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Abstract: In this paper, free vibration of functionally graded (FG) rectangular simply 

supported thick plates based on two variable-refined plate theory is presented. According to 

a power-law distribution, the mass density and elasticity modulus of the plate are considered 

to vary while Poisson’s ratio is constant. In order to extract the five constitutive equations of 

motion, Hamilton principle is employed. The high accuracy of this theory is investigated by 

comparing the exact results reported by higher order shear deformation theory. Furthermore, 

parametric study of non-dimensional natural frequencies is carried out and the influences of 

geometrical parameters such as aspect ratios of the plate on these frequencies are studied. 
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1. Introduction 

Functionally graded materials (FGMs) are a novel 

class of composite structures which have great 

application for engineering design and manufacture. 

First, they are a new generation of composite structures 

presented by a group of Japanese scientists [1, 2]. These 

materials have desirable properties for specific applications 

under stress concentration, particularly for aircrafts, 

mechanical, electronic and other engineering structures. In 

order to solve plate problems, the choice of the plate 

theory and the type of solution method are necessary. 

Through the study of comprehensive survey of 

literature, it is found that many researches have been 

carried out on free vibration of the FG plates and most 

of them emphasized numerical methods [3-7]. Free 

vibration of simply supported and clamped rectangular 

thin FG plates was presented by Abrate [6] based on the 

classical plate theory.  

In another work, Abrate [7] also investigated free 

vibration, buckling and static deflections of different 

shapes of FG, such as square, circular and skew plates 

with several boundary conditions on the basis of the 

classical plate theory, first order shear deformation 

theory and third order shear deformation theory. Zhao et 

al. [8] have presented a free vibration analysis for FG 

square and skew plates with different boundary 

conditions using the element-free kp-Ritz method on the 

basis of the FSDT. Kant and Mallikarjuna [9] presented 

a higher-order theory for free vibration analysis of un-

symmetrically laminated multilayered plates in such a 

way that the transverse shear strains through the 

thickness of the plate and rotary inertia effects have 

been considered. Matsunaga [10] presented natural 

frequencies and buckling stresses of simply supported FG 

plates based on 2D higher-order approximate plate theory. 

Hosseini Hashemi et al. [11] analyzed a new exact 

closed-form procedure to solve free vibration analysis 

of functionally graded rectangular thick plates using the 

third-order shear deformation plate theory (TSDT) for a 

plate with two opposite simply supported edges.  

Hosseini-Hashemi et al. [12] also presented an 

analytical method for free vibration analysis of 

moderately thick rectangular FG plates which has been 

supported by either Winkler or Pasternak elastic 

foundations. Hosseini-Hashemi et al. [13] studied exact 

free vibration of Reissner–Mindlin FG plates with the 

help of the Levy-type solutions related to the cases 

where two opposite edges are simply supported and the 

other edges of the plate can have different boundary 
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conditions. Seung-Eock et al. [14] developed the two 

variable refined plate theory (RPT2) for plates which 

are under the action of the transverse and in-plane 

forces and obtained the stiffness and mass matrices. 

They compared the non-dimensional deflection obtained 

by various theories namely the classical laminate plate 

theory, the first order shear deformation theory, the 

higher order shear deformation theory and the refined 

plate theory. Seung-Eock et al. [15] also carried out 

buckling analysis of isotropic and orthotropic plates 

using the foregoing theory.  

The purpose of this paper is to develop the RPT2 for 

FG plates. The present theory satisfies equilibrium 

conditions at the top and bottom faces of the plate 

without considering the shear correction factors. The 

equations of motion of the plate are obtained with the 

help of calculus of variations. To illustrate the accuracy 

of the present theory, the obtained results are compared 

with three dimensional elasticity solutions obtained by 

the first-order and the higher-order theories. 

2. Basic formulation 

2.1. Material properties of P-FGM plates 

A flat and moderately thick functionally rectangular 

plate with length, width and uniform thickness equal to 

a, b and h respectively is shown in Fig. 1. The plate is 

assumed to have simply supported boundaries. Considering 

of the volume fraction of the constituent material law 

[16], the young’s modulus, )z(E  and density, ( )zρ  of 

FG plates can be concluded as functions of thickness 

coordinates, z, as below:   
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The subscripts m and c show the metallic and 

ceramic constituent, respectively. p is the power law 

index which takes positive values. The variation of 

Young’s modulus in the P-FGM plates is shown in Fig. 

