Chun L, Patel T. Growth parameters for the yeast Rhodotorula slooffiae grown in
peat extracts. J Ferm Bioeng. 1993; 76(6): 321-325.
14. Santos C, Caldeira M, Lopes da Silva T, Novais J, Reis A. Enhanced lipidicalgae biomass
production using gas transfer from a fermentative Rhodosporidium toruloides culture to an
autotrophic Chlorella protothecoides culture. Bioresour Technol. 2013;138(6): 48-54.
15. Wirth F, Goldani L. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip
Perspect Infect Dis. 2012; 10(1155): 465-717.
16. Latha B, Jeevaratanm K. Thirteen-week oral toxicity study of carotenoid pigment from
Rhodotorula glutinis DFR-PDY in rats. Indian J Exp Biol. 2012; 50(3): 645-651.
17. Ram Krishna Rao M, Selva Kumar S, Fahmida Banu S. Characterization and identification of
predominant microorganisms from agro-waste. J Der Pharmacia Lett. 2016; 8(5): 79-86.
18. Kwon-Chang K, John E, Bennet A. Medical mycology. J Amaerica. 1992; 22(7): 88-70.
19. Šuranská H, Vránová D, Omelková J. Isolation, identification and characterization of
regional indigenous Saccharomyces cerevisiae strains. Braz J Microbiol. 2016; 47(1):
181-190.
20. Zhao X, Kong X, Hua Y, Fen B, Zhao Z. Medium optimization for lipid production through
co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. J Euro J
Lipid Sci Technol. 2008; 110(9): 405-412.
21. Razavi H, Rezaei K, Ivan M. Comparison of pigment (carotenoid) extraction methods from
Sporobolomyces ruberrimus H110. J Iran Food Sci Technol. 2005; 2(1): 33-42.
22. Varmira K, Habibi A, Bahramian E, Jamshidpouu S. Progressive agents for improvement of
carotenogenesis in Rhodotorula rubra. J Adv in Food Sci & Technol. 2016; 3(2): 70-78.
23. Amr El-Banna, Amal A, Ahmed R, Mahdy E. Some factors affecting the production of
carotenoids by Rhodotorula glutinis var. glutinis. J Food Nutr Sci. 2012; 3(5): 64-71.
24. Naghavi F, Hanachi P, Soudi M, Saboora A, Ghorbani A. Evaluation of the relationship
between the incubation time and carotenoid production in Rhodotorula slooffiae and R.
mucilaginosa isolated from leather tanning wastewater. Iran J Basic Med Sci. 2013; 16(7):
1114-1118.
25. Hernández-Almanza A, Montanez J, Aguilar-González M, Martínez Á, Rodríguez-Herrera R,
Aguilar C. Rhodotorula glutinis as source of pigments and metabolites for food industry. J
Food Bio Sci. 2014; 5(11): 64-72.
26. Woodside J, McGrath A, Lyner N, McKinley M. Carotenoids and health in older people. J
Maturitas. 2014. 20(15): 63-68.
27. Panesar R. Bioutilization of kinnow waste for the production of biopigments using
submerged fermentation. Int J Food Sci Nutr. 2014; 3(8): 9-13.
28. Carocho M, Morales P, Ferreira I. Quovadis trends in food science & technology. J
Natural Food Additive. 2015; 45(9): 284-295.
29. Krinsky N. Carotenoid as antioxidants. J Nutr. 2001; 17(8): 815-817.
30. Frengova G, Simova E. Pavlova K. Beshlova D. Formation of carotenoids by Rhodotorula
glutinis in Whey ultrafiltrate. Biotechnol Bioeng. 1994; 44(8): 888-894.
31. Parekh S, Vinci V, Strobel R. Improvement of microbial strains and fermentation processes.
J Appl Microbiol Biotechnol. 2000; 54(7): 287-301.
32. López-Nieto M, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, de la Fuente J, Cabri W,
Barredo J. Biotechnological lycopene production by mated fermentation of Blakeslea
trispora. J Appl Microbiol Biotechnol. 2004; 66(8): 153-159.
33. Anna M, Agni E, Iwona G, Marek K. Rhodotorula glutinis potential source of lipids,
carotenoids, and enzymes for use in industries. J Appl Microbiol Biotechnol. 2016; 100(4):
7611-7618.
34. Bcc Research. The Global Market for Carotenoids (Accessed 29 Jan 2016). Available
market-report-fod025e.html at: http://www.bccresearch.com/market-research/food-andbeverage/carotenoidsglobal.
35. Aksu Z, Tugba E. Carotenoid production by the yeast Rhodotorula mucilaginosa use of
agricultural wastes as carbon source. Process Biochem. 2005; 40(7): 2985-2991.
36. Qiang W, Dong L, Qingxiang Y, Panliang W. Enhancing carotenoid production in
Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. J
Annal Microbiol. 2017; 6(67): 425-431.
