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Abstract  

This lecture review examines the analytical investigation of mechanical and thermal 

stresses in hollow cylinders made of functionally graded porous piezoelectric materials 

(FGPPMs). The study synthesizes findings from two research papers that developed 

direct solution methodologies for radially symmetric (1D) and non-axisymmetric (2D) 

loading scenarios. The research addresses multi-physics coupling between elastic 

deformation, piezoelectric effects, porous pressure interactions, and thermal expansion 

in materials with power law property variations. The analytical framework employs 

complex Fourier series expansion and successfully overcomes limitations of traditional 

potential function methods. Key findings reveal that material grading significantly 

influences stress distributions, with critical power law indices determining transition 

behaviors in hoop stress patterns. The compressibility coefficient (B) and pore volume 

fraction (φ) substantially modify both mechanical and electrical responses. Temperature 

distributions, displacement patterns, and electric potential variations demonstrate strong 

dependence on material grading parameters. The studies validate analytical solutions 

through comparison with finite volume numerical methods, showing excellent agreement 

for temperature, radial stress, and circumferential stress distributions. The developed 

methodology provides engineers with powerful tools for optimizing FGPPM structures in 

applications including medical ultrasonic devices, nondestructive testing equipment, 

underwater acoustic systems, and pressure vessel technology. This work represents a  
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significant advancement in smart materials analysis and establishes new paradigms for 

multi-physics modeling of advanced engineering materials. Future research directions 

include dynamic analysis extensions and experimental validation of theoretical 

predictions [1,2]. 
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1. Introduction  

This lecture review examines the comprehensive analytical framework for studying 

mechanical and thermal stresses in hollow cylinders made of functionally graded porous 

piezoelectric materials (FGPPMs), based on two related research papers by Jabbari et 

al. The work represents a significant advancement in the field of smart material analysis, 

extending traditional approaches to incorporate the complex interactions between 

piezoelectric effects, poroelasticity, and functionally graded material properties. 

 

1.1 Functionally Graded Materials (FGMs) 

Functionally graded materials are engineered composites where material properties vary 

continuously and gradually from one surface to another. The combination of ceramic and 

metallic components allows these materials to withstand extreme thermal conditions while 

maintaining structural integrity. The governing equations for temperature and stress 

distributions become coordinate-dependent due to position-dependent material 

properties. 

1.2 Piezoelectric Materials 

Piezoelectric materials exhibit coupled electro-mechanical behavior, making them ideal 

for sensor and actuator applications in smart composite systems. The integration of 

functionally graded concepts with piezoelectric materials has led to the development of 

functionally graded piezoelectric materials (FGPMs). 

1.3 Porous Piezoelectric Materials 

Porous piezoelectric ceramics have gained importance in various applications including 

medical ultrasonic devices, nondestructive testing, underwater acoustics, and low- 
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frequency hydrophones. The introduction of porosity affects the material's mechanical, 

thermal, and electrical properties. 

 

2 Mathematical Framework [1,2] 

2.1 Heat Conduction Problem 

Both studies solve the steady-state heat conduction equation for FGPPMs: 

1D Case (Radially Symmetric):                       
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Where the thermal conductivity follows a power law:          3
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2.2 Stress Analysis 

2.2.1 The stress-strain relations for FGPPM incorporate: 

-  Elastic deformation 

- Piezoelectric coupling 

- Porous pressure effects 

- Thermal expansion 

2.2.2 The constitutive relations are expressed as: [1,2] 

* *
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Where C*ᵢⱼ represents modified elastic constants. 
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2.2.3 Porous Effects 

The porous pressure under undrained conditions is given by: ( )rrp M     
  

 Where:
 

- M is Biot's modulus 

-   is Biot's coefficient of effective stress 

- B is the compressibility coefficient (Skempton coefficient) 

- φ is the pore volume fraction 

 

3.Solution Methodology 

3.1- Direct Method Approach 

Both studies employ a direct method rather than potential function approaches, providing 

several advantages: 

- Mathematical capability to handle complex boundary conditions 

- No limitations on boundary condition types 

- Superior handling of complicated mathematical functions 

3.2. Material Property Assumptions [1,2] 

Material properties (except Poisson's ratio) are expressed as power law functions: 
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For simplification, the studies assume:  m₁ = m₂ = m₇ and m₄ = m₅ = m₆. 