2. Other types of FGM materials such as S-FGM and E-

FGM can be found in [17].  

2.2. Refined plate theory 

A rectangular plate with length, width and thickness 

equal to a, b and h respectively is considered. In order to 

proceed with the formulation of the problem using the 

two-variable refined plate theory (RPT2), it is assumed 

that the displacements ),,( wvu  of the plate are small in 

comparison with the thickness of the plate; hence the 

strains involved are considered to be infinitesimal. On 

the other hand, the transverse normal stress in the z-

direction, zσ , is very small in comparison with the in-

plane stresses, xσ  and yσ . So, with above definitions, 

the stress – strain relations can be reduced from a 66 ×  

matrix to a 55×  matrix which can reduce the 

complexity of the problem. The total displacement of 

the plate in the z-direction (W) is assumed to be 

consisting of three components of extension aw , 

bending bw and shear sw  terms which are functions of 

x , y  and the time. The displacements in the x, y and z-

directions are also defined as [14]: 
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Fig. 1. CAD model of FGM rectangular plate. 
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Fig. 2. Variation of Young modulus in a P-FGM plate. 

Where u, v, ,w
a  bw  and sw  are the mid-plane 

displacements and t is the time. The strain displacement 

relations are given as: 
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Based on Hooke’s law, the stress displacement 

relations are defined as: 
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3. Governing equation 

It can be verified that the first variation of the 

Lagrangian, UTL −= (i.e., Hamilton’s principle) leads 

to the equations of motion. In this study, plateU  denotes 

the total strain energy and T is the kinetic energy of the 

plate can be written as:   
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Substituting Eqs. (2) and (3) into Eq. (5) and 

collecting the coefficients of ba
w,w,v,u δδδδ , and swδ , 

the following equations of motion for FG plate are 

given as [14]: 
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Where 31 I,I  are the inertia terms and define as 

below: 
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Where dot-operator convention shows the 

differentiation with respect to the time. The stress 

resultants a

i

s

i

b

ii Q,M,M,N  and s

iQ  are given as [14]: 
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Where N, M and Q are the stress resultants and 

defined in the Appendix. Inserting Eq. (A1) into Eq. (6), 

the governing equation of FG plate can be written as: 
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4.  Boundary condition 

Here, boundary conditions for FG plates with simply 

supported boundary at all edges are considered as: 

For x=0,a                                                                            (10) 
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To solve this problem with the given boundary 

conditions, Navier solution procedure is employed for 

satisfying the following expansion: 
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Where ,bn,am πβπα == smnbmnmnmn W,W,V,U  and 

amnW  are coefficients. Finally, the Eignvalue problem 

for vibration of the plate is obtained as: 

[ ] [ ]( ){ } { }02 =− λωMK                                                  (12) 

Where ]M[,]K[ , ω  and λ  are the stiffness, mass 

matrices, natural frequency and the vector of unknown 

coefficients respectively.  

For convenience, the fundamental frequency parameter 

( )Ω  and the non-dimensional natural frequency parameter 

( )Ω̂  of the plate are given respectively as [13]: 

c
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5. Numerical results and discussion 

This section illustrates the efficiency and stability of 

proposed theory. Using the previously developed 

analytical solutions based on the FSDT and HSDT, 

numerical parametric studies based on RPT2 are 

presented. In this study, the FG plate is taken to be 

made of two types of material (i.e., 32OAl/Al and 

2ZrO/Al ) which the material properties are in Table 1. 

In order to investigate the efficiency and accuracy of the 

presented theory, the results are compared with isotropic 

FG plates. Here, for generality and convenience, two 

non-dimensional terms, thickness ratio ( )τ  and aspect 

ratio ( )η  are defined as ah  and ab  respectively. As a 

matter of fact, when the power law index (p) approaches 

to zero, the plate is isotropic fully ceramic and when 

this index approaches to ,∞ the plate is isotropic and 

fully metallic.  