37. Ilaria M, Landolfo S, Teresa S, Buzzini P. Red yeasts and carotenoid production: outlining
a future for non-conventional yeasts of biotechnological interest. World J Microbiol
Biotechnol. 2015; 11(31): 1665-1673.
38. Saenge C, Cherisilp B, Suksaroge T, Bourtoom T. Potential use of oleaginous red yeast
Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids
and carotenoids. Process Biochem. 2011; 46(6): 210-218
39. DeMan J. Principles of Food Chemistry (3th ed). J Asp Publishers: 1999; 45:67-45.
40. Fang T, Chiou T. Optimization of cultivation and astaxanthin production by a mutant of red
yeast. J Ferment Bioeng. 1993; 75(4): 466-469.
41. Johnson E, An G. Astaxanthin from microbial sources. Crit Rev Biotechnol. 1991; 11(2):
297-326.
42. Goodwin T. Carotenoids in fungi and non-photosynthetic bacteria. Prog Indusr Microbiol.
1972; 11(8): 29-88.
43. Yimyoo T, Yongmanitchai W, Limtong S. Carotenoid production by Rhodosporidium
paludigenim DMKU3-LPK4 using glycerol as the carbon source. Kasetsart J Nat Sci. 2011;
45: 90-100.
44. Naghavi F, Hanachi P, Soudi M, Saboora A, Ghorbani A. Evaluation of the relationship
between the incubation time and carotenoid production in Rhodotorula slooffiae and R.
mucilaginosa isolated from leather tanning wastewater. Iran J Basic Med Sci. 2013; 16(10):
1114-1118.
_||_
on antioxidant properties in food industry. J Sci Technol. 2017; 14(67): 62-53. [In Persian]
2. Miguel D, Sieiro T, Poza C, Villa T. Analyse of canthaxanthin and pigments from Gordonina
jacobaea mutants. J Agric Food Chem. 2001; 49(35): 1200-1202.
3. Edge R, McGravy D, Truscott T. The carotenoids as antioxidants-are view. J Photochem.
Photobiol. 1997; 41(32): 189-200.
4. Venil c, Erumalsamyl G. An in sightful over view on microbial pigment prodigiosin.
Electronic J Biol. 2009; 5(3): 49-61.
5. Edge R, McGarvey D, Truscott T. The carotenoidsas antioxidants a review. J Photochem
Photobiol. 1997; 41(4): 189-200.
6. Woodside J, McGrath A, Lyner N, McKinley M. Carotenoidsand health in older people. J
Maturitas. 2015; 80(3): 63-68.
7. Eugenia M, Talos D, Panaitescu M. Studies onmetabolic role of Rhodotorula rubra 120 r
carotenoid pigments. Rou Biotechnol Lett. 1997; 2(5): 55-60.
8. Nelis H, De Leenheer A. Microbial sources of carotenoid pigments used in food and feeds. J
Appl Bacteriol. 1991; 70(4): 181-191.
9. Bhosale P, Gadre R. Production of b-carotene by amutant of Rhodotorula glutinis. Appl
Microbiol Biotechnol. 2001; 20(5): 195-230.
10. Sympson K, Nakayama T, Chichester C. Biosynthesis of yeast carotenoids. J Bacteriol.
1964; 88(6): 1688-1694.
11. Buzzini P. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG
3853 from substrates containing concentrated rectified grape must as the sole carbohydrate
source J Indust Microbiol Biotech. 2000; 24 (9): 41-45.
12. Costa I, Martelli H, Dasilva I, Pomeroy D. Production of β-carotene by a Rhodotorula strain.
Biotechnol Lett. 1987; 9(8): 373-375.
13. Martin A, Chun L, Patel T. Growth parameters for the yeast Rhodotorula slooffiae grown in
peat extracts. J Ferm Bioeng. 1993; 76(6): 321-325.
14. Santos C, Caldeira M, Lopes da Silva T, Novais J, Reis A. Enhanced lipidicalgae biomass
production using gas transfer from a fermentative Rhodosporidium toruloides culture to an
autotrophic Chlorella protothecoides culture. Bioresour Technol. 2013;138(6): 48-54.
15. Wirth F, Goldani L. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip
Perspect Infect Dis. 2012; 10(1155): 465-717.
16. Latha B, Jeevaratanm K. Thirteen-week oral toxicity study of carotenoid pigment from
Rhodotorula glutinis DFR-PDY in rats. Indian J Exp Biol. 2012; 50(3): 645-651.
17. Ram Krishna Rao M, Selva Kumar S, Fahmida Banu S. Characterization and identification of
predominant microorganisms from agro-waste. J Der Pharmacia Lett. 2016; 8(5): 79-86.
18. Kwon-Chang K, John E, Bennet A. Medical mycology. J Amaerica. 1992; 22(7): 88-70.
19. Šuranská H, Vránová D, Omelková J. Isolation, identification and characterization of
regional indigenous Saccharomyces cerevisiae strains. Braz J Microbiol. 2016; 47(1):
181-190.
20. Zhao X, Kong X, Hua Y, Fen B, Zhao Z. Medium optimization for lipid production through
co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. J Euro J
Lipid Sci Technol. 2008; 110(9): 405-412.
