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Abstract: In this paper, free vibration of functionally graded (FG) rectangular simply

supported thick plates based on two variable-refined plate theory is presented. According to

a power-law distribution, the mass density and elasticity modulus of the plate are considered

to vary while Poisson’s ratio is constant. In order to extract the five constitutive equations of

motion, Hamilton principle is employed. The high accuracy of this theory is investigated by

comparing the exact results reported by higher order shear deformation theory. Furthermore,

parametric study of non-dimensional natural frequencies is carried out and the influences of

geometrical parameters such as aspect ratios of the plate on these frequencies are studied.
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1. Introduction

Functionally graded materials (FGMs) are a novel
class of composite structures which have great
application for engineering design and manufacture.
First, they are a new generation of composite structures
presented by a group of Japanese scientists [1, 2]. These
materials have desirable properties for specific applications
under stress concentration, particularly for aircrafts,
mechanical, electronic and other engineering structures. In
order to solve plate problems, the choice of the plate
theory and the type of solution method are necessary.
Through the study of comprehensive survey of
literature, it is found that many researches have been
carried out on free vibration of the FG plates and most
of them emphasized numerical methods [3-7]. Free
vibration of simply supported and clamped rectangular
thin FG plates was presented by Abrate [6] based on the
classical plate theory.

In another work, Abrate [7] also investigated free
vibration, buckling and static deflections of different
shapes of FG, such as square, circular and skew plates
with several boundary conditions on the basis of the
classical plate theory, first order shear deformation
theory and third order shear deformation theory. Zhao et

al. [8] have presented a free vibration analysis for FG
square and skew plates with different boundary
conditions using the element-free kp-Ritz method on the
basis of the FSDT. Kant and Mallikarjuna [9] presented
a higher-order theory for free vibration analysis of un-
symmetrically laminated multilayered plates in such a
way that the transverse shear strains through the
thickness of the plate and rotary inertia effects have
been considered. Matsunaga [10] presented natural
frequencies and buckling stresses of simply supported FG
plates based on 2D higher-order approximate plate theory.
Hosseini Hashemi et al. [11] analyzed a new exact
closed-form procedure to solve free vibration analysis
of functionally graded rectangular thick plates using the
third-order shear deformation plate theory (TSDT) for a
plate with two opposite simply supported edges.
Hosseini-Hashemi et al. [12] also presented an
analytical method for free vibration analysis of
moderately thick rectangular FG plates which has been
supported by either Winkler or Pasternak elastic
foundations. Hosseini-Hashemi et al. [13] studied exact
free vibration of Reissner—-Mindlin FG plates with the
help of the Levy-type solutions related to the cases
where two opposite edges are simply supported and the
other edges of the plate can have different boundary
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conditions. Seung-Eock et al. [14] developed the two
variable refined plate theory (RPT2) for plates which
are under the action of the transverse and in-plane
forces and obtained the stiffness and mass matrices.
They compared the non-dimensional deflection obtained
by various theories namely the classical laminate plate
theory, the first order shear deformation theory, the
higher order shear deformation theory and the refined
plate theory. Seung-Eock et al. [15] also carried out
buckling analysis of isotropic and orthotropic plates
using the foregoing theory.

The purpose of this paper is to develop the RPT2 for
FG plates. The present theory satisfies equilibrium
conditions at the top and bottom faces of the plate
without considering the shear correction factors. The
equations of motion of the plate are obtained with the
help of calculus of variations. To illustrate the accuracy
of the present theory, the obtained results are compared
with three dimensional elasticity solutions obtained by
the first-order and the higher-order theories.

