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Free Vibration of Functionally Graded Cylindrical Shells
Based on the First Order Shear Deformation Theory
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The free vibration analysis of simply supported functionally graded cylindrical shells based on
the first order shear deformation theory is presented in this paper. Assuming that the material
properties graded in the thickness direction as a volume fraction power-law distribution and
using the Hamilton’s principle, the governing equations of motion are established and solved.
The influence of constituent volume fractions and the effects of configurations of the constituent
materials on the frequencies are carefully discussed. The results are validated with the known
data in the literature.
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1 - Introduction

Functionally graded materials (FGMs) have gained considerable importance as materials to be
used in extremely high temperature environments such as nuclear reactors and high-speed
spacecraft industries [1] in recent years. FGMs were first introduced by a group of scientists in
Sendai, Japan in 1984 [2]. FGMs are inhomogeneous materials, in which the mechanical
properties vary smoothly and continuously from one layer to the other. This is achieved by
gradually varying the volume fraction of the constituent materials. This continuous change in
composition results in the graded properties of FGMs [3]. This gradation in properties of the
material reduces thermal stresses, residual stresses and stress concentration factors [4]. These
materials are made from a mixture of ceramic and metal or from a mixture of different materials.
The ceramic constituent of the material provides the high-temperature resistance due to its low
thermal conductivity. The ductile metal constituent on the other hand, prevents fracture caused
by stresses due to the high temperature gradient in a very short period of time. Furthermore a
mixture of ceramic and metal with a continuously varying volume fraction can be easily
manufactured [5]. This eliminates interface problems of composite materials, and thus, the stress
distributions are smooth. Studies on FGMs have been extensive but are largely confined to
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analysis of thermal stresses and deformations. Tanigawa et al. [6] derived a one dimensional
temperature solution for a nonhomogeneous plate in the transient state and optimized the
material compositions by introducing a laminated composite model. The optimal composition
profile problems of the FGM to decrease the thermal stresses and thermal stress intensity factor
were discussed by Noda [7, 8]. He concluded that when the continuously changing composition
between ceramics and metals can be selected pertinently, thermal stresses in the FGM are
drastically decreased. Javaheri and Eslami [9] presented the thermal buckling of rectangular
functionally graded plate based on the high order plate theory. The buckling analysis of
functionally graded circular plates is given by Najafizadeh and Eslami [10, 11].

Studies on vibration of cylindrical shells are extensive. Many of these studies are for pure
isotropic and composite shells; see [12-19]. But, studies on vibration of functionally graded
cylindrical shells (FGCSs) are limited. Loy et al. [20] presented the Rayleigh-Ritz solution for
free vibration of simply supported FGCSs. Pradhan et al. [21] discussed the effects of boundary
conditions and volume fractions on the natural frequencies of FGCSs.

In the present paper, free vibration analysis of simply supported functionally graded
cylindrical shells (FGCSs) is presented. Using the Hamilton's principle, the governing equations
are derived based on the first order shear deformation theory. The objective is to study the
frequency characteristics, the influence of the constituent volume fractions, and the affects of the
configurations of the constituent materials on the natural frequencies. The results are validated
the known data in the literature. The comparison shows that the present results agreed well with
those in the literature.

2 — Material Properties

The functionally graded cylindrical shell (FGCS) as shown in Figure 1 is assumed to be thin and
of length L and thickness h with mean radiusR. The x-axis is taken along a generator, the
circumferential arc length subtends an angle ¢, and the z-axis is directed radially outwards. The
material properties P of FGMs are function of the material properties and volume fraction of the
constituent materials and are expressed as [22]

K
P=> PV, 1)
=1

where P; and V, are the material property and volume fraction of the constituent material j,

respectively. The volume fractions of all the constituent materials should add up to one [22].
K
VvV, =1
]Z_l: f (2)
For a FGCS with thickness h and a reference surface at its middle surface, the volume fraction

can be written as [22]
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Figure 1. Coordinate system of FGCS.

where N is the power-law exponent. For a FGM with two constituent materials, the Young's
modulus E , Poisson ratiov , and the mass density o can be expressed as [22]

E=(E1—E2)(222;h)N +E, (4)
0= -0)E 4o, (5)
p=(p —pz)(zzer: " p, (6)

From these equations, it is found that for z=-h/2, FGM properties are the same as those of
material 2 and for z=h/2, FGM properties are the same as those of material 1. Thus, the
material properties vary continuously from material 2 at the inner surface of the cylindrical shell
to material 1 at the outer surface of the cylindrical shell. Figure (2) shows a geometric definition
of the shell.

