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The free vibration analysis of simply supported functionally graded cylindrical shells based on 

the first order shear deformation theory is presented in this paper. Assuming that the material 

properties graded in the thickness direction as a volume fraction power-law distribution and 

using the Hamilton’s principle, the governing equations of motion are established and solved. 

The influence of constituent volume fractions and the effects of configurations of the constituent 

materials on the frequencies are carefully discussed. The results are validated with the known 

data in the literature. 
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1 - Introduction  

 

Functionally graded materials (FGMs) have gained considerable importance as materials to be 

used in extremely high temperature environments such as nuclear reactors and high-speed 

spacecraft industries [1] in recent years. FGMs were first introduced by a group of scientists in 

Sendai, Japan in 1984 [2]. FGMs are inhomogeneous materials, in which the mechanical 

properties vary smoothly and continuously from one layer to the other. This is achieved by 

gradually varying the volume fraction of the constituent materials. This continuous change in 

composition results in the graded properties of FGMs [3]. This gradation in properties of the 

material reduces thermal stresses, residual stresses and stress concentration factors [4]. These 

materials are made from a mixture of ceramic and metal or from a mixture of different materials . 

The ceramic constituent of the material provides the high-temperature resistance due to its low 

thermal conductivity. The ductile metal constituent on the other hand, prevents fracture caused 

by stresses due to the high temperature gradient in a very short period of time. Furthermore a 

mixture of ceramic and metal with a continuously varying volume fraction can be easily 

manufactured [5]. This eliminates interface problems of composite materials, and thus, the stress 

distributions are smooth. Studies on FGMs have been extensive but are largely confined to 
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analysis of thermal stresses and deformations. Tanigawa et al. [6] derived a one dimensional 

temperature solution for a nonhomogeneous plate in the transient state and optimized the 

material compositions by introducing a laminated composite model. The optimal composition 

profile problems of the FGM to decrease the thermal stresses and thermal stress intensity factor 

were discussed by Noda [7, 8]. He concluded that when the continuously changing composition 

between ceramics and metals can be selected pertinently, thermal stresses in the FGM are 

drastically decreased. Javaheri and Eslami [9] presented the thermal buckling of rectangular 

functionally graded plate based on the high order plate theory. The buckling analysis of 

functionally graded circular plates is given by Najafizadeh and Eslami [10, 11]. 

Studies on vibration of cylindrical shells are extensive. Many of these studies are for pure 

isotropic and composite shells; see [12-19]. But, studies on vibration of functionally graded 

cylindrical shells (FGCSs) are limited. Loy et al. [20] presented the Rayleigh-Ritz solution for 

free vibration of simply supported FGCSs. Pradhan et al. [21] discussed the effects of boundary 

conditions and volume fractions on the natural frequencies of FGCSs.  

In the present paper, free vibration analysis of simply supported functionally graded 

cylindrical shells (FGCSs) is presented. Using the Hamilton's principle, the governing equations 

are derived based on the first order shear deformation theory. The objective is to study the 

frequency characteristics, the influence of the constituent volume fractions, and the affects of the 

configurations of the constituent materials on the natural frequencies. The results are validated 

the known data in the literature. The comparison shows that the present results agreed well with 

those in the literature. 
 

2 – Material Properties 

 

The functionally graded cylindrical shell (FGCS) as shown in Figure 1 is assumed to be thin and 

of length L  and thickness h  with mean radius R . The x -axis is taken along a generator, the 

circumferential arc length subtends an angle , and the z -axis is directed radially outwards. The 

material properties P  of FGMs are function of the material properties and volume fraction of the 

constituent materials and are expressed as [22] 
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where jP  and 
j

fV are the material property and volume fraction of the constituent material j , 

respectively. The volume fractions of all the constituent materials should add up to one [22]. 
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For a FGCS with thickness h  and a reference surface at its middle surface, the volume fraction 

can be written as [22] 
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Figure 1. Coordinate system of FGCS. 
 

