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Abstract 

 
    In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials (FGMs) 

with linear varying thickness is considered. Material properties are assumed to be graded in the thickness 

direction according to a simple power law distribution in terms of the volume fractions of the constituents. 

The supporting condition of all edges of such a plate is simply supported. The equilibrium and stability 

equations of a FGM rectangular plate (FGRP) under thermal loads derived based on classical plate theory 

(CPT) via variational formulation, and are used to determine the pre-buckling forces and the governing 

differential equation of the plate. The buckling analysis of a functionally graded plate is conducted using; the 

uniform temperature rise, having temperature gradient through-the-thickness, and linear temperature variation 

in the thickness and closed-form solutions are obtained. The buckling load is defined in a weighted residual 

approach. In a special case the obtained results are compared by the results of functionally graded plates with 

uniform thickness. The influences of the plate thickness variation and the edge ratio on the critical loads are 

investigated. Finally, different plots indicating the variation of buckling load vs. different gradient exponent k, 

different geometries and loading conditions were obtained.  

 

Keywords:  Thermal buckling; FGM plates; Thin Rectangular Plate; Classical Plate Theory; Variable 

Thickness Plate; Galerkin Method;  

  

Nomenclature 
 

ba,                                 plate length and width  

mc EEzE ,),(                elasticity modulus of FGM, ceramic and metal  

                                    plate thickness 

1c                                   non-dimensional thickness variation parameter 
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2c                                   nominal thickness of the plate 

 k                                  volume fraction exponent 

mc VV ,                           volume fractions of the ceramic and metal 

i                                 curvatures  

mc KKzK ,),(             thermal conductivity of FGM, ceramic and metal  

nm,                             number of half waves in x- and y-directions  

ii MN ,                        force and moment resultants  

0
iN                              pre-buckling forces 

),,( zyxT                   temperature distribution 

mc TT ,                           temperature at  the ceramic-rich and the metal-rich surfaces of the plate 

U                                 strain energy 

V                                 total potential energy 

Tcbm UUUU ,,,        membrane, bending, coupled, and thermal strain energies 

wvu ,,                         displacement components  

zyx ,,                         rectangular cartesian coordinates  

mcz  ,),(              coefficient of thermal expansion of FGM, ceramic and metal  

xy                               shear strain  

yyxx  ,                        normal strains  

 ,                                  denoting partial differentiation   

                                  Poisson’s ratio  

TCr                             critical buckling temperature change 

 

 

1. Introduction 

 
    "Functionally graded materials" (FGMs) have received considerable attention in many engineering 

applications since they were first reported in 1984 in Japan [1]. Functionally graded material (FGMs) is a 

mixture in which material properties vary smoothly or continuously from one surface to the other. This 

continuous change in composition takes advantage of the attractive features of each of its constituents. 

Typically, these materials are made from a blend of ceramic and metal, or a combination of different metals. 

The advantage to use these materials bears on this idea that they are able to withstand high-temperature 

gradient environments while their structural integrity remains intact. For example, the ceramic constituent of 

the material provides the high- temperature resistance due to its low thermal conductivity. While the ductile 

metal component prevents the mixture from fracture due to thermal stresses. Furthermore, a mixture of 

ceramic and metal with a continuously varying volume fraction can be easily manufactured. Due to these 

advantages, FGMs have been introduced, applied and used in many engineering parts. The non-uniform 

matter can help the designer to reduce the weight of the structure. Hence, for cases where reduction of weight 

is of high importance, such as space structures, plates made of FGM material are the best choice however, the 

buckling load for these plates is a key factor in the design procedure. Moreover, while the problem of the 
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influence of thickness variation on the buckling load has received sufficient attention, still remains open for 

further debate. Fuchiyama and Noda [2] developed computer programs that analyzed the transient heat 

transfer and the transient thermal stress of a FGM plate, composed of ZrO2 and Ti-6AI-4v, by the finite 

element method. Tanigawa et al. [3] derived a one-dimensional temperature solution for a non-homogeneous 

plate in transient state and also optimized the material composition by introducing a laminated composite 

model. Analytical formulation and numerical solution of the thermal stress and deformations for 

axisymmetrical shells of FGM subjected to thermal loading due to fluid was obtained by Takezono et al. [4]. 

Aboudi et al. developed a new kind of higher order shear deformation theory for functionally graded materials 

that explicitly couples the micro-structural and macro-structural effects [5]. Reddy and Chin [6] analyzed the 

dynamic thermoelastic response of functionally graded cylinders and plates. In this work the thermo-

mechanical coupling was included in the formulation and a finite element model was used for the formulation. 