Figure 2. Configuration of a generic shell.
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3 — Formulation of the problem
3.1 — The generic functionally graded shells

The strain-displacement relationships for a thin generic shell are [23]

i{%ﬂ_zﬂw Ai}

s A0y A Oay SR_l (72)
=t | M2 Uik A (7b)
A | oo, A ooy R,
S8~ 5, (7¢c)
3
ep=t 0 (O 2o 0 Oy (79
A, Oa, A~ A Oa, A
a0 Yy, LA
€= A o, (A1)+ A Oa (7d)
o U 1 oU
=A — (=) +— =8
€xn=F oars (A2)+ A, oa, (7e)
where
or
A = 2a, (8a)
or
*=5a, (80)

Here, 1 is the position vector of an arbitrary point on the shell, A and A, are the fundamental
form parameters or Lame" parameters,U,,U, and U, are the displacements at any point
(a;,a,,a3), R, and R,are the radii of curvatures related to «, and «,, respectively. The first

order shear deformation theory (FSDT) is used in the present study and is based on the following
displacement field [23]

Ul(al,az,%): U1(O‘1’a2)+0‘3¢1(‘7‘110‘2)
Uz(al,az,a3)=uz(al,a2)+a3¢2(a1,a2) 9)
Us(al,az,%): Us(al’az)

where u,,u,,and u,are the middle surface displacements, and ¢, and ¢, are the rotations about
the «, and «,-directions, respectively. Substituting Eq. (9) into Egs. (7) give [23]




0

€1 €1 Kyq
0

€ [ =12 (+ A3 Kp (10a)
0

€12 Y12 ks

{E“‘ } = {7 i } (10b)
€23 V23

where < and y{ are the normal and shear strains on the middle surface, respectively, and k,
k,,, and k,, are the curvatures, and defined as [23]
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For an isotropic shell, the stress-strain relationship are defined as [23]
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where

E E
1_,2 ) Qpp =Qyq, Q3 =Q4 =Qss = —— (13)

Qu=Qy= 2L+ v)

For a thin FGCS, the forces and moments resultants are expressed as
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My h |Ou
My (= [3102 fasde (14b)
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Substituting Egs. (10) into Eq. (12), and the result into Egs. (15) give the constitutive equations
as

Ny, Ay €y +Bykyy + Ay €3, +B1ky
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Here, A; and By (i, j =1,2,3,4,55) denote the extensional, coupling, and bending stiffnesses which
defined as

h
(Aileij):I_thij L a3)da; (16)

The equations of motion for vibration of shell can be derived by using Hamilton's principle
which is described by

5j;(n—|<)dt=o, M=U-V (17)

where K,TT,U, and V are the total kinetic, potential, strain, external loads energies, respectively,
and t is arbitrary time. The kinetic, strain, and external loads energies of a cylindrical shell can
be written as

1 . . .
K:EJJJP(U12+U22+U§)dV (18a)
U= III(Gll €11 +0,p €y +T15V10 + T13V13 + To3)23)dV (18b)
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where q,,q,,and g, are the distributed loads. The infinitesimal volume is given by
dv = AiAzdaldazdag, (19)

Substituting Egs. (9-13) into Eq. (19), and the results into Eq. (18), give the equations of motion
for a thin generic shell as
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3.2 — The functionally graded cylindrical shells
The curvilinear coordinates and fundamental form parameters for the cylindrical shell are

Rizo, R,=a, A =1 A =a o =X a,=60, a;=1 (22)

1

According to the Eq. (22), the strains, curvatures, and stress resultants related to the
cylindrical coordinate are defined in Appendix A. Thus, the governing equations of motion for
FGCS are obtained as follows
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My, M

20 —a#*‘aQas:_lle_lz‘}z (23e)
3. Free Vibration Analysis
The simply supported boundary conditions for cylindrical shell are given by (24)
u,=u;=N, =M, =0, x=0,L

The displacement fields which satisfy these boundary conditions can be written as

u, = Acos@cos noel”
u, = Bsin@sin ngel
u; =Csin ml—ﬂxcos n@el (25)
¢, = Dcos@cos ngel
¢, = Esin mTﬂxsin ngel
where A B,C,D, and E are the constants denoting the amplitudes of vibration, mand n are the

axial and circumferential wave numbers, respectively and w(rad/s) is the natural angular
frequency of the vibration. For free vibration case, that is

0, =0; =03 =0 (26)
Substituting Egs. (11) into Eqgs. (15) and then the results into (23), give the governing equations

in terms of displacements. Substituting the Eq.(25) into the resulting governing equations leads
to the following equations for the undetermined coefficients A,B,C,D, and E.