 

where N  is the power-law exponent. For a FGM with two constituent materials, the Young's 

modulus E , Poisson ratio , and the mass density   can be expressed as [22]  
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From these equations, it is found that for 2/hz −= , FGM properties are the same as those of 

material 2 and for 2/hz = , FGM properties are the same as those of material 1. Thus, the 

material properties vary continuously from material 2 at the inner surface of the cylindrical shell 

to material 1 at the outer surface of the cylindrical shell. Figure (2) shows a geometric definition 

of the shell. 

 

 

 
Figure 2. Configuration of a generic shell. 

 (4) 

 (5) 

 (6) 
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3 – Formulation of the problem 

 

3.1 – The generic functionally graded shells 

 

The strain-displacement relationships for a thin generic shell are [23]  
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Here, r  is the position vector of an arbitrary point on the shell, 1A  and 2A  are the fundamental 

form parameters or Lame parameters, 21 ,UU  and 3U  are the displacements at any point 

),,,( 321   1R  and 2R are the radii of curvatures related to 1  and 2 , respectively. The first 

order shear deformation theory (FSDT) is used in the present study and is based on the following 

displacement field [23] 
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where ,, 21 uu and 3u are the middle surface displacements, and 1  and 2  are the rotations about 

the 2  and 1 -directions, respectively. Substituting Eq. (9) into Eqs. (7) give [23] 
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where 0
ii  and 0

ij  are the normal and shear strains on the middle surface, respectively, and 11k , 

22k , and 12k  are the curvatures, and defined as [23] 
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For an isotropic shell, the stress-strain relationship are defined as [23] 
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For a thin FGCS, the forces and moments resultants are expressed as 
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Substituting Eqs. (10) into Eq. (12), and the result into Eqs. (15) give the constitutive equations 

as  
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Here, ijA  and )5,4,3,2,1,( =jiBij  denote the extensional, coupling, and bending stiffnesses which 

defined as 
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The equations of motion for vibration of shell can be derived by using Hamilton's principle 

which is described by 
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where ,,, UK   and V  are the total kinetic, potential, strain, external loads energies, respectively, 

and t  is arbitrary time. The kinetic, strain, and external loads energies of a cylindrical shell can 

be written as  
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where ,, 21 qq and 3q  are the distributed loads. The infinitesimal volume is given by 
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Substituting Eqs. (9-13) into Eq. (19), and the results into Eq. (18), give the equations of motion  

for a thin generic shell as 
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3.2 – The functionally graded cylindrical shells 

 

The curvilinear coordinates and fundamental form parameters for the cylindrical shell are  
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According to the Eq. (22), the strains, curvatures, and stress resultants related to the 

cylindrical coordinate are defined in Appendix A. Thus, the governing equations of motion for 

FGCS are obtained as follows 
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3. Free Vibration Analysis  

 

The simply supported boundary conditions for cylindrical shell are given by 
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The displacement fields which satisfy these boundary conditions can be written as  
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where DCBA ,,, , and E  are the constants denoting the amplitudes of vibration, m and n  are the 

axial and circumferential wave numbers, respectively and  (rad/s) is the natural angular 

frequency of the vibration. For free vibration case, that is  
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Substituting Eqs. (11) into Eqs. (15) and then the results into (23), give the governing equations 

in terms of displacements. Substituting the Eq.(25) into the resulting governing equations leads 

to the following equations for the undetermined coefficients DCBA ,,, , and E . 
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The matrices  C  and  M  are listed in the Appendix B as a 55 matrices. Eq. (27) is solved 

by imposing non-trivial solutions and equating the characteristic determinant to zero, that is 

 

02 =− ijij MC  

 

The smallest roots of this equation yield the natural frequencies. 

 

 (23e) 

 (24) 

 (25) 

 (26) 

 (27) 

 (28) 
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4 - Results and Discussion 

 

In this paper, the free vibration of functionally graded cylindrical shells (FGCSs) is studied based 

on the first order shear deformation theory.  The FGCS considered here is composed of stainless 

steel and nickel and its properties are graded in thickness direction according to a volume 

fraction power-law distribution. The frequency characteristics, the influence of the constituent 

volume fractions and the effects of the FGM configuration are presented. The influence of 

constituent volume fractions is studied by varying the value of the power-law exponent N . Also, 

the effects of the FGM configuration are presented by studying the natural frequencies of two 

FGCSs. Type I which FGCS has nickel on its inner surface and stainless steel on its outer surface 

and Type II which FGCS has stainless steel on its inner surface and nickel on its outer surface.  

