بررسی وضعیت تروفی در مناطق ساحلی جنوبی خزر، مطالعه موردی محدوده استان گیلان
محورهای موضوعی : بیولوژی دریاعلیرضا دریازاده 1 * , پریسا نجات خواه معنوی 2 , فرناز رفیعی 3 , فریبرز جمال زاد فلاح 4 , سید محمد صلواتیان 5
1 - دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
2 - گروه بیولوژی دریا، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
3 - دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
4 - دفتر سواحل و تالاب های ساحلی کشور
5 - موسسه تحقیقات علوم شیلاتی کشور ، پژوهشکده آبزی پروری آب های داخلی، بندرانزلی
کلید واژه: ازت, سواحل جنوبی دریای خزر, کلروفیل a, فسفر, یوتریفیکاسیون,
چکیده مقاله :
ورود بارآلی و غیرآلی به میزان زیاد از رودخانه ها، فاضلابهای شهری و روستایی و صنعتی به دریا موجب تشدید فرایند یوتریفیکاسیون حوضه جنوبی سواحل دریای خزر شده است. در تحقیق حاضر 3 پارامتر لیمنولوژیکی (کلروفیل a ، فسفات کل و ازت کل) ، از بهار تا پایان بهمن ماه 1392 به مدت 11 ماه ارزیابی شده است. نمونه برداری در 10 ایستگاه در سواحل جنوبی دریای خزر واقع در استان گیلان از خشکرود تا آستارا صورت گرفت. بر اساس نتایج تحقیق حاضر در بین سه فاکتور موثر تروفی در مناطق مورد مطالعه در فصل زمستان بالاترین میزان همبستگی مربوط به فسفر کل و ازت کل با میزان 47 درصد می باشد. بررسی سالیانه نیز میزان همبستگی بین دو فاکتور فسفر و ازت کل را با مقدار 87 درصد نشان داد و بعد از آن کلروفیل a و ازت با 56 درصد قرار می گیرد. نتایج بدست آمده نشان می دهد که ۳۹ درصد از سواحل جنوبی دریای خزر در محدوده آب های استان گیلان الیگوتروف بوده و ۶۱ درصد از آن در دامنه مزوتروفی قرار دارد. مقایسه منحنی نرمال میزان فسفات کل در سواحل بخش جنوبی دریای خزر با استانداردهای OECD نشانگر گرایش بخشی از سواحل فوق از حالت الیگوتروفی به مزوتروفی می باشد که می تواند تهدیدی برای منطقه به حساب آید.
The increase of organic and inorganic compounds in the river basin of the south coastal area of the Caspian Sea has been exacerbated by intensification of the Eutrophication process. In order to provide some useful data for planning of coastal management, the trophy of the chlorophyll a, total phosphorus and total nitrogen were determined. The result of measuring three limnologic parameters (chlorophyll a, total phosphorus and total nitrogen) for a period of 11 months, were entered into the geographic information system during the spring of 2013 to February 2014. By determining the position of ten stations in south coast of the Caspian Sea, in Gilan province, from Khosk-Rood to Astara, their trophy status in terms of chlorophyll a, total phosphate, total nitrogen, as well as TSI index were determined. Based on the results of this study, among the three effective factors of trophic in the studied areas, in winter, the highest correlation was found between total phosphorus and total nitrogen of 47%. The annual survey showed a correlation between phosphorus and total nitrogen of 87%, followed by correlation between chlorophyll a and nitrogen of 56%. The results showed that, 39 and 61 percent of south coastal areas in Gilan province were oligotrophic and mesotrophic, respectively. The normal curvecomparison of total phosphate based on OECD standards, indicated a trend in coastal change from oligotrophic to mesotrophic, which can be a threat to the region
درویش صغت، ع. ا.، جمال زاده، ف. و نظامی بلوچی، ش. 1391 . بررسی تروفی تالاب انزلی با استفاده از GSI . محیط شناسی، 23: 10 -2.