A A) (0
B B 0
[clc!-w2[mlcl=10 (27)
D D 0
E E 0

The matrices [C] and [M] are listed in the Appendix B as a 5x5 matrices. Eq. (27) is solved
by imposing non-trivial solutions and equating the characteristic determinant to zero, that is

C; —M;@? =0 (28)

The smallest roots of this equation yield the natural frequencies.
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4 - Results and Discussion

In this paper, the free vibration of functionally graded cylindrical shells (FGCSs) is studied based
on the first order shear deformation theory. The FGCS considered here is composed of stainless
steel and nickel and its properties are graded in thickness direction according to a volume
fraction power-law distribution. The frequency characteristics, the influence of the constituent
volume fractions and the effects of the FGM configuration are presented. The influence of
constituent volume fractions is studied by varying the value of the power-law exponent N . Also,
the effects of the FGM configuration are presented by studying the natural frequencies of two
FGCSs. Type | which FGCS has nickel on its inner surface and stainless steel on its outer surface
and Type 1l which FGCS has stainless steel on its inner surface and nickel on its outer surface.

The properties of stainless steel and nickel, calculated atT =300K , are presented in Table 1.

To validate the analysis, the results compared with the results of Loy et al. [20] which is based
on the Love's shell theory. The comparisons show that the present results agreed well with those
in the literature.
The variations of the natural frequencies (Hz) versus the circumferential wave numbers n and
length-to-radius ratio L/R for Type | FGCS are shown in Tables 2 and 4, respectively. The
frequencies for higher axial modes are higher than those for lower axial modes. Thus, the
fundamental frequencies occur at m=1. The natural frequencies are decreased with increasing
the power-law exponent N . The decrease in the natural frequencies from N =1 to N =15 is
about 2.3% at n=1 and about 2.4% at n=10. For small value of N, the natural frequencies
approached to the frequencies of stainless steel shell and for large value of N they approached to
those for nickel. The natural frequencies for N >0 fell between those of stainless steel and
nickel for a given circumferential wave number n. It is interesting to note that in Table 2 the
fundamental frequencies for various values of N occur at circumferential wave number n=3.

As well as Type | FGCS, the variations of the natural frequencies (Hz) versus the
circumferential wave numbers n and length-to-radius ratios L/R for Type Il FGCS are shown
in Tables 3 and 5, respectively. In this case, the influence of the power-law exponent N on the
natural frequencies in the opposite of Type | FGCS and the natural frequencies are increased
with increasing N . The increase in natural frequencies from N =1 to N =15 in about 2.3% at
n=1 and about 2.4% at n=10. As can be seen, the influence of the constituent volume fractions
is different for Type | and Type Il FGCS. Tables 2-5 show that for N >1, the natural frequencies
for Type 1l FGCS are higher than those for Type | FGCS. For example, for N =15 at n=10and
h/R=0.002, the natural frequency for Type Il FGCS is about 4.67% higher than the other one.
However, for N =0.5 at n=10 and h/R=0.002, the natural frequency for Type | FGCS is 1.66%
higher than the other one.

Tables 6 and 7 show the variations of the fundamental natural frequencies (Hz) versus the
thickness ratio h/R for Type | and Type Il FGCSs. Note that, the numbers in the brackets
indicate the circumferential wave numbers at which the fundamental frequencies occur. Note
that, as N is increased the fundamental frequencies is decreased for Type | FGCS and increased
for Type 1l FGCS. The difference in the fundamental frequencies between N =1 and N =15 is
about 2.2% for Type | and Type Il FGCSs. The fundamental natural frequencies for Type I and
Type Il FGCSs occur at the same circumferential wave numbers. For all values of N, the
fundamental natural frequencies fell between the frequencies of the stainless steel and nickel.
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5- Conclusion

The free vibration analysis of functionally graded cylindrical shells with simply supported
boundary conditions is presented according to the first order shear deformation theory. The
results show that, the constituent volume fractions and the configurations of the constituent
materials affect the natural frequencies. The natural frequencies first decreased and than
increased with the increasing of circumferential wave numbers. It is interesting to note that the
value of the power-law exponent did not affect the value of the circumferential wave number at
which the fundamental natural frequency might occur. Also, the natural frequencies of a short
cylindrical shell are higher than those for a long shell, and the natural frequencies of a thick
cylindrical shell are higher than those for a thin shell.