The properties of stainless steel and nickel, calculated at KT 300= , are presented in Table 1. 

To validate the analysis, the results compared with the results of Loy et al. [20] which is based 

on the Love's shell theory. The comparisons show that the present results agreed well with those 

in the literature.  

The variations of the natural frequencies (Hz) versus the circumferential wave numbers n  and 

length-to-radius ratio RL /  for Type I FGCS are shown in Tables 2 and 4, respectively. The 

frequencies for higher axial modes are higher than those for lower axial modes. Thus, the 

fundamental frequencies occur at 1=m . The natural frequencies are decreased with increasing 

the power-law exponent N . The decrease in the natural frequencies from 1=N  to 15=N  is 

about 2.3% at 1=n  and about 2.4% at 10=n . For small value of N , the natural frequencies 

approached to the frequencies of stainless steel shell and for large value of N  they approached to 

those for nickel. The natural frequencies for 0N  fell between those of stainless steel and 

nickel for a given circumferential wave number n . It is interesting to note that in Table 2 the 

fundamental frequencies for various values of N  occur at circumferential wave number 3=n .  

As well as Type I FGCS, the variations of the natural frequencies (Hz) versus the 

circumferential wave numbers n  and length-to-radius ratios RL /  for Type II FGCS are shown 

in Tables 3 and 5, respectively. In this case, the influence of the power-law exponent N on the 

natural frequencies in the opposite of Type I FGCS and the natural frequencies are increased 

with increasing N .  The increase in natural frequencies from 1=N  to 15=N  in about 2.3% at 

1=n  and about 2.4% at 10=n . As can be seen, the influence of the constituent volume fractions 

is different for Type I and Type II FGCS. Tables 2-5 show that for ,1N  the natural frequencies 

for Type II FGCS are higher than those for Type I FGCS. For example, for 15=N  at 10=n and 

,002.0/ =Rh  the natural frequency for Type II FGCS is about 4.67% higher than the other one. 

However, for 5.0=N  at 10=n  and ,002.0/ =Rh the natural frequency for Type I FGCS is 1.66% 

higher than the other one.  

Tables 6 and 7 show the variations of the fundamental natural frequencies (Hz) versus the 

thickness ratio Rh /  for Type I and Type II FGCSs. Note that, the numbers in the brackets 

indicate the circumferential wave numbers at which the fundamental frequencies occur. Note 

that, as N  is increased the fundamental frequencies is decreased for Type I FGCS and increased 

for Type II FGCS. The difference in the fundamental frequencies between 1=N  and 15=N  is 

about 2.2% for Type I and Type II FGCSs. The fundamental natural frequencies for Type I and 

Type II FGCSs occur at the same circumferential wave numbers. For all values of ,N  the 

fundamental natural frequencies fell between the frequencies of the stainless steel and nickel.  
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5- Conclusion 

 

The free vibration analysis of functionally graded cylindrical shells with simply supported 

boundary conditions is presented according to the first order shear deformation theory. The 

results show that, the constituent volume fractions and the configurations of the constituent 

materials affect the natural frequencies. The natural frequencies first decreased and than 

increased with the increasing of circumferential wave numbers. It is interesting to note that the 

value of the power-law exponent did not affect the value of the circumferential wave number at 

which the fundamental natural frequency might occur. Also, the natural frequencies of a short 

cylindrical shell are higher than those for a long shell, and the natural frequencies of a thick 

cylindrical shell are higher than those for a thin shell.  

 

 
Table 1. Material properties. 