To examine free vibrations of the plate, the values of 

in-plane distributed loads are set to zero. Table 2 shows 

the comparison of the fundamental frequency parameter 

for the homogenous isotropic 32OAl/Al  square plates 

for 10.=τ  and 20.=τ . The results are compared with 

exact higher order shear deformation theory (HSDT) 

[13,18] which shows a very good agreement. Table 3 

shows the comparison of the non-dimensional natural 

frequency parameter ( )Ω̂  for 32OAl/Al  square plate 

with those results obtained based on HSDT [13, 19] 

(Exact solution) and FSDT [20] for 1041500 ,,,.,p =  

and .∞  

This table shows that there is a very good agreement 

between the results of RPT2 and those of exact 

analytical solution using higher order shear deformation 

plate theory [13,19]. In this Table, m and n are the 
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corresponding mode shapes which are defined as 

numbers of half waves in X and Y-directions, 

respectively. The first three natural frequency 

parameters for six different values of the power law 

index (i.e., 10521500 ,,,,.,p = ) are obtained and the 

numerical results are compared with exact closed form 

solutions [13] in Table 4, whereas the considered plate 

is made of 32oAl/Al . Considering the obtained results, 

all natural frequencies decrease when the power law 

index increases. The reason is the fact that, the natural 

frequency parameters of FG plate are directly dependent 

on Young’s modulus. Therefore, by increasing the 

power law index, the elastic modulus of FG plate 

decreases. Moreover, as can be seen in this table, all the 

natural frequency parameters rise with an increase in the 

thickness ratio of the plate.  

This is undoubtedly due to increasing the rigidity of 

the plate. As depicted in Table 5, the results of non-

dimensional natural frequency ( )Ω̂  for SSSS 2ZrO/Al  

square thin and moderately thick plate are compared 

with those obtained by HSDT [13, 19], 3D theory by 

employing the power series method [21] and finite 

element HSDT method [22]. 

The influence of the aspect ratio on the fundamental 

frequency parameter ( )Ω  for constant values of 

thickness ratio ( )20.=τ  and power law index ( )1=p  of 

rectangular plate 2Zro/Al  is presented in Table 6. It is 

observed that by increasing the aspect ratio, the 

fundamental frequency parameter decreases. 

Table 1. Material properties of the used FG plate 

Material 
Properties 

( )GPaE  ν  ( )3
mkgρ  

Aluminium ( )Al  70 0.3 2702 

Alumina ( )32OAl  380 0.3 3800 

Zirconia ( )2ZrO  200 0.3 5700 

Table 2. Comparison of fundamental frequency parameter (((( ))))ΩΩΩΩ , for 

Al/Al2O3 square plates )( 1====ηηηη  

Material Method 

ah=τ  

0.1 0.2 

Fully ceramic 

Proposed 5.7694 5.2813 

HSDT ( )610−=p [13] 5.7694 5.2813 

HSDT[18] 5.7694 5.2813 

Fully metallic 

Proposed 2.9376 2.6891 

HSDT ( )510=p  [13] 2.9376 2.6891 

HSDT[18] 2.9376 2.6891 

 

Table 3. Comparative results of the non-dimensional natural frequency (((( ))))ΩΩΩΩ̂  for Al/Al2O3 square plates (((( ))))1====ηηηη  

ah=τ  ( )n,m         Method 
Power law index (p) 

          0           0.5           1           4           10        ∞  

0.05 (1,1) 

Proposed 0.0148 0.0125 0.0113 0.0098 0.0094 - 

Exact HSDT[13] 0.0148 0.0125 0.0113 0.0098 0.0094 - 

FSDT[17] 0.0146 0.0124 0.0112 0.0097 0.0093 - 

0.1 

(1,1) 

Proposed 0.0577 0.0490 0.0442 0.0380 0.0364 0.0293 

Exact HSDT[13] 0.0577 0.0490 0.0442 0.0381 0.0364 0.0293 

HSDT[19] 0.0577 0.0492 0.0443 0.0381 0.0364 0.0293 

FSDT[17] 0.0568 0.0482 0.0435 0.0376 0.0359 - 

(1,2) 

