میزان و انواع اسیدهای چرب غیراشباع در زئوپلانکتونAcartia tonsa در سواحل جنوبی دریای خزر)منطقه نوشهر)
محورهای موضوعی : بیولوژی دریاشیما سرکشیکیان 1 * , رضوان موسوی ندوشن 2
1 - گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
2 - گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
کلید واژه: زئوپلانکتون, دریای خزر, اسیدهای چرب غیر اشباع, Acartia tonsa, بهار و تابستان,
چکیده مقاله :
در تحقیق حاضر، پروفایل اسیدهای چرب زئوپلانکتون Acartia tonsaدر فصل بهار و تابستان سال 1394 در حوزه جنوبی دریای خزر(منطقه نوشهر) مورد مطالعه قرار گرفته است. نمونه گیری بوسیله تورهای مخصوص زئوپلانکتون، با چشمه 100 میکرومتر به صورت افقی در زیر سطح آب انجام شد.نمونه های Acartia tonsaدر آزمایشگاه جداسازی، فیلتر و تا انجام آزمایش چربی منجمد شدند. تعیین ترکیب اسیدهای چرب ژئوپلانکتون توسط دستگاه GC/mass (Gass Chromatography)انجام گرفت. نتایج نشان داد در فصل بهار و تابستان درصد کل اسیدهای چرب اشباع به ترتیب 62 درصد و 12/31درصد، اسیدهای چرب مونو غیراشباع 89/23درصد و 11/26درصد و اسیدهای چرب پلی غیراشباع 5/14درصد و 51/23درصد بوده است. تجزیه و تحلیل آماری اختلاف معنی دار در برخی از اسیدهای چرب مهم از قبیل میریستیک اسید، پالمیتیک اسید، اولئیک اسید، EPA (Eicosapentaenoic Acid) و DHA (Docosahexanoic Acid) را در دو فصل نشان داد(05/0P<). تغییرات در ترکیب اسیدهای چرب در دو فصل در آب های ساحلی دریای خزر(منطقه نوشهر) ناشی از تغییرات فصلی، منابع مواد غذایی موجود و در دسترسمی باشد.
In this study, fatty acid profile of Acartia tonsa in the summer and spring of 2015 in the Caspian Sea (Noshahr) was studied. Sampling was performed below the surface of the water by special zooplankton sampling net (100 microns). .Acartia tonsa samples were isolated, filtered and frozen for fatty acid examination and composition of fatty acids was investigated by GC/MS instrument. The results showed that total saturated fatty acids in spring and summer were 62% and 31,12% , unsaturated fatty acids (MUFA) were 23.89% and 26.11% and unsaturated fatty acids (PUFA) were 14.59% and 23.51%, respectively. Statistical analysis suggested that there was no significant difference between the independent groups of fatty acids in spring and summer except for some of the important fatty acids such as Myristic acid, Palmitic acid, Oleic acid, EPA and DHA which were significantly different in two seasons. The reasons for the differences in the composition of fatty acids are probably related to seasonal changes, availability of food resources, and the composition of fatty acids in the food supply and density of phytoplankton species in each season.
آزادمرد دمیرچی،ص.1389. شیمی و تجزیه روغنها و چربیهای خوراکی.انتشارات عمیدی.تبریز، ایران.
امام، ر. و رسولی، م. 1387. محیطزیستدریایخزر،چالشهاوراهکارها. مجله بندر و دریا، 15: 85-83.
نصراله زاده ساروی، ح.. 1392. بررسی روابط تغذیه ای زئوپلانکتون- فیتوپلانکتون در فصول مختلف حوزه جنوبی دریای خزر. نشریه علمی پژوهشی اقیانوس شناسی، 15: 38-29.
Arts, M.T., Brett, M.T. & Kainz, M.J. 2009. Lipids in aquatic ecosystems. Springer. NewYork.
Brown, M.R., Jeffry, S.W. & Garlaud, C.D. 1989. Nutritional aspects of microalgae used in mariculture, a literature review.CSIRO Marine laboratory, Report 205. Australia.
Dalsgaard, J., St. J., M., Kattner, G., Müller-Navarra, D. & Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225-340.
De Mott, W.R. 1995. Optimal foraging by a suspension-feeding copepod: responses to short- term and seasonal variation in food resources. Oecologia, 103: 230-240.
Gonçalves, A.M.M., Azeiteiro, U.M., Pardal, M.A. & De Troch, M. 2012. Fatty acid profilingreveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuarine, Coastal and Shelf Science, 109: 70-80.
Kattner, G., Krause, M. & Trahms, J. 1981. Lipid composition of some typical North Sea copepods. Marine Ecology Progress Series, 4: 69-74.
Lyche, A. 1991. Inter and intraspecific variations in zooplankton element composition. Hydrobiologie, 121: 343-353.
Ozkizilcik, S. 1995. Lipid and fatty acid composition of striped bass (Morone saxatilis) larvae during development. Comparative Biochemistry and Physiology, 111:665-674.
Parkes, R.J. 1987. Analysis of microbial communities within sediments using biomarkers. In: Fletcher, M.,Gray, T.R.G., Jones, J.G. (Eds.), Ecology of Microbial Communities Cambridge University Press. Cambridge.
Perumal, P., Damotharan, N.P. & Rajkumar, M. 2010. Laboratory culture and biochemical characterization of the Calanoid copepod, Acartia southwelli Sewel, 1914 and Acartia centrura Giesbrecht, 1889. AdvancedBiology Research, 4; 97-107.
Rajendran, N., Matsuda, O., Urushigawa, Y. & Simidu, U. 1994. Characterization of microbialcommunitystructure in the surface sediment of Osaka Bay, Japan, byphospholipid fatty alysis.Applied andEnvironmental Microbiology, 60:248-257.
Stoecker, D. K. & Capuzzo J.M. 1990. Predation on Protozoa: its importance to zooplankton. Journal of Plankton Research, 12: 891-908.
Veloza, A. J. 2005. Transfer of essential fatty acid by marine plankton. Thesis at the School of MarineScience. The College of William and Mary, UK.
Vestal, J.R. & White, D.C. 1989. Lipid analysis in microbial ecology. Bioscience, 39:535- 541.
_||_