Nickel Stainless steel Coefficients 

)Kgm(  3−    )Nm(  2−E  )Kgm(  3−    )Nm(  2−E   

8900 0.3100  223.95 × 109 8166      0.3262   201.04 × 109 0P  

      0   0  0       0      0   0 1−P  

      0   0 -2.794 × 10-4       0     -2.002 × 10-4   3.079 × 10-4 1P  

      0   0 -3.998 × 109       0      3.797  × 10-7  -6.534 × 10-7 2P  

      0   0   0        0      0   0 3P  

8900 0.3100 2.05098 × 1011 8166 0.317756 2.07788 × 1011  

 

 

Table 2. Natural frequencies for Type I FGCS versus the circumferential wave number )002.0/  ,20/( == RhRL . 

      N  Nickel 
Stainless 

steel 
Theory n  

30 15 5 2 1 0.7 0.5     

12.9137 12.9328 12.9979 13.1029 13.2108 13.268 13.3209 12.8937 13.5478 FSDT 

1 
12.914 12.933 12.998 13.103 13.211 13.269 13.321 12.894    13.548 

Loy et al. 

[20] 

  4.3764   4.3833   4.4066   4.4434   4.4800   4.4993   4.5166   4.3688   4.5919 FSDT 

2 
  4.3765   4.3834   4.4068   4.4435 4.480   4.4994   4.5168   4.3690      4.5920 

Loy et al. 

[20] 

  4.0574   4.0651   4.0890   4.1233   4.1567   4.1747   4.1910   4.0487   4.2631 FSDT 

3 
  4.0576   4.0653   4.0891   4.1235   4.1569   4.1749   4.1911   4.0489   4.2633 

Loy et al. 

[20] 

  6.8724   6.8853   6.9249   6.9818   7.0383   7.0688   7.0971   6.8574   7.2249 FSDT 

4 
  6.8726   6.8856   6.9251   6.9820   7.0384   7.0691   7.0972   6.8577   7.2250 

Loy et al. 

[20] 

10.9779 10.9987 11.0608 11.1509 11.2408 11.2900 11.3354 10.9547 11.5418 FSDT 

5 
10.978 10.999 11.061 11.151 11.241 11.290 11.336 10.955    11.542 

Loy et al. 

[20] 

16.0709 16.1009 16.1918 16.3226 16.4548 16.5269 16.5938 16.0369    16.8964 FSDT 

6 
16.071 16.101 16.192 16.323 16.455 16.527 16.594 16.037    16.897 

Loy et al. 

[20] 

22.1078 22.1479 22.2728 22.4538 22.6347 22.7347 22.8259 22.0608 23.2437 FSDT 

7 
22.108 22.148 22.273 22.454 22.635 22.735 22.826 22.061    23.244 

Loy et al. 

[20] 

29.0777 29.1318 29.2959 29.5328 29.7708 29.9029 30.0228 29.0169    30.5728 FSDT 8 
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29.078 29.132 29.296 29.533 29.771 29.903 30.023 29.017    30.573 
Loy et al. 

[20] 

36.9808 37.0477 37.2568 37.5587 37.8619 38.0278 38.1808 36.9018    38.880 FSDT 

9 
36.981 37.048 37.257 37.559 37.862 38.028 38.181 36.902    38.881 

Loy et al. 

[20] 

45.8126 45.8968 46.1548 46.5288 46.9049 47.1110 47.3009 45.7158    48.1675 FSDT 

10 
45.813 45.897 46.155 46.529 46.905 47.111 47.301 45.716    48.168 

Loy et al. 

[20] 

Table 3. Natural frequencies for Type II FGCS versus the circumferential wave number )002.0/  ,20/( == RhRL . 

      N  Nickel 
Stainless 

steel 
Theory n  

30 15 5 2 1 0.7 0.5     

13.5200 13.5049 13.4328 13.3208 13.2108 13.1538 13.1028 12.8937 13.5478 FSDT 

1 
13.526 13.505 13.433 13.321 13.211 13.154 13.103 12.894  13.548 

Loy et al. 