2. Basic formulation

2.1. Material properties of P-FGM plates

A flat and moderately thick functionally rectangular
plate with length, width and uniform thickness equal to
a, b and h respectively is shown in Fig. 1. The plate is
assumed to have simply supported boundaries. Considering
of the volume fraction of the constituent material law
[16], the young’s modulus, E(z) and density,p(z) of
FG plates can be concluded as functions of thickness
coordinates, z, as below:

E(:)=E, +(E, —E,,,)[%ﬁjp (1)

1 zY
plz)=p, +(p. —pm)(sz
The subscripts m and ¢ show the metallic and
ceramic constituent, respectively. p is the power law
index which takes positive values. The variation of
Young’s modulus in the P-FGM plates is shown in Fig.
2. Other types of FGM materials such as S-FGM and E-
FGM can be found in [17].
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2.2. Refined plate theory

A rectangular plate with length, width and thickness
equal to a, b and h respectively is considered. In order to
proceed with the formulation of the problem using the
two-variable refined plate theory (RPT2), it is assumed
that the displacements (u,v,w) of the plate are small in
comparison with the thickness of the plate; hence the
strains involved are considered to be infinitesimal. On

the other hand, the transverse normal stress in the z-
direction, o, is very small in comparison with the in-

plane stresses, o, and o,. So, with above definitions,

the stress — strain relations can be reduced from a 6x6
matrix to a 5x5 matrix which can reduce the
complexity of the problem. The total displacement of
the plate in the z-direction (W) is assumed to be
consisting of three components of extensionw"’,
bending w"and shear w* terms which are functions of
x,y and the time. The displacements in the X, y and z-

directions are also defined as [14]:

ow'(x,y,t)

U(x’y’z’t):u(x’yyt)_z
ox

(2)
l _i 3 aws(x’y:l)
+[4Z 3h2z} ox
b
V(x,y,z,t)zv(x,y,t)—ZM
dy

+ lz_iZZS aw(x’y’t)
4 3h dy

W(x,v,2,t)=w'(x,y,t)+w’(x,y,t )+ W' (x,y,t)

Ceramic

Fig. 1. CAD model of FGM rectangular plate.
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Fig. 2. Variation of Young modulus in a P-FGM plate.

Where u, v, w*, w’ and w® are the mid-plane
displacements and t is the time. The strain displacement

relations are given as:

oU oV 1({oU oV
=_,g_=_’g’ = — —+—,
foox T oy Y dy ox
e = (8U ow J e - 1(ov aW 3)
- dz ox ) ” az ay

Based on Hooke’s law, the stress displacement
relations are defined as:

= E(z) -
x 1—V2 [EX +V€v]’ O-v -

o.=2 E(z) e 0. =2 E(z) £
2l+v) ) 21+v)) "

3. Governing equation

E(z)

201+ v)}s*" 4)

E(Zf [sv +ve‘x] .0, =2(
1-v= - :

It can be verified that the first variation of the
Lagrangian, L=T-U (i.e., Hamilton’s principle) leads
to the equations of motion. In this study, U, denotes
the total strain energy and T is the kinetic energy of the
plate can be written as:

J- (J-h/Z
h/2

U2 +v2+w )dxdydz) i (5)

0,06, +0,0¢, +20,0¢,,

/ﬂan _I j h;i/zzj J‘:

+20,.0¢,. +20,.0¢,

dxdydzdt

Substituting Egs. (2) and (3) into Eq. (5) and
collecting the coefficients of du, &, Sw*, w”, and ',

the following equations of motion for FG plate are
given as [14]:

oN,,
aévx axj =1l (©6)
X y
N, W,
o — +—=1
dy ox
MP *MP_*M? .
' — oM, 22— = [W - LV}’

ox* oy’ dxdy
2 s azM.y aZM\' 5 a
aM'+ L +2 ”‘+aQ"+ O

w' — ~
ox* oy’ 0xdy ox dy

IW—iV w'
84

00 905, .
St — e P =I,W
ox dy
Where [,,I, are the inertia terms and define as

below:
Iyp(z)(l,f)dz (7)

Where convention shows the
differentiation with respect to the time. The stress

M!,M;, Q! and Q; are given as [14]:

dot-operator

resultants N,
(NX,N),,NX) j/(a 0,0, )dz (8)
batmr )= {7 (00,0, ) ad

_ 3
(Mj,Mj,ij):jf{%(ax,oy,aﬂ,)(Ter%] dz

(Q;lz’Q;fz): ,[ ﬁ/% (GXZ’G,VZ )dZ
5 577
0201 o) [3-35

Where N, M and Q are the stress resultants and
defined in the Appendix. Inserting Eq. (A1) into Eq. (6),
the governing equation of FG plate can be written as:

o%u

%
e )—

+(4, + Ags xdy

az
+ A= 3

83 b 83 b
[B (Blz+2366) sz_

A

€)