21. Razavi H, Rezaei K, Ivan M. Comparison of pigment (carotenoid) extraction methods from
Sporobolomyces ruberrimus H110. J Iran Food Sci Technol. 2005; 2(1): 33-42.
22. Varmira K, Habibi A, Bahramian E, Jamshidpouu S. Progressive agents for improvement of
carotenogenesis in Rhodotorula rubra. J Adv in Food Sci & Technol. 2016; 3(2): 70-78.
23. Amr El-Banna, Amal A, Ahmed R, Mahdy E. Some factors affecting the production of
carotenoids by Rhodotorula glutinis var. glutinis. J Food Nutr Sci. 2012; 3(5): 64-71.
24. Naghavi F, Hanachi P, Soudi M, Saboora A, Ghorbani A. Evaluation of the relationship
between the incubation time and carotenoid production in Rhodotorula slooffiae and R.
mucilaginosa isolated from leather tanning wastewater. Iran J Basic Med Sci. 2013; 16(7):
1114-1118.
25. Hernández-Almanza A, Montanez J, Aguilar-González M, Martínez Á, Rodríguez-Herrera R,
Aguilar C. Rhodotorula glutinis as source of pigments and metabolites for food industry. J
Food Bio Sci. 2014; 5(11): 64-72.
26. Woodside J, McGrath A, Lyner N, McKinley M. Carotenoids and health in older people. J
Maturitas. 2014. 20(15): 63-68.
27. Panesar R. Bioutilization of kinnow waste for the production of biopigments using
submerged fermentation. Int J Food Sci Nutr. 2014; 3(8): 9-13.
28. Carocho M, Morales P, Ferreira I. Quovadis trends in food science & technology. J
Natural Food Additive. 2015; 45(9): 284-295.
29. Krinsky N. Carotenoid as antioxidants. J Nutr. 2001; 17(8): 815-817.
30. Frengova G, Simova E. Pavlova K. Beshlova D. Formation of carotenoids by Rhodotorula
glutinis in Whey ultrafiltrate. Biotechnol Bioeng. 1994; 44(8): 888-894.
31. Parekh S, Vinci V, Strobel R. Improvement of microbial strains and fermentation processes.
J Appl Microbiol Biotechnol. 2000; 54(7): 287-301.
32. López-Nieto M, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, de la Fuente J, Cabri W,
Barredo J. Biotechnological lycopene production by mated fermentation of Blakeslea
trispora. J Appl Microbiol Biotechnol. 2004; 66(8): 153-159.
33. Anna M, Agni E, Iwona G, Marek K. Rhodotorula glutinis potential source of lipids,
carotenoids, and enzymes for use in industries. J Appl Microbiol Biotechnol. 2016; 100(4):
7611-7618.
34. Bcc Research. The Global Market for Carotenoids (Accessed 29 Jan 2016). Available
market-report-fod025e.html at: http://www.bccresearch.com/market-research/food-andbeverage/carotenoidsglobal.
35. Aksu Z, Tugba E. Carotenoid production by the yeast Rhodotorula mucilaginosa use of
agricultural wastes as carbon source. Process Biochem. 2005; 40(7): 2985-2991.
36. Qiang W, Dong L, Qingxiang Y, Panliang W. Enhancing carotenoid production in
Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. J
Annal Microbiol. 2017; 6(67): 425-431.
37. Ilaria M, Landolfo S, Teresa S, Buzzini P. Red yeasts and carotenoid production: outlining
a future for non-conventional yeasts of biotechnological interest. World J Microbiol
Biotechnol. 2015; 11(31): 1665-1673.
38. Saenge C, Cherisilp B, Suksaroge T, Bourtoom T. Potential use of oleaginous red yeast
Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids
and carotenoids. Process Biochem. 2011; 46(6): 210-218
39. DeMan J. Principles of Food Chemistry (3th ed). J Asp Publishers: 1999; 45:67-45.
40. Fang T, Chiou T. Optimization of cultivation and astaxanthin production by a mutant of red
yeast. J Ferment Bioeng. 1993; 75(4): 466-469.
41. Johnson E, An G. Astaxanthin from microbial sources. Crit Rev Biotechnol. 1991; 11(2):
297-326.
42. Goodwin T. Carotenoids in fungi and non-photosynthetic bacteria. Prog Indusr Microbiol.
1972; 11(8): 29-88.
43. Yimyoo T, Yongmanitchai W, Limtong S. Carotenoid production by Rhodosporidium
paludigenim DMKU3-LPK4 using glycerol as the carbon source. Kasetsart J Nat Sci. 2011;
45: 90-100.
44. Naghavi F, Hanachi P, Soudi M, Saboora A, Ghorbani A. Evaluation of the relationship
between the incubation time and carotenoid production in Rhodotorula slooffiae and R.
mucilaginosa isolated from leather tanning wastewater. Iran J Basic Med Sci. 2013; 16(10):
1114-1118.