Table 1. Material properties.

Coefficients Stainless steel Nickel
E (Nm™) v p (Kgm™®) E (Nm™) v p (Kgm™®)

R 201.04 x 10° 0.3262 8166 223.95 x 10° 0.3100 8900
Py 0 0 0 0 0 0
P 3.079 x 10 -2.002 x 104 0 -2.794 x 104 0 0
P> -6.534 x 107 3.797 x 107 0 -3.998 x 10° 0 0
P 0 0 0 0 0 0

2.07788 x 101! 0.317756 8166 2.05098 x 10 0.3100 8900

Table 2. Natural frequencies for Type | FGCS versus the circumferential wave number (L/R =20, h/R =0.002).

Stainless

n  Theory steel Nickel N
05 07 1 2 5 15 30
FSDT 135478  12.8937 13.3209 13268 132108 13.1029 12.9979 12.9328 120137
1 I[_z%)ﬁ etal. 13548 12804 13321 13269 13211 13103 12998 12.933 12914
FSDT 45919 43688 45166 44993 44800 4.4434 4.4066 43833 4.3764
2 [LZ%); etal. 45920 43690 4.5168 4.4994 4.480  4.4435 44068 4.3834  4.3765
FSDT 42631  4.0487 41910 41747 41567 41233 40890 4.0651 4.0574
3 [LZ%% etal. 42633 4.0489 41911 41749 41569 41235 4.0891 4.0653  4.0576
FSDT 72249 68574 7.0971 7.0688 7.0383 69818 69249 6.8853 6.8724
4 '[‘2%33 etal. 72250  6.8577 7.0972 7.0691 7.0384 69820 69251 6.8856  6.8726
FSDT 115418 109547 11.3354 112900 11.2408 11.1509 11.0608 10.9987 10.9779
5 '[‘2%33 etal. 49542 10955 11336 11200 11.241 11151 11.061 10.999 10.978
FSDT 16.8964  16.0369 165038 165260 16.4548 16.3226 16.1918 16.1009 16.0709
6 '[‘2%33 etal. 15897 16037 16594 16527 16455 16323 16192 16.101 16071
FSDT 232437  22.0608 22.8259 22.7347 22.6347 22.4538 222728 22.1479 22.1078
! '[‘2%33 etal. 93044 22061 22826 22735 22635 22454 22273 22148 22108
8 FSDT 305728  29.0169 30.0228 29.9029 29.7708 29.5328 29.2959 29.1318 29.0777
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[Lz%% etal. 50573 20017 30023 29903 29.771 29533 29296 29132  29.078
FSDT 38.880  36.9018 38.1808 38.0278 37.8619 37.5587 37.2568 37.0477 36.9808
9 '[‘2%%“&" 38.881 36902 38.181 38028 37.862 37.559 37.257 37.048 36.981
FSDT 48.1675 457158 47.3000 47.1110 46.9049 46.5288 46.1548 45.8968 45.8126
10 '[‘2%%“&" 48.168 45716 47.301 47.111 46.905 46529 46155 45897  45.813
Table 3. Natural frequencies for Type Il FGCS versus the circumferential wave number (L/R =20, h/R =0.002).
n  Theory Stz:g:less Nickel N
05 07 1 2 5 15 30
FSDT 135478 12.8937 131028 13.1538 13.2108 13.3208 134328 135049 13.5200
1 '['2%33“""" 13548 12894 13103 13154 13211 13321 13433 13505 13.526
FSDT 45919 43688 44381 44549 44741 45113 45503 45757  4.5834
2 '[‘2%35 etal. 45920 43690 4.4382 44550 4.4742 45114 45504 45759 45836
FSDT 42631 40486 41150 41308 4.1485 41825 42190 42448  4.2535
3 '[jz%}geta" 42633 40489 41152 41309 41486 4.1827 42191 42451  4.2536
FSDT 7.2249  6.8575 69753 7.0025 7.0328 7.0904 7.1509 7.1942  7.2084
4 '&%ﬁeta" 72250 6.8577 69754 7.0026 7.0330 7.0905 7.1510 7.1943  7.2085
FSDT 115418 10.9546 11.1449 11.1888 11.2378 11.3287 11.4248 114939 11.5158
> '[‘2%55“""" 11542 10955 11.145 11.189 11.238 11.329 11425 11494 11516
FSDT 16.8965 16.0369 16.3168 16.3808 16.4529 16.5860 16.7269 16.8267 16.8588
6 '[‘2%35“3" 16.897 16.037 16317 16381 16453 16587 16727 16.827 16.859
FSDT 232437 22.0608 22.4468 22.5349 226327 224537 230108 23.1469 23.1918
! 'fz%%eta" 23244 22061 22447 22535 22.633 22454 23011 23147 23.192
FSDT 305728 29.0169 295238 29.6408 29.7700 30.0139 30.2667 30.4450 30.5049
8 'fz%%eta" 30573 29.017 29524 29641 29.770 30.014 30267 30.446  30.505
FSDT 38.879 36.9018 37.5477 37.6956 37.8608 38.1708 38.4918 38.7200 38.7948
9 [Lz%%eta" 38.881 36902 37.548 37.696 37.861 38.171 38.492 38720 38.795
FSDT 48.1675 457158 465169 46.7000 46.9037 47.2878 47.6858 47.9679 48.0608
10 Loyetal. 48168 45716 46517 46700 46904 47288 47.686 47.968  48.061