A 0xdy

L oW’ : Lot ..
[Bn ? + (Bl2 + ZBOG)WJ =lu
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4. Boundary condition

Here, boundary conditions for FG plates with simply
supported boundary at all edges are considered as:

For x=0,a (10)

a b s
:aw :LW :8w =N, =M’'=M’=0
dy dy dy :

ow’ ow’ _ow'

=N, =M’"=M:=0
ox ox ox ’ ’ ’

To solve this problem with the given boundary
conditions, Navier solution procedure is employed for
satisfying the following expansion:

u U,,cost,xsinf,y

v _ | Visina,xcos B,y
w, o=, 2 AW, sina, xsinf,y (11)
w, e W, .. sina, xsinf,y

w, W,..sinc, xsin 3,y

v W W  and

mn’ " mn’ bmn? smn

Where a=mz/a, f=nz/b, U
w_ are coefficients. Finally, the Eignvalue problem

amn

for vibration of the plate is obtained as:
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([x]-[m] & {2} = 0} (12)
Where [K],[M], @ and A are the stiffness, mass

matrices, natural frequency and the vector of unknown
coefficients respectively.

For convenience, the fundamental frequency parameter
(©) and the non-dimensional natural frequency parameter

(fZ) of the plate are given respectively as [13]:

2
Q=" /&, Q=an |Pe (13)
h\E, E,

5. Numerical results and discussion

This section illustrates the efficiency and stability of
proposed theory. Using the previously developed
analytical solutions based on the FSDT and HSDT,
numerical parametric studies based on RPT2 are

presented. In this study, the FG plate is taken to be
made of two types of material (i.e., Al/ Al,O,and

Al/Zr0O,) which the material properties are in Table 1.

In order to investigate the efficiency and accuracy of the
presented theory, the results are compared with isotropic

FG plates. Here, for generality and convenience, two
non-dimensional terms, thickness ratio(r) and aspect

ratio (i) are defined as h/a and b/a respectively. As a

matter of fact, when the power law index (p) approaches
to zero, the plate is isotropic fully ceramic and when
this index approaches toe,the plate is isotropic and
fully metallic.

To examine free vibrations of the plate, the values of
in-plane distributed loads are set to zero. Table 2 shows
the comparison of the fundamental frequency parameter
for the homogenous isotropic Al/ AL,O, square plates
for =0.1 and 7 =0.2. The results are compared with
exact higher order shear deformation theory (HSDT)
[13,18] which shows a very good agreement. Table 3
shows the comparison of the non-dimensional natural
frequency parameter (f)) for Al/ALO, square plate
with those results obtained based on HSDT [13, 19]
(Exact solution) and FSDT [20] for p=0,0.51,4,10
and oo.

This table shows that there is a very good agreement
between the results of RPT2 and those of exact
analytical solution using higher order shear deformation
plate theory [13,19]. In this Table, m and n are the
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corresponding mode shapes which are defined as
numbers of half waves in X and Y-directions,
natural

respectively. The first three frequency

parameters for six different values of the power law
index (i.e., p=0,0.5,1,2,510) are obtained and the
numerical results are compared with exact closed form
solutions [13] in Table 4, whereas the considered plate
is made of Al/Al,o,. Considering the obtained results,
all natural frequencies decrease when the power law
index increases. The reason is the fact that, the natural
frequency parameters of FG plate are directly dependent
on Young’s modulus. Therefore, by increasing the
power law index, the elastic modulus of FG plate
decreases. Moreover, as can be seen in this table, all the

thickness ratio (z=0.2) and power law index (p=1) of
rectangular plate Al/Zro, is presented in Table 6. It is

observed that by increasing the aspect ratio, the

fundamental frequency parameter decreases.