Proposed 0.1377 0.1173 0.1058 0.0901 0.0856 0.0701 

Exact HSDT[13] 0.1377 0.1174 0.1059 0.0903 0.0856 0.0701 

HSDT[19] 0.1381 0.1180 0.1063 0.0904 0.0859 0.0701 

FSDT[17] 0.1354 0.1154 0.1042 - 0.0850 - 

(2,2) 

Proposed 0.2113 0.1806 0.1628 0.1375 0.1299 0.1073 

Exact HSDT[13] 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076 

HSDT[19] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077 

FSDT[17] 0.2063 0.1764 0.1594 - 0.1289 - 

0.2 

(1,1) 

Proposed 0.2113 0.1806 0.1628 0.1375 0.1299 0.1075 

Exact HSDT[13] 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076 

HSDT[19] 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077 

FSDT[17] 0.2055 0.1757 0.1587 0.1356 0.1284 - 

(1,2) 

Proposed 0.4622 0.3982 0.3595 0.2969 0.2767 0.2352 

Exact HSDT[13] 0.4623 0.3989 0.3607 0.2980 0.2771 0.2355 

HSDT[19] 0.4658 0.4040 0.3644 0.3000 0.2790 0.2365 

(2,2) 

Proposed 0.6688 0.5790 0.5234 0.4268 0.3943 0.3401 

Exact HSDT[13] 0.6688 0.5803 0.5254 0.4284 0.3948 0.3407 

HSDT[19] 0.6753 0.5891 0.5444 0.4362 0.3981 0.3429 
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Table 4. First three natural frequency parameters (((( ))))ΩΩΩΩ  for Al/Al2O3 rectangular plates, (((( ))))2====ηηηη  

ah=τ  ( )n,m           Method 
Power law index (p) 

          0         0.5           1           2           5           10 

0.05 

(1,1) 
Proposed 3.7123 3.1456 2.8350 2.5768 2.4400 2.3617 

Exact FSDT[13] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3642 

(1,2) 
Proposed 5.9199 5.0176 4.5221 4.1091 3.8875 3.7618 

Exact FSDT[13] 5.9198 5.0175 4.5228 4.1115 3.8939 3.7681 

(2,1) 
Proposed 12.4562 10.5661 9.5231 8.6470 8.1600 7.8892 

Exact FSDT[13] 12.4560 10.5660 9.5261 8.6572 8.1875 7.9166 

0.1 

(1,1) 
Proposed 3.6518 3.0984 2.7926 2.5351 2.3904 2.3104 

Exact FSDT[13] 3.6518 3.0983 2.7937 2.5386 2.3998 2.3197 

(1,2) 
Proposed 5.7694 4.9000 4.4167 4.0057 3.7653 3.6554 

Exact FSDT[13] 5.7693 4.8997 4.4192 4.0142 3.7881 3.6580 

(2,1) 
Proposed 11.8315 10.0754 9.0832 8.2184 7.6622 7.3770 

Exact FSDT[13] 11.8310 10.0740 9.0928 8.2515 7.7505 7.4639 

0.2 

(1,1) 
Proposed 3.4412 2.9328 2.6442 2.3907 2.2236 2.1390 

Exact FSDT[13] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1677 

(1,2) 
Proposed 5.2813 4.5139 4.0707 3.6716 3.3865 3.2481 

Exact FSDT[13] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3094 

(2,1) 
Proposed 10.1100 8.7010 7.8532 7.0487 6.3883 6.0875 

Exact FSDT[13] 9.7416 8.6926 7.8711 7.1189 6.5749 5.7518 
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Fig. 3. Variation of Young modulus in a rectangular P-FGM plate. 
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Fig. 4. Variation of the eigen-frequency parameter ( ββββ ) versus the p for 

the FG square plate ( 1====ηηηη ), Al/Al2O3 (*), Al/ZrO2 (**). 