[20]

AR
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Table 4. Natural frequencies for Type | FGCS versus the length-to radius ratio (h/R =0.002) .

Stainless

R Theory steel Nickel N
05 07 1 2 5 15
FSDT  439.3500) A417.53(0) 432.11(20) 430.44(20) 428.61(0) 425.15(20) 421.5900) 419.16(20)
0.2 ;03{29(}] 439.36(20) 417.5400) 432.12(0) 430.46(20) 428.62(20) 425.16(20) 421.60(20) 419.17(20)
FSDT  175.4715) 166.74(15) 1725605 171.9205 17117015 169.8015) 168.36(15) 167.40(15)
0.5 ;03{2%] 1754915 166.76(15) 172.5915) 171.9315) 17119015 169.81(15) 168.38(15 167.41(15)
FSDT  87.33011) 82.992(11) 85.8811) 85.560(11) 85.193(1) 84.504(11) 83.796(11) 83.315(11)
! ;‘_’{265] 87.33111) 8299311 85.890(1) 8556111 8519511 B84.506(11) 83.798(11) 83.316(11)
FSDT  43.372(8) 41.216(8) 42.655() 42.4928) 42.310(8) 41.9688) 41.616(8) 41.377(8)
2 ;?3[’2%] 43.373@) 41217(8) 42.656(8) 42.493@8) 42.311(8) 41.969(8) 416188 41.378()
FSDT  16.916() 16.077() 16.637(5) 16.574() 16.503) 16.370(5) 16.233(5) 16.140(5)
5 ;‘_’3{2%] 16917(5) 16.079) 16.639(5) 16.576() 16505() 16.371(5) 16.234(5) 16.141(5)
FSDT 860334 817214 84590(4) 8.42634 839034 8.3227(4) 8.2532(4 8.2051()
10 ;03{295] 8.6035(4) 8.17234) 8.4591(4) 8.42654) 8.39044) 8.32284) 8.2533(4)  8.2052(4)
FSDT  4.2632(3) 4.0487(3) 4.19103) 4.1746@) 4.1567(3) 412333 4.0891@3) 4.06520)
20 ;O{zeg] 42633(3) 4.0489(3) 4.1911(3) 417493 4.1569(3) 4.1235@) 4.0892(3) 4.0653()
FSDT  14917() 14166@) 146642 14606@) 145432 14426@) 14307¢) 1.42230)
50 ;O{zeg] 14918(2) 14167(2) 146652 14608(2) 145450) 144282 1.4308@) 1.42250)
FSDT  0.5593(1) 053231 0.5501) 0.54791) 054560() 0541130 0.5368(1) 0.5340(1)
100 ;O{zeg] 0.5595(1) 053251) 0.5502(1) 0.5480(1) 0.54561() 0541150) 0.5368(1) 0.5341(1)

VY
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Table 5. Natural frequencies for Type Il FGCS versus the length-to radius ratio (h/R =0.002) .