4.Solution Techniques 

4.1   1-D: Radially Symmetric Case: 

- General solutions assumed as  ( ), ( ) ( )g g g

n n nu r v r and r  

- Characteristic equations solved to obtain eigenvalues. 

- Particular solutions incorporated for thermal loading. 

- Four boundary conditions determine unknown coefficients. 
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4.2   2-D: Non-axisymmetric Case: 

- Complex Fourier series expansion: 





n

in

n erTrT  )(),(  

- System reduces to coupled ordinary differential equations 

- Six-order polynomial characteristic equations for eigenvalues 

- Six boundary conditions for coefficient determination 

 

5.Key Results and Observations 

5.1Temperature Distribution 

- Power law index significantly affects temperature distribution 

- Higher power law index (m) results in decreased temperature 

- Non-axisymmetric cases show harmonic patterns 

5.2 Displacement Patterns 

- Radial displacement magnitude decreases with increasing power index 

- Circumferential displacements follow boundary condition patterns 

- Electric potential shows similar trends to mechanical displacements 

5.3 Stress Distributions 

- Radial stress: Increases with power law index. 

- Hoop stress: Shows complex behavior depending on b/a ratio. 

  - For  m < 1: Decreases with radius (similar to isotropic materials). 

  - For  m > 1: Increases with radius due to higher outer layer stiffness. 

  - Critical value m ≈ 1 for b/a = 1.2 where hoop stress remains approximately constant. 

5.4 Porous Effects 

The studies demonstrate that: 

- Compressibility coefficient (B) significantly affects stress distributions 

- Pore volume fraction (φ) influences both mechanical and electrical responses 

- Porous pressure coupling modifies traditional stress patterns 
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5.5 Validation and Verification 

The non-axisymmetric study includes comparison with finite volume method results from 

literature, showing good agreement for: 

- Temperature distributions 

- Radial stress patterns   

- Circumferential stress patterns 

 

6. Applications and Significance 

6.1 Practical Applications 

- Medical ultrasonic devices 

- Nondestructive testing equipment 

- Underwater acoustic systems 

- Low-frequency hydrophones 

- Smart composite structures 

- Pressure vessel technology 

6.2 Theoretical Contributions 

- First comprehensive treatment of FGPPM hollow cylinders 

- Integration of multiple physical phenomena (thermal, mechanical, electrical, porous) 

- Development of direct solution methodology for complex boundary conditions 

- Parametric studies revealing effects of material grading and porosity 

7. Limitations and Future Directions 

7.1 Current Limitations 

- Simplified material property relationships (power law assumptions) 

- Limited to steady-state thermal conditions 

- Assumed undrained porous conditions 

- Simplified porous structure model 

7.2 Future Research Directions 

- Dynamic analysis of FGPPM structures 

- More complex material property variations 

- Coupled fluid-structure interactions in porous media 
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- Experimental validation of theoretical predictions 

- Extension to other geometries and loading conditions 

 

8.Result and Discussion 

8.1 Radially symmetric loads on FGPPMs [1] 
Figure (1) shows the variations of the temperature along the radial direction for different 

values of the power law index. The figure shows that as the power law index m increases, 

the temperature decreased. The radial stresses are plotted along the radial direction and 

shown in Figs. (3). The magnitude of the radial stress is increased as m is increased. The 

hoop stress along the radius decreases for 1m   (similar to thick cylinders made of 

isotropic materials), due to the acting internal pressure and zero external pressure. For 

1m  , the hoop stress increases as the radius increases, since the modulus of elasticity 

is an increasing function of the radius. Physically, this means that the outer layers of the 

cylinder are biased to maintain the stress due to their higher stiffness. There is a limiting 

value for m, where the hoop stress remains almost a constant along the radius. For low 

values of the ratio b
a

, such as 1.2b a  , this value of m is about 1.For higher b
a

 ratios, 

this condition is achieved for higher values of m. For example, for 5b a  , this condition is 

reached for 1.5m  .Figure (5) shows the plot of the radial electric potential along the 

radius. The magnitude of the radial electric potential is decreased as the power index m 

is increased. Figure (6) also shows the same plot of the electrical displacements for 

different values of the pore volume fraction ( ). 
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Fig .1  Temperature distribution in the cross section of cylindrical                                            Fig. 3. Radial distribution of radial stress 

   

 

                   

Fig. 5. Electric  potential in the cross section of cylindrical           Fig .(6) Radial electrical displacement in the cross section of   

                                                                                                              cylinder for different values of the  compressibility coefficient  ( ). 