رحمتی، ر.، پورغلام، ر. و دوستدار، م. 1390. وضعیت تروفی آب بندان طبیعی مرزن آباد بابل بر اساس شاخص کارلسون. مجله شیلات، دانشگاه آزاد اسلامی، واحد آزادشهر. 1(6) :130-121.
رفیعی ، ا و فاطمی، م. ر. 1391. زیست شناسی دریا با نگرش اکولوژیک. نویسنده جیمز نی باکن. چاپ دوم. گروه تالیفی دکتر خلیلی. ایران.
شهربان، م. و شهیدی، ا. ۱۳۸۶. معرفی شاخص های کیفی آب های سطحی. ششمین کنفرانس هیدرولیک ایران. انجمن هیدرولیک ایران، دانشگاه شهرکرد. شهرکرد.
قربانی، م. 1385. بررسی روند تغییرات آب مخزن سد مارون و تعیین ترکیبات موثر در احتمال بروز اتریفیکاسیون. دفتر تحقیقات و استانداردهای سد و نیروگاه سازمان آب و برق خوزستان، 8-1.
کیمیال، د. 1973. مطالعات لیمنولوژی تالاب انزلی، ترجمه سازمان حفاظت محیط زیست.
میرزاجانی، ع. ، عباسی، ک. ، سبک آرا، ج. ، مکارمی، م. ، عابدینی، ع. و صیاد بورانی، م . 1391. لیمنولوژی دریاچه الیگو- مزوتروف تهم در استان زنجان. مجلهزیستشناسیایران. 25(1): 89-74.
Bužančić, M., Ninčević Gladan, Z., Marasović, I., Kušpilić, G. & Grbec. B. 2016. Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast. Oceanologia, 58: 302—316.
Carlson, R.E. & J. Simpson. 1996. A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. USA.
Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22:361-369. doi.org/10.4319/lo.1977.22.2.0361.
Carlson, R.E. 1992. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. In: Proceedings of a national conference on enhancing the states lake management programs. Monitoring and Lake Impact Assessment. Chicago.
Chapra, S.C. 1997. Surface Water- Quality Modeling, McGraw Hill, New York.
Elmaci, A., Ozengin, N., Teksoy, A., Topac, F. & Baskaya, H. 2009. Evaluation of Trophic State of lake Uluabat, Turkey. Journal of Environmental Biology, 30 (5): 757-760.
Kagaloua, I., Papastergiadoub, E. & Leonardos, I. 2008. Long term changes in the eutrophication process in a shallow Mediterranean lake ecosystem of W. Greece: Response after the reduction of external load. Journal of Environmental Management, 87: 497–506.
Karadžić, V., Subakov-Simić, G., Krizmanić, J. & Natić, D. 2010. Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination, 255: 91–96.
Lu, S.Y., Wu, F.C., Lu, Y. F., Xiang, C. S., Zhang, P.Y. & Jin, C.X. 2009. Phosphorus removal from agricultural runoff by constructed wetland. Ecological engineering, 35: 402–409.
Lundberg, C. 2013. Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66: 143–150.
Lv, J., Wu, H. & Chen, M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica - Ecology and Management of Inland Waters, 41(1): 48-56.
Ly, J., Philippart , C. J. M. & Kromkamp, J. C. 2014. Phosphorus limitation during a phytoplankton spring bloom in the western Dutch Wadden Sea. Journal of Sea Research, 88: 109–120.
OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control, OECD, Paris.
Sass, G. Z., Creed, I. F., Bayley, S. E. & Devito, K. J. 2007. Understanding variation in trophic status of lakes on the Boreal Plain: A 20 year retrospective using Landsat TM imagery, Remote Sens. Environment, 109: 127 – 141. doi:10.1016/j.rse.2006.12.010.
Standard Methods for the Examination of Water and Wastewater. 1999. American Public Health Association. USA.
Tsagil, J.A. 2006. Spatial distribution of water quality and Eutrophication levels of wetlands. International Institute for Geo-information science and earth observation. Netherlands.
Zhang, Y., Yin, Y., Wang, M. & Liu, X. 2012. Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence.Optics Express,20(11): 11882-11898. doi.org/10.1364/OE.20.011882.
_||_