—  Theory Stf;ltir;é?ss Nickel N
0.5 0.7 1 2 5 15
FSDT  439.35(20) 417.52(20) 424.19(20) 425.77(20) 427.61(20) 431.13(20) 434.91(20) 437.53(20)
0.2 :;IO{Z%] 439.36(20) 417.54(20) 424.20(20) 425.80(20) 427.62(20) 431.15(20) 434.93(20) 437.57(20)
FSDT 175.47(15)  166.74(15) 169.42(15) 170.05(15) 170.77(15) 172.18(15) 173.70(15) 174.73(15)
0.5 ;03{263] 1754915 166.76(15 169.43(15) 170.06(15) 170.7915) 172.2015) 173.7115) 174.76(15)
FSDT 87.330(11) 82.992(11) 84.315(11) 84.633(11) 84.993(11) 85.696(11) 86.446(11) 86.972(11)
1 ;?{2%] 87.331(11) 82.993(11) 84.316(11) 84.634(11) 84.995(11) 85.697(11) 86.448(11) 86.974(11)
FSDT  43.372(8) 41.216(8) 41.873(8) 42.033(8) 42.211(8)  42.560(8) 42.932(8)  43.193(8)
2 ;‘_’3{2‘9&] 43.373(8) 41.217(8) 41.875@8) 42.033(8) 42.212(8) 42.561(8)  42.934@8)  43.195(8)
FSDT  16.916() 16.077(5) 16.333(5)  16.394(5)  16.464(5)  16.601(5) 16.746(5)  16.847(5)
° ;05{2‘3] 16917)  16.0795) 16.3355) 16.396() 16.466( 16.6025) 16.748()  16.849(5)
FSDT  8.6033(4) 8.1721¢4) 8.3048(4) 8.3363(4) 8.3720(4) 8.4410(4) 85147(4)  8.5671(4)
10 ;05{2‘3] 8.6035(4) 817234 8.30504) 8.3365%4) 837224 8.441l4) 851484  8.5672()
FéDT 4.2631(3) 4.0487(3) 4.1151(3) 4.1307(3) 4.1484(3) 4.1826(3) 4.2190(3) 4.2450(3)
20 ;03{2%] 4.2633(3) 4.0489(3) 4.1152(3) 4.1309(3) 4.1486(3)  4.1827(3) 4.2191(3)  4.2451(3)
FSDT  1.4917(2) 1.4166(2) 1.4399(2) 1.4453(2) 1.4515@2) 1.4634(2) 1.4762(2)  1.4853(2)
50 ;03{2%] 1.49182)  1.4167(2)  1.4400(2)  1.4455(22)  1.4517(2)  1.4636(2) 1.4763(2)  1.4854(2)
FSDT 0.5593(1) 0.5323(1) 0.5411¢1) 0.54322¢1)  0.5454(1) 0.5501(1) 0.5547(1) 0.5576(1)
100 ;‘Iof’zgt] 0.5595(1)  0.5325(1)  0.5412(1) 0.54324(1) 0.5456(1)  0.5502(1)  0.5548(1)  0.5578(1)
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Table 6. Natural frequencies for Type | FGCS versus the thickness ratio (L/R =20) .