Table 1. Material properties of the used FG plate

Properties
Material E (GPa) v P (kg/ms )
Aluminium (Al) 70 0.3 2702
Alumina (Al203) 380 0.3 3800
Zirconia (Z}’O2 ) 200 0.3 5700

Table 2. Comparison of fundamental frequency parameter (Q) , for

Al/ALO; square plates (5 =1)

1§ . han ; i th T=h/a
natural frequency parameters rise with an increase in the Material Method
thickness ratio of the plate. 01 0.2
This is undoubtedly due to increasing the rigidity of (P “’P"Sedﬁ) 3.7694 52813
. . i HSDT |p =107 J[13
the plate. As depicted in Table 5, the results of non- Fully ceramic P [13] 37694 52813
dimensional natural frequency (fl) for SSSS Al/ZrO, HSDT[18] 5.7694 5.2813
square thin and moderately thick plate are compared (P“’p"seds) 29376 2.6891
. . alli HSDT |p =10 ) [13
with those obtained by HSDT [13, 19], 3D theory by Fully metallic p 1] 2.9376 2.6891
employing the power series method [21] and finite HSDT[18] 29376  2.6891
element HSDT method [22].
The influence of the aspect ratio on the fundamental
frequency parameter (Q) for constant values of
Table 3. Comparative results of the non-dimensional natural frequency (fz) for Al/AL,O; square plates (1; = 1)
_ Power law index (p)
T=h/a (m,n) Method 0 03 1 2 m =
Proposed 0.0148 0.0125 0.0113 0.0098 0.0094 -
0.05 (1,1) Exact HSDT[13] 0.0148 0.0125 0.0113 0.0098 0.0094 -
FSDT[17] 0.0146 0.0124 0.0112 0.0097 0.0093 -
Proposed 0.0577 0.0490 0.0442 0.0380 0.0364 0.0293
wh Exact HSDT[13] 0.0577 0.0490 0.0442 0.0381 0.0364 0.0293
: HSDT[19] 0.0577 0.0492 0.0443 0.0381 0.0364 0.0293
FSDT[17] 0.0568 0.0482 0.0435 0.0376 0.0359 -
Proposed 0.1377 0.1173 0.1058 0.0901 0.0856 0.0701
ol 12 Exact HSDT[13] 0.1377 0.1174 0.1059 0.0903 0.0856 0.0701
: ’ HSDT[19] 0.1381 0.1180 0.1063 0.0904 0.0859 0.0701
FSDT[17] 0.1354 0.1154 0.1042 - 0.0850 -
Proposed 02113 0.1806 0.1628 0.1375 0.1299 0.1073
2.2) Exact HSDTJ[13] 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076
’ HSDT[19] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077
FSDT[17] 0.2063 0.1764 0.1594 - 0.1289 -
Proposed 02113 0.1806 0.1628 0.1375 0.1299 0.1075
wh Exact HSDTJ[13] 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076
’ HSDT[19] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077
FSDT[17] 0.2055 0.1757 0.1587 0.1356 0.1284 -
02 Proposed 0.4622 0.3982 0.3595 0.2969 0.2767 0.2352
: (1,2) Exact HSDT[13] 0.4623 0.3989 0.3607 0.2980 0.2771 0.2355
HSDT[19] 0.4658 0.4040 0.3644 0.3000 0.2790 0.2365
Proposed 0.6688 0.5790 0.5234 0.4268 0.3943 0.3401
2.2) Exact HSDT[13] 0.6688 0.5803 0.5254 0.4284 0.3948 0.3407
HSDT[19] 0.6753 0.5891 0.5444 04362 0.3981 0.3429
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Table 4. First three natural frequency parameters (Q) for Al/AL,O; rectangular plates, (7) = 2)