[20] 

  4.5834   4.5757   4.5503   4.5113   4.4741   4.4549   4.4381   4.3688    4.5919 FSDT 

2 
  4.5836   4.5759   4.5504   4.5114   4.4742   4.4550   4.4382   4.3690    4.5920 

Loy et al. 

[20] 

  4.2535   4.2448   4.2190   4.1825   4.1485   4.1308   4.1150   4.0486    4.2631 FSDT 

3 
  4.2536   4.2451   4.2191   4.1827   4.1486   4.1309   4.1152   4.0489    4.2633 

Loy et al. 

[20] 

  7.2084   7.1942   7.1509   7.0904   7.0328   7.0025   6.9753   6.8575    7.2249 FSDT 

4 
  7.2085   7.1943   7.1510   7.0905   7.0330   7.0026   6.9754   6.8577    7.2250 

Loy et al. 

[20] 

11.5158 11.4939 11.4248 11.3287 11.2378 11.1888 11.1449 10.9546  11.5418 FSDT 

5 
11.516 11.494 11.425 11.329 11.238 11.189 11.145 10.955  11.542 

Loy et al. 

[20] 

16.8588 16.8267 16.7269 16.5869 16.4529 16.3808 16.3168 16.0369  16.8965 FSDT 

6 
16.859 16.827 16.727 16.587 16.453 16.381 16.317 16.037  16.897 

Loy et al. 

[20] 

23.1918 23.1469 23.0108 22.4537 22.6327 22.5349 22.4468 22.0608  23.2437 FSDT 

7 
23.192 23.147 23.011 22.454 22.633 22.535 22.447 22.061  23.244 

Loy et al. 

[20] 

30.5049 30.4459 30.2667 30.0139 29.7700 29.6408 29.5238 29.0169  30.5728 FSDT 

8 
30.505 30.446 30.267 30.014 29.770 29.641 29.524 29.017  30.573 

Loy et al. 

[20] 

38.7948 38.7200 38.4918 38.1708 37.8608 37.6956 37.5477 36.9018  38.879 FSDT 

9 
38.795 38.720 38.492 38.171 37.861 37.696 37.548 36.902  38.881 

Loy et al. 

[20] 

48.0608 47.9679 47.6858 47.2878 46.9037 46.7000 46.5169 45.7158 48.1675 FSDT 

10 
48.061 47.968 47.686 47.288 46.904 46.700 46.517 45.716  48.168 

Loy et al. 

[20] 
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Table 4. Natural frequencies for Type I FGCS versus the length-to radius ratio )002.0/( =Rh . 

     N  Nickel 
Stainless 

steel 
Theory 

R

L
 

15 5 2 1 0.7 0.5     

419.16(20) 421.59(20) 425.15(20) 428.61(20) 430.44(20) 432.11(20) 417.53(20) 439.35(20) FSDT 

0.2 
419.17(20) 421.60(20) 425.16(20) 428.62(20) 430.46(20) 432.12(20) 417.54(20) 439.36(20) 

Loy et 

al. [20] 

167.40(15) 168.36(15) 169.80(15) 171.17(15) 171.92(15) 172.56(15) 166.74(15) 175.47(15) FSDT 

0.5 
167.41(15) 168.38(15) 169.81(15) 171.19(15) 171.93(15) 172.59(15) 166.76(15) 175.49(15) 

Loy et 

al. [20] 

83.315(11) 83.796(11) 84.504(11) 85.193(11) 85.560(11) 85.88(11) 82.992(11) 87.330(11) FSDT 

1 
83.316(11) 83.798(11) 84.506(11) 85.195(11) 85.561(11) 85.890(11) 82.993(11) 87.331(11) 

Loy et 

al. [20] 

41.377(8) 41.616(8) 41.968(8) 42.310(8) 42.492(8) 42.655(8) 41.216(8) 43.372(8) FSDT 

2 
41.378(8) 41.618(8) 41.969(8) 42.311(8) 42.493(8) 42.656(8) 41.217(8) 43.373(8) 

Loy et 

al. [20] 