Stainless

—  Theory steel Nickel N
05 07 1 2 5 15
FSDT  2.7917(3) 2.6535(3) 2.7460(3) 2.7354@3) 2.7237(3) 2.7016@) 2.6791@3) 2.66370)
0.001 ;03[’293] 27919(3) 26537(3) 2.7461(3) 2.7356@) 272393 2.7018(3) 2.6792@) 2.6639(3)
FSDT 54991 52281@) 540922 5.3886() 5.3654@) 53220Q) 5.2774@) 5.24770)
0.005 ;03[’263] 54992( 522832 54094 5.38872) 5.3656(2) 5.3221(2) 5.2776@) 5.2478(2)
FSDT  6.3792) 6.0630@) 627432 6.2505() 6.2237¢) 6.17342) 6.1217() 6.08650)
0.007 ;0{2‘*3] 6.380) 6.06312) 6.2746@) 6.2506() 622392 6.1736() 6.12192) 6.0867(2)
FSDT  7.9331( 7.5356() 7.80002) 7.7685(2) 7.7365@2) 7.6742@) 7.6102() 7.5660(2)
0.01 ;0{2%] 7.9333(2) 7.5358( 7.8001@2) 7.7700(2) 7.7367(2) 7.6744(2) 7.6104(2) 7.5661(2)
FSDT 1355001 12.896(1) 13.323() 13.271) 132131 13.1050) 13.0000) 12.934(1)
0.02 ;03[’26&] 135520) 12.898(1) 13.325(1) 13.273) 13215 13.107() 13.0012) 12.936(2)
FSDT  13555() 12901) 13.328(1) 1327601 132180 13.1111) 13.0041) 12.940(1)
0.03 ;03[’263] 135570) 12.902) 133300 13.278(1) 13.220() 13.1121) 13.006(1) 12.941(1)
FSDT  13561() 129071) 13.334) 13.282(1) 13.2250) 13.118(1) 13.012(1) 12.946(1)
0.04 ;O{zeg] 13563(1) 12.909() 13.336(1) 13.2841) 13.226() 13.119(1) 13.013(1) 12.948(1)
FSDT 135700 12916(1) 13.343() 13.291(1) 13.2320) 13.1250) 13.0200) 12.953(1)
0.05 ;0{26(}] 135720) 12.917() 13.345(1) 13.2931) 13.2351) 13.127(1) 13.021(1) 12.956(1)
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Table 7. Natural frequencies for Type Il FGCS versus the thickness ratio (L/R = 20) .
—  Theory Stg:g:lass Nickel N
05 07 1 2 5 15
FSDT 27917(3) 2.6535(3) 2.6956(3) 2.7059(3) 2.7173(3) 2.738(3) 2.7638(3) 2.7806(3)
0.001 '[‘2%359”" 2.7919(3) 2.6537(3) 2.6958(3) 2.7060(3) 2.7175@3) 2.740(3) 2.7640(3) 2.7807(3)
FSDT 549912 5.2281(2 5.3107(2) 5.33062) 5.3534(2) 5.3977(2) 5.4451(2) 5.4775()
0.005 [Lz%%“a" 54992() 5.2283() 53100 53308 5.3536() 5.3979() 5.4452) 5.4777Q2)
FSDT 6.378(  6.0630(2) 6.1596(2) 6.1828(2) 6.2092(2) 6.2604(2) 6.3153(2) 6.3537(2)
0.007 '[j?%%eta" 6.380() 6.0631(2 6.1598(2) 6.18302) 6.2094(2) 6.2606(2) 6.3155(2) 6.3539(2)
FSDT 7.9331(2) 7.5356(2 7.6581(2) 7.68712) 7.7201(2) 7.7835(2) 7.8514(2) 7.8998(2)
0.01 '['2%33“""" 7.9333(2) 7.5358(2) 7.6583(2) 7.6873(2) 7.7202(2) 7.7837(2) 7.8516(2) 7.8999(2)
FSDT 13.550(1) 12.896(1) 13.106(1) 13.155(1) 13.213(1) 13.3231) 13.436(1) 13.506(1)
0.02 '[‘2%35“""" 13552(1)  12.898(1) 13.107(1) 13.157(1) 13.215(1) 13.325(1) 13.437(1) 13.508(1)
FSDT 135541) 12.901() 13.111() 13.161¢1) 13.218q) 13.327() 13.441(1) 13.512(1)
0.08 '[j?%%eta" 13557(1)  12.902(1) 13.112(1) 13.162(1) 13.219(1) 13.329(1) 13.442(1) 13.513()
FSDT 13.561(1) 12.907(1) 13.116(1) 13.167(1) 13.225(1) 13.334(1) 13.446(1) 13.518()
0.04 [Lz%)ﬁ etal. 135630 12909 13.118() 13.169) 13.226(1) 13.336(1) 13.448(1) 13.520(1
FSDT 13570() 12.916(1) 13.125(1) 13.175(1) 13.2321) 13.342(1) 13.456(1) 13.527(1)
0.05 [LZ%%eta" 13572(1) 12.917(1) 13.126(1) 13.177() 13.234(1) 13.344(1) 13.457(1) 13.528()
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Appendix A

The strains and curvatures in cylindrical coordinate can be expressed as
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