 

  8.2 Non-axisymmetric loads on FGPPMs [2] 

Figure (7) shows the temperature distribution in the wall thickness along the radius and 

circumferential directions. The effect of the power-law index on the temperature distribution in the 

also shown in Figure (8). Figure (9) show the radial thermal stresses in the cross section of the 

cylinder. It is interesting to see that all components of stresses follow a harmonic pattern on the 

outside surface. The radial and shear stresses are zero at the insider surface, due to the assumed 

boundary conditions. The effect of the power-law index on the distribution of the radial thermal  
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stresses is shown in Figure (10). This figure is the plot of stresses versus 
a

r  at 
3


  .It is shown 

that as m  increases, the radial thermal stresses are increased. 

Figures (11) show the radial mechanical stresses in the cross section of the cylinder respectively 

where the pore compressibility coefficient  ( B ) is changed the other parameters are fixed. Figures 

(12) show these stresses based on the pore volume fraction ( ) is pore volume per total volume.. 

The stress distributions are shown in Figures (13) Stress patterns in the inside and outside 

surfaces follow harmonic patterns. The given harmonic boundary conditions for at r=a have 

general influence on the pattern of the stress distributions in the cylinders cross section, as seen 

from Figures 13. The effect of the power law index on the distribution of the radial mechanical 

stresses is shown in Figure (14). This figure is the plot of stresses versus 
a

r  at 
3


  . It is shown 

that as m  increases, the radial mechanical stresses increase.  

 

                        

Fig.(7) Temperature distribution in the cross section of cylindrical                             Fig .(8) Temperature distribution of radial at 
3

   
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Fig .(9)  Radial thermal stress in the cross section of cylindrical                          Fig .(10) Radial distribution of radial thermal stress rr at 
3

   

         

  

                                                           
                                      Fig .(11)                                                                                                                      Fig .(12) 

              Fig .(11)  Radial thermal stress in the cross section of cylindrical based on the  compressibility coefficient  ( B ) changing. 

              Fig .(12)  Radial thermal stress in the cross section of cylindrical based on the  pore volume fraction ( )changing. 
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 Fig.(13) Radial mechanical stress in the cross section of cylindrical             Fig.(14) Radial distribution of radial mechanical stress rr at 
3

   

         

 

 

 

                                             

        9.  Conclusions 
In the present work an attempt is made to study the problem of general solution for the 

thermal and mechanical stresses in a thick FGPPM hollow cylinder where the one-

dimensional (radially symmetric) two-dimensional (non-axisymmetric) steady-state loads 

are implied .The method of solution is based on the direct method and uses the power 

series, rather than the potential function method. The advantage of this method is its 

mathematical power to handle both simple and complicated mathematical function for the 

thermal and mechanical stresses boundary conditions. The potential function method is 

capable of handling the complicated mathematical functions as boundary condition. The 

proposed method does not have the mathematical limitations to handle the general types 

of boundary conditions, which are usually occurred in the potential function method. The 

direct method approach successfully handles complex boundary conditions that cannot 

be addressed by traditional potential function methods.  
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10.Key findings include: 

10.1 Material Grading Effects:  Power law index significantly influences stress 

distributions, with critical values affecting transition behavior. 

10.2 Porous Coupling:  Pore volume fraction and compressibility coefficient substantially 

modify mechanical and electrical responses. 

10.3 Multi-physics Integration:  Successful coupling of thermal, mechanical, electrical, 

and porous effects in a unified analytical framework. 

10.4 Practical Relevance: Results applicable to design of smart material structures in 

various engineering applications.The work establishes a foundation for further research 

in functionally graded porous piezoelectric materials and demonstrates the effectiveness 

of direct analytical methods for complex multi-physics problems. 
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