_ Power law index (p)
t=h/a (m,n) Method 5 03 i > s 0
an Proposed 3.7123 3.1456 2.8350 2.5768 2.4400 23617
’ Exact FSDT[13] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3642
0.05 12) Proposed 5.9199 5.0176 4.5221 4.1091 3.8875 3.7618
’ ’ Exact FSDT[13] 5.9198 5.0175 4.5228 4.1115 3.8939 3.7681
@ Proposed 12.4562 10.5661 9.5231 8.6470 8.1600 7.8892
’ Exact FSDT[13] 12.4560 10.5660 9.5261 8.6572 8.1875 7.9166
(.1 Proposed 3.6518 3.0984 2.7926 2.5351 2.3904 23104
’ Exact FSDT[13] 3.6518 3.0983 2.7937 2.5386 2.3998 23197
01 12) Proposed 5.7694 4.9000 4.4167 4.0057 3.7653 3.6554
’ ’ Exact FSDT[13] 5.7693 4.8997 4.4192 4.0142 3.7881 3.6580
@ Proposed 11.8315 10.0754 9.0832 8.2184 7.6622 7.3770
’ Exact FSDT[13] 11.8310 10.0740 9.0928 8.2515 7.7505 7.4639
(.1 Proposed 3.4412 2.9328 2.6442 2.3907 2.2236 2.1390
’ Exact FSDT[13] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1677
0.2 1.2) Proposed 5.2813 4.5139 4.0707 3.6716 3.3865 3.2481
’ ’ Exact FSDT[13] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3094
@ Proposed 10.1100 8.7010 7.8532 7.0487 6.3883 6.0875
’ Exact FSDT[13] 9.7416 8.6926 7.8711 7.1189 6.5749 5.7518
0.9 : : : ; ; 75 e 2 e e | B 1 B B A1 B B A A
o] [0 , Wes0.10) L
—B—b/a=2/3 7H == Wa=0.15(*) | m — 4 14 Lo e — i b
N R e w020y 1 AN
| —¥—bla=1.5 6.5 —Wa=0.1(+%) [l _ 1 N
PO [ a2 A ——Wa=015¢%) | 11 1 R
051 b W~~~ Wa=02("%) lw - 4‘ Z ST A IS :— H—: HLL
|

¥ HHH\Y\"\"‘U I

----- R
55 HH:‘:,-;

=3
'S
T

Eigenfrequency parameter
[=))

Non-dimensional first natural frquency

T T
Lt
03k 7 L0 T
pressssperedmbde L G LTI LA T [
Lo N AR N R RN Lo
0.2 SP = T EmimT S P S T T T T T T T T T
RN RN R e R R R TN I R R
01k 4 RN AR RN N R R TN IR R R
L1 Ll LI | A | L1 L
) 457 Bl 0 1 2 3
0.25 03 10 10 10 10 10 10

Wa Power law index (p)

Fig. 4. Variation of the eigen-frequency parameter ( ) versus the p for
Fig. 3. Variation of Young modulus in a rectangular P-FGM plate.
the FG square plate (7 = 1), AVALO; (*), AUZrO; (*¥).

Table 5. Comparative results of the non-dimensional natural frequency (ﬁ) for Al/ZrO; square plates

p=0 p=1 =02
Method
r=1/10 r=0.1 £=0.05 =01 7=02 p=2 p=3 p=5
Proposed 0.4622 0.0577 0.0158 0.0618 0.2271 0.2249 0.2256 0.2267
HSDTJ[13] 0.4623 0.0577 0.0158 0.0619 0.2276 0.2256 0.2263 0.2272
HSDTJ[19] 0.4658 0.0577 0.0158 0.0619 0.2285 0.2264 0.2270 0.2281
3-D[21] 0.4648 0.0577 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225
FSDT[22] 0.4619 0.0577 0.0162 0.0633 0.2323 0.2325 0.2334 0.2334
Table 6. Variation of fundamental frequencies with different values of aspect ratios for 7=0.2, ( p=1), Al/ZrO,
Method (77 - b/ a)
0.5 23 1 L5 2
Proposed 10.7214 74741 48782 3.6280 3.1737
Exact HSDTJ[13] 9.3216 7.5005  4.8909 3.6354 3.1796
Error (%) -0.1502 0.0035  0.0026 0.0020 0.0019
The influence of thickness ratio on free vibration of consequently decreasing the non-dimensional first
the rectangular plates with various aspect ratios is natural frequency. Here, a non-dimensional parameter
shown in Fig. 3. As expected, increasing the aspect ratio (ﬁ =wa® / hat o) / E) called the eigen-frequency parameter is

leads to decreasing the stiffness of the plate, and
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defined in which p and E are considered as mass density
and Young’s modulus of the mid-plane (z=0),

respectively. This parameter was defined by [13] and

has its own special characteristics. Fig. 4 shows the
variation of power law index (p=0 to 1000) on the

eigen-frequency parameter (B:a)az/h\/ﬁ/_E ) for FG
rectangular plates with different thickness ratios. First
three eigenfrequencies are for Al/A,O; and the next
three ones are for Al/ZrO,.