Reddy and Cheng [7] studied three-dimensional thermo-mechanical deformations of a simply supported 

Monel-zirconia functionally graded rectangular plate by using an asymptotic method. The local effective 

material properties were estimated by the Mori-Tanaka scheme. Cheng and Batra [8] obtained a new closed 

form solution for the thermo-mechanical deformations of an isotropic linear thermo-elastic functionally 

graded elliptic plate rigidly clamped at the edges. The method of asymptotic expansion was used to study 

three-dimensional mechanical deformations and the deformations due to thermal loads were found in a 

straightforward manner. Javaheri and Eslami [9, 10] presented the thermal buckling of uniform thickness 

rectangular FGM plates based on first and higher order plate theories subjested to four types of thermal loads. 

Najafizadeh and Eslami [11] discussed the thermal buckling of FGM circular plates. The thermal buckling 

load of the circular plate under uniform temperature rise, thermal gradient across the thickness, and thermal 

gradient across the radius are derived. Najafizadeh and Heydari [12] presented the thermal buckling of 

circular FGM plates based on higher order plate theories subjected to two types of thermal loads. 

   To date and based on conducted literature searches, it became obvious that no studies have been performed 

on any types of FGM plates with variable thickness. Therefore, in the present article, a thin rectangular FGM 

plate with linearly varying thickness under three types of thermal loads is considered. Based on the classical 

plate theory, equilibrium and stability equations are obtained using energy method. Thermal properties are 

given by a power law, function of z coordinate. To formulate the thermal buckling load, the Galerkin method 

has been employed. The analysis is based on the governing differential equation of the thin rectangular plate 

with linear varying thickness and the critical thermal buckling load is derived by the Galerkin method. 

Resulting equation are used to obtain the closed-form solution for the critical buckling temperature. The 

influence of the thickness non-uniformly parameter and the edge ratio to the critical load is investigated.  

 

2. FGM Plate and its Properties  

 
    Consider a FG thin rectangular plate made from a mixture of ceramics and metals and subjected to a kind 

of thermal load. The plate coordinate system ),,( zyx  is chosen such that; x and y are in-plane coordinates 

and z  is in the direction of the inward normal to the middle surface, the corresponding displacement 

designated by vu,  and  w  , respectively. The origin of the coordinate system is located at the corner of the 

plate on the middle plate. The plate side length in the x -direction is designated as a, and b is the length in the 

y -direction. The thickness of the plate, h, varies in the x, y directions such that (see Fig. (1); 
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Fig. 1. Geometry and coordinate system of rectangular plate (a × b). 

 

 

in which  is a general parameter indicating the thickness change in either of  x or y directions, 2c  is the 

nominal thickness of the plate at the origin and c1 is a variable parameter called the non-dimensional 

parameter. When c1 = 0, that means the plate has a constant thickness. When x=0, one has (0) =c2 =h  and 

for the case of  x=a, (a) =c1a+c2 

We assume that the plate composition is varied from the outer to the inner surface, i.e. the outer surface of the 

plate is ceramic-rich whereas the inner surface is metal-rich. The material properties of the FGM plate, such 

as coefficient of thermal expansion, , modulus elasticity E, and coefficient of thermal conduction K are 

assumed to be function of the constituent materials [13]. While the Poisson’s ratio  is assumed to be constant 

across the plate thickness [14] such that; 

 

)1()( cmcc VEVEzE −+= , 

)1()( cmcc VVz −+=  , 

)1()( cmcc VKVKzK −+= , 

 =)(z , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

 

Where subscripts m and c  refer to the metal and ceramic constituents, respectively; the volume fractions 

of ceramic Vc and metal Vm  are related by [15]; 

 

k
c hzV )2/1/( += ,     0k ,    =k , 

1)()( =+ zVzV cm , 

(3.1) 

 

(3.2) 

                                                                                                                             

Where volume fraction exponent “ k ” dictates the material variation profile through the plate thickness which 

takes values greater than or equal to zero. The value of zero for the k  represents a fully ceramic plate. 

From Eqs. (2) and (3) material properties of the FGM plate are determined, which are the same as the 

equations proposed by reference [15]. 

 

21)( cxcxhh +===  ,     &      21)( cycyhh +===  .   (1) 
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k
cmm hzEEzE )2/1/()( ++= , 

k
cmm hzz )2/1/()( ++=  , 

k
cmm hzKKzK )2/1/()( ++= , 

 =)(z . 

(4.1) 

 

(4.2) 

 

(4.3) 

 

(4.4) 

 

in which; 

 

mccm EEE −= ,            mccm  −= ,                 mccm KKK −= , (5) 

 

 

3. Basic and Equilibrium Equations 

 
    The classical plate theory (CPT) which is considered for further study in the present work is based on the 

assumption of the displacement field in the following form: 

 

xzwyxuzyxu ,00 ),(),,( −= , 

yzwyxvzyxv ,00 ),(),,( −= , 

),(),,( 0 yxwzyxw = . 

 
(6) 

 

 

in which wvu ,,  are the total displacement and ),,( 000 wvu are the mid-plane displacements in the yx,   

and z  directions, respectively. For the thin plate i.e. )20/1()/( bh , where h and b  are the thickness and 

smaller edge side of the rectangular plate, respectively. 