16.140(5) 16.233(5) 16.370(5) 16.503(5) 16.574(5) 16.637(5) 16.077(5) 16.916(5) FSDT 

5 
16.141(5) 16.234(5) 16.371(5) 16.505(5) 16.576(5) 16.639(5) 16.079(5) 16.917(5) 

Loy et 

al. [20] 

8.2051(4) 8.2532(4) 8.3227(4) 8.3903(4) 8.4263(4) 8.4590(4) 8.1721(4) 8.6033(4) FSDT 

10 
8.2052(4) 8.2533(4) 8.3228(4) 8.3904(4) 8.4265(4) 8.4591(4) 8.1723(4) 8.6035(4) 

Loy et 

al. [20] 

4.0652(3) 4.0891(3) 4.1233(3) 4.1567(3) 4.1746(3) 4.1910(3) 4.0487(3) 4.2632(3) FSDT 

20 
4.0653(3) 4.0892(3) 4.1235(3) 4.1569(3) 4.1749(3) 4.1911(3) 4.0489(3) 4.2633(3) 

Loy et 

al. [20] 

1.4223(2) 1.4307(2) 1.4426(2) 1.4543(2) 1.4606(2) 1.4664(2) 1.4166(2) 1.4917(2) FSDT 

50 
1.4225(2) 1.4308(2) 1.4428(2) 1.4545(2) 1.4608(2) 1.4665(2) 1.4167(2) 1.4918(2) 

Loy et 

al. [20] 

0.5340(1) 0.5368(1) 0.54113(1) 0.54560(1) 0.5479(1) 0.5501(1) 0.5323(1) 0.5593(1) FSDT 

100 
0.5341(1) 0.5368(1) 0.54115(1) 0.54561(1) 0.5480(1) 0.5502(1) 0.5325(1) 0.5595(1) 

Loy et 

al. [20] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 Journal of Mechanical Research and Application (JMRA), Vol. 11 No.4, 1400(2021),1-19 

 

 13  

 

 

 

 

 

 
Table 5. Natural frequencies for Type II FGCS versus the length-to radius ratio )002.0/( =Rh .  

     N  Nickel 
Stainless 

steel 
Theory 

R

L
 

15 5 2 1 0.7 0.5     

437.53(20) 434.91(20) 431.13(20) 427.61(20) 425.77(20) 424.19(20) 417.52(20) 439.35(20) FSDT 

0.2 
437.57(20) 434.93(20) 431.15(20) 427.62(20) 425.80(20) 424.20(20) 417.54(20) 439.36(20) 

Loy et 

al. [20] 

174.73(15) 173.70(15) 172.18(15) 170.77(15) 170.05(15) 169.42(15) 166.74(15) 175.47(15) FSDT 

0.5 
174.76(15) 173.71(15) 172.20(15) 170.79(15) 170.06(15) 169.43(15) 166.76(15) 175.49(15) 

Loy et 

al. [20] 

86.972(11) 86.446(11) 85.696(11) 84.993(11) 84.633(11) 84.315(11) 82.992(11) 87.330(11) FSDT 

1 
86.974(11) 86.448(11) 85.697(11) 84.995(11) 84.634(11) 84.316(11) 82.993(11) 87.331(11) 

Loy et 

al. [20] 

43.193(8) 42.932(8) 42.560(8) 42.211(8) 42.033(8) 41.873(8) 41.216(8) 43.372(8) FSDT 

2 
43.195(8) 42.934(8) 42.561(8) 42.212(8) 42.033(8) 41.875(8) 41.217(8) 43.373(8) 

Loy et 

al. [20] 

16.847(5) 16.746(5) 16.601(5) 16.464(5) 16.394(5) 16.333(5) 16.077(5) 16.916(5) FSDT 

5 
16.849(5) 16.748(5) 16.602(5) 16.466(5) 16.396(5) 16.335(5) 16.079(5) 16.917(5) 

Loy et 

al. [20] 

8.5671(4) 8.5147(4) 8.4410(4) 8.3720(4) 8.3363(4) 8.3048(4) 8.1721(4) 8.6033(4) FSDT 

10 
8.5672(4) 8.5148(4) 8.4411(4) 8.3722(4) 8.3365(4) 8.3050(4) 8.1723(4) 8.6035(4) 