It can be seen that the power law index has a great
effect on Q. As a matter of fact, without considering
the materials, Q has the minimum and maximum
values at the point around (p=1) and (p=8),
respectively. The AI/ALO; FG plate material has more
influences than Al/ZrO; on the eigen-frequency parameter.
As mentioned earlier, the reason is that the frequency
parameters are dependant on elasticity modulus.
Therefore, by increasing the power law index, the
elastic modulus of FG plate decreases due to increasing
the rigidity of the plate.

6. Conclusions

Free vibration analysis of thick functionally graded
rectangular plates was addressed. A two- variable refined
plate theory was developed for functionally graded material
plates. The theory gives parabolic distribution of the
transverse shear strains, and no shear correction factor is
needed. The numerical results have proved the
efficiency and accuracy of this theory. The results were
compared with the exact solution obtained by higher
order shear deformation plate theory. The effects of
different aspect ratio and thickness ratio on free
vibration of FG rectangular plates with two different
materials were also investigated. The main conclusions
are listed as:

1- The results of RPT2 are very good agreement with
exact analytical solution using higher order shear
deformation plate theory.

2- All natural frequencies decrease when the power law
index increases.

3- Because of increasing the rigidity of the FG plate, all
the natural frequency parameters rise with an
increase in the thickness ratio of the plate.

4- By increasing the aspect ratio, the fundamental
frequency parameter decreases.

5- It is obvious that the power law index is an effective
factor on eigen-frequency parameter.

6- The AlI/AL,O; FG plate material has more effects on
the eigen-frequency parameter in comparison with
Al/ZrO; FG plate.

Nomenclature
W, Displacement term in extension in the z-
direction
W Displacement term in bending in the z-direction
W Displacement term in shear in the z-direction
Ojj Stress in the local coordinate
i Strain in the local coordinate
v Poisson's ratio
Appendix
N* [ AI 1 AIZ Alﬁ Bl 1 BIZ Blﬁ B]‘I BI\Z Bi\ﬁ
N\ A72 A76 Bl2 BZZ B26 Bl‘2 B£2 BZ‘()
N\\ Ahﬁ Blh BZ(» Bhﬁ Blsh Blvﬁ B(:h
b s s s
M»‘ Dll DIZ DI6 Dll DIZ Dlﬁ
b s s s
M= D, Dy Dy, Dy, D36
b s s s
MX" Dﬁé Dl() DZE D()G
M; Hy  H,  Hy
M; H;, Hg
M| | Sym. Hyg |
ou/ox
dv/dy
ou/dy +dv/dx (A1)
- 0w’ [ax?
— 92wt /ayz
—20*w"[oxay
—0%w'/ax?
— 9w /ayz
—20°w*[oxdy
a a a a
Oy Ay Ass Ay Ajs ||ow / dy
a a a
Q. _ Ass Als Ass aWa/ ox
s s s s
Q_,vz Ay Ay ow / ay
0., Sym. AL || ow* fox

1-v
(All 2 Any Ay Ajgs Agg s Ags ) = A(l,l,V,O,(), TJ
1-v
(BnrBzz’Blz’Bls’Bszss)=B 1:1)V:0)0:T
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s s s s -D 5F 1-v
’Dzz'DlleleszsyDee)=[T+3}7j[1,l,v,0,0,Tj

P T R — D 25H S5F 1-v
(HH,HD,le,HI(,,Hm,H“):[ng o —@][1,1,1/,0,0,7)

¢ id aa 5A 5D 1-v
(Ass A Ass )= (_ - —j[—j(l,l,())

4 hP N\ 2
S as  gs 25A 25D 25F \(1-v
(A§5rA44rA45)=( 16 - TE + 0t )( ) ](LLO)

1-v
(A44 s Ass, Ags ) =A (T) (1’1)0)

h/2
(A.B,D,E,F.H)= | HQ
2 1=V

(1,2,22,13,24,16) (A3)
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