Table 5. Comparative results of the non-dimensional natural frequency (((( ))))ΩΩΩΩ̂  for Al/ZrO2 square plates 

Method 

0=p  1=p  20.=τ  

101=τ  10.=τ  050.=τ  10.=τ  20.=τ  2=p  3=p  5=p  

Proposed 0.4622 0.0577 0.0158 0.0618 0.2271 0.2249 0.2256 0.2267 

HSDT[13] 0.4623 0.0577 0.0158 0.0619 0.2276 0.2256 0.2263 0.2272 

HSDT[19] 0.4658 0.0577 0.0158 0.0619 0.2285 0.2264 0.2270 0.2281 

3-D [21] 0.4648 0.0577 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225 

FSDT[22] 0.4619 0.0577 0.0162 0.0633 0.2323 0.2325 0.2334 0.2334 

Table 6. Variation of fundamental frequencies with different values of aspect ratios for 20.====ττττ , )p( 1==== , Al/ZrO2 

Method 
( )ab=η  

0.5 2/3 1 1.5 2 

Proposed 10.7214 7.4741 4.8782 3.6280 3.1737 

Exact HSDT[13] 9.3216 7.5005 4.8909 3.6354 3.1796 

Error (%) -0.1502 0.0035 0.0026 0.0020 0.0019 
 

 
 

 

The influence of thickness ratio on free vibration of 

the rectangular plates with various aspect ratios is 

shown in Fig. 3. As expected, increasing the aspect ratio 

leads to decreasing the stiffness of the plate, and 

consequently decreasing the non-dimensional first 

natural frequency. Here, a non-dimensional parameter 

( )Eha ρω 2=Ω  called the eigen-frequency parameter is 
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defined in which ρ  and E  are considered as mass density 

and Young’s modulus of the mid-plane )z( 0= , 

respectively. This parameter was defined by [13] and 

has its own special characteristics. Fig. 4 shows the 

variation of power law index ( 0=p  to 1000 ) on the 

eigen-frequency parameter ( )Eha ρωβ 2=  for FG 

rectangular plates with different thickness ratios. First 

three eigenfrequencies are for Al/Al2O3 and the next 

three ones are for Al/ZrO2. 

It can be seen that the power law index has a great 

effect on Ω . As a matter of fact, without considering 

the materials, Ω  has the minimum and maximum 

values at the point around )p( 1=  and )p( 8= , 

respectively. The Al/Al2O3 FG plate material has more 

influences than Al/ZrO2 on the eigen-frequency parameter. 

As mentioned earlier, the reason is that the frequency 

parameters are dependant on elasticity modulus. 

Therefore, by increasing the power law index, the 

elastic modulus of FG plate decreases due to increasing 

the rigidity of the plate. 

6. Conclusions 

Free vibration analysis of thick functionally graded 

rectangular plates was addressed. A two- variable refined 

plate theory was developed for functionally graded material 

plates. The theory gives parabolic distribution of the 

transverse shear strains, and no shear correction factor is 

needed. The numerical results have proved the 

efficiency and accuracy of this theory. The results were 

compared with the exact solution obtained by higher 

order shear deformation plate theory. The effects of 

different aspect ratio and thickness ratio on free 

vibration of FG rectangular plates with two different 

materials were also investigated. The main conclusions 

are listed as: 

1- The results of RPT2 are very good agreement with 

exact analytical solution using higher order shear 

deformation plate theory. 

2- All natural frequencies decrease when the power law 

index increases. 

3- Because of increasing the rigidity of the FG plate, all 

the natural frequency parameters rise with an 

increase in the thickness ratio of the plate. 

4- By increasing the aspect ratio, the fundamental 

frequency parameter decreases. 

5- It is obvious that the power law index is an effective 

factor on eigen-frequency parameter. 

6- The Al/Al2O3 FG plate material has more effects on 

the eigen-frequency parameter in comparison with 

Al/ZrO2 FG plate. 

Nomenclature 

Displacement term in extension in the z-

direction 

wa 

Displacement term in bending in the z-direction wb 

Displacement term in shear in the z-direction ws 

Stress in the local coordinate � ij 

Strain in the local coordinate � ij 

Poisson's ratio � 
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