Loy et 

al. [20] 

4.2450(3) 4.2190(3) 4.1826(3) 4.1484(3) 4.1307(3) 4.1151(3) 4.0487(3) 4.2631(3) FSDT 

20 
4.2451(3) 4.2191(3) 4.1827(3) 4.1486(3) 4.1309(3) 4.1152(3) 4.0489(3) 4.2633(3) 

Loy et 

al. [20] 

1.4853(2) 1.4762(2) 1.4634(2) 1.4515(2) 1.4453(2) 1.4399(2) 1.4166(2) 1.4917(2) FSDT 

50 
1.4854(2) 1.4763(2) 1.4636(2) 1.4517(2) 1.4455(2) 1.4400(2) 1.4167(2) 1.4918(2) 

Loy et 

al. [20] 

0.5576(1) 0.5547(1) 0.5501(1) 0.5454(1) 0.54322(1) 0.5411(1) 0.5323(1) 0.5593(1) FSDT 

100 
0.5578(1) 0.5548(1) 0.5502(1) 0.5456(1) 0.54324(1) 0.5412(1) 0.5325(1) 0.5595(1) 

Loy et 

al. [20] 
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Table 6. Natural frequencies for Type I FGCS versus the thickness ratio )20/( =RL . 

     N  Nickel 
Stainless 

steel 
Theory 

R

h
 

15 5 2 1 0.7 0.5     

2.6637(3) 2.6791(3) 2.7016(3) 2.7237(3) 2.7354(3) 2.7460(3) 2.6535(3) 2.7917(3) FSDT 

0.001 
2.6639(3) 2.6792(3) 2.7018(3) 2.7239(3) 2.7356(3) 2.7461(3) 2.6537(3) 2.7919(3) 

Loy et 

al. [20] 

5.2477(2) 5.2774(2) 5.3220(2) 5.3654(2) 5.3886(2) 5.4092(2) 5.2281(2) 5.4991(2) FSDT 

0.005 
5.2478(2) 5.2776(2) 5.3221(2) 5.3656(2) 5.3887(2) 5.4094(2) 5.2283(2) 5.4992(2) 

Loy et 

al. [20] 

6.0865(2) 6.1217(2) 6.1734(2) 6.2237(2) 6.2505(2) 6.2743(2) 6.0630(2) 6.379(2) FSDT 

0.007 
6.0867(2) 6.1219(2) 6.1736(2) 6.2239(2) 6.2506(2) 6.2746(2) 6.0631(2) 6.380(2) 

Loy et 

al. [20] 

7.5660(2) 7.6102(2) 7.6742(2) 7.7365(2) 7.7685(2) 7.8000(2) 7.5356(2) 7.9331(2) FSDT 

0.01 
7.5661(2) 7.6104(2) 7.6744(2) 7.7367(2) 7.7700(2) 7.8001(2) 7.5358(2) 7.9333(2) 

Loy et 

al. [20] 

12.934(1) 13.000(1) 13.105(1) 13.213(1) 13.271(1) 13.323(1) 12.896(1) 13.550(1) FSDT 

0.02 
12.936(2) 13.001(2) 13.107(2) 13.215(2) 13.273(1) 13.325(1) 12.898(1) 13.552(1) 

Loy et 

al. [20] 

12.940(1) 13.004(1) 13.111(1) 13.218(1) 13.276(1) 13.328(1) 12.901(1) 13.555(1) FSDT 

0.03 
12.941(1) 13.006(1) 13.112(1) 13.220(1) 13.278(1) 13.330(1) 12.902(1) 13.557(1) 

Loy et 

al. [20] 

12.946(1) 13.012(1) 13.118(1) 13.225(1) 13.282(1) 13.334(1) 12.907(1) 13.561(1) FSDT 

0.04 
12.948(1) 13.013(1) 13.119(1) 13.226(1) 13.284(1) 13.336(1) 12.909(1) 13.563(1) 

Loy et 

al. [20] 

12.953(1) 13.020(1) 13.125(1) 13.232(1) 13.291(1) 13.343(1) 12.916(1) 13.570(1) FSDT 

0.05 
12.956(1) 13.021(1) 13.127(1) 13.235(1) 13.293(1) 13.345(1) 12.917(1) 13.572(1) 

Loy et 

al. [20] 
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Table 7.  Natural frequencies for Type II FGCS versus the thickness ratio )20/( =RL . 

     N  Nickel 
Stainless 

steel 
Theory 

R

h
 

15 5 2 1 0.7 0.5     

2.7806(3) 2.7638(3) 2.738(3) 2.7173(3) 2.7059(3) 2.6956(3) 2.6535(3) 2.7917(3) FSDT 

0.001 
2.7807(3) 2.7640(3) 2.740(3) 2.7175(3) 2.7060(3) 2.6958(3) 2.6537(3) 2.7919(3) 

Loy et al. 

[20] 

5.4775(2) 5.4451(2) 5.3977(2) 5.3534(2) 5.3306(2) 5.3107(2) 5.2281(2) 5.4991(2) FSDT 

0.005 
5.4777(2) 5.4452(2) 5.3979(2) 5.3536(2) 5.3308(2) 5.3109(2) 5.2283(2) 5.4992(2) 

Loy et al. 

[20] 

6.3537(2) 6.3153(2) 6.2604(2) 6.2092(2) 6.1828(2) 6.1596(2) 6.0630(2) 6.378(2) FSDT 

0.007 
6.3539(2) 6.3155(2) 6.2606(2) 6.2094(2) 6.1830(2) 6.1598(2) 6.0631(2) 6.380(2) 

Loy et al. 

[20] 

7.8998(2) 7.8514(2) 7.7835(2) 7.7201(2) 7.6871(2) 7.6581(2) 7.5356(2) 7.9331(2) FSDT 

0.01 
7.8999(2) 7.8516(2) 7.7837(2) 7.7202(2) 7.6873(2) 7.6583(2) 7.5358(2) 7.9333(2) 

Loy et al. 

[20] 

13.506(1) 13.436(1) 13.323(1) 13.213(1) 13.155(1) 13.106(1) 12.896(1) 13.550(1) FSDT 

0.02 
13.508(1) 13.437(1) 13.325(1) 13.215(1) 13.157(1) 13.107(1) 12.898(1) 13.552(1) 

Loy et al. 

[20] 

13.512(1) 13.441(1) 13.327(1) 13.218(1) 13.161(1) 13.111(1) 12.901(1) 13.554(1) FSDT 

0.03 
13.513(1) 13.442(1) 13.329(1) 13.219(1) 13.162(1) 13.112(1) 12.902(1) 13.557(1) 

Loy et al. 

[20] 

13.518(1) 13.446(1) 13.334(1) 13.225(1) 13.167(1) 13.116(1) 12.907(1) 13.561(1) FSDT 

0.04 
13.520(1) 13.448(1) 13.336(1) 13.226(1) 13.169(1) 13.118(1) 12.909(1) 13.563(1) 

Loy et al. 

[20] 

13.527(1) 13.456(1) 13.342(1) 13.232(1) 13.175(1) 13.125(1) 12.916(1) 13.570(1) FSDT 

0.05 
13.528(1) 13.457(1) 13.344(1) 13.234(1) 13.177(1) 13.126(1) 12.917(1) 13.572(1) 

Loy et al. 

[20] 
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Appendix A 

 

The strains and curvatures in cylindrical coordinate can be expressed as 



17 Journal of Mechanical Research and Application (JMRA), Vol. 11 No.4, 1400(2021),1-19 

 

 17  

 

 

x

u




= 10

11  

a

uu

a

320
22

1
+




=


 




+




= 120

12

1 u

ax

u
 

x
k




= 1

11


 








= 2

22

1

a
k  








+




= 12

12

1

ax
k      

x

u




+= 3

1
0
13   







+= 3

2
0
23

1 u

a
 

 

The stress resultants are expressed as  
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