Hook’s law for a plate with thermal effects is defined as: 

 

 +−+
−

= 


 )1(
1

)(
2 yyxxxx

zE
, 

 +−+
−

= 


 )1(
1

)(
2 xxyyyy

zE
, 

xyxy
zE





)1(2

)(

+
= . 

 

 

 

(7) 

 

 
The plate is assumed to be comparatively thin and according to the Love-Kirchhoff assumption, normal 

to the median surface are assumed to remain straight and normal during deformation, thus out-of-plane shear 

deformations ),( yzxz  are disregarded. Strain components at distance z from the middle plane are then 

given by: 
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xxxxxx z += , 

yyyyyy z += , 

xyxyxy z 2+= . 

 

 

(8) 

 

 

 

Here, xyyyxx  ,, denote the corresponding quantities at points on the mid-plane surface only, and 

xyyyxx  ,,  are the curvatures which can be expressed in term of the displacement components. The 

relations between the mid-plane strains and the displacement components according to the Sander’s 

assumption are [16]; 

 

2
,,

2

1
xxxx wu += , 

2
,,

2

1
yyyy wv += , 

yxxyxy wwvu ,,,, ++= . 

 

 

(9) 

 

 

 

and 

 

xyxyyyyyxxxx www ,,, ,, −=−=−=   (10) 

 

Substituting Eqs. (9) and (10) into Eqs. (8) , the following expression for the strain components are obtained: 

 

xx,

2

x,x,xx zww
2

1
uε −+= , 

yyyyyy zwwv ,
2
,,

2

1
−+= , 

.2 ,,,,, xyyxxyxy zwwwvu −++=  

 

 

(11) 

 

 

A loaded plate is in equilibrium if its total potential energy V  remains stationary )0( =V , and V is 

stationary if the integrand in expression for V  satisfies the Euler equations. 

 The total potential energy V of a plate subjected to thermal loads is defined as: 

 

Tcbm UUUUV +++= ,              (12) 
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Where mU is the membrane strain energy, bU is the bending strain energy, cU  is the coupled strain energy, 

and TU is the thermal strain energy. The strain energy for thin rectangular plate based on classical plate 

theory is defined as; 

 

.])()([
2

1
 +−+−= dxdydzU xyxyyyyyxxxx   (13) 

 

Substituting of Eqs. (7) and (8) into Eq. (13), integration with represent to z  from 2/−   to 2/ , the total 

potential energy results in; 

 

 = FdxdyV , (14) 

 

where, functional F is; 

 

].)()([
1

1

)1()(
1

)1(22
)1(2

2

1
2

)1(2

][

][

][

2

222

2

222

2
















−+++
−

−−++++
−

+−+++
−

+
−

+++
−

=

yyxxyyxx

xyxyxxyyyyxxyyyyxxxx

xyyyxxyyxx

xyyyxxyyxx

B

C

A
F

 

 

 

 

(15) 

where 

1
)(

2/

2/
+

+== 
−

k
EEdzzEA cmm








, 


−

++
==

2/

2/

2

)2)(22(
)(







kk

k
EzdzzEB cm , 

− 








+
+

+
−

+
+==

2/

2/

3
3

2

44

1

2

1

3

1

12
)(








kkk
EEdzzzEC cmm , 

−=
2/

2/
),,()()(),1(),(




 dzzyxTzzEz , 

− =
2/

2/

22 ),,()()(



 dzzyxzzE . 

 

 

 

 

 

 

 

 
(16) 
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The total potential energy is a function of the displacement components and their derivatives. Hence, 

minimization of total potential energy in terms of the functional F yields the following Euler equations, [16]: 

 

0
,,

=








−









−





yx u

F

yu

F

xu

F
, 

0
,,

=








−









−





yx v

F

yv

F

xv

F
 ,       

0
,

2

2

,

2

,
2

2

,,

=








+









+









+









−









−





yyxyxxyx w

F

yw

F

yxw

F

xw

F

yw

F

xw

F
. 

(17.1) 

 

 

(17.2) 

 

 

(17.3) 

 

  Substituting of Eqs. (9) and (10) into Eqs. (15) and using Eqs. (17) the equilibrium equations for general 

rectangular plate made of functionally graded material are given by;  

 

 0,, =+ yxyxx NN, 

0,, =+ yyxxy NN ,                                                                                                                            

022 ,,,,,, =++++++ nyyyxyxyxxxyyyxyxyxxx PwNwNwNMMM

 

(18) 

 

Where stress resultant ii MN ,  are given by: 

 

− =
2/

2/
),1(),(




 dzzMN iii ,                                   xyyxi ,,= . (19) 

 

By substitution Eq. (7) into Eq. (19), one can arrive to the following constitutive relation as;  

 

 ),)(1(-))(,())(,(
-1

1
),(

2
++++= 


yyxxyyxxxx CBBAMN , 

 ),)(1())(,())(,(
1

1
),(

2
+−+++

−
= 


xxyyxxyyyy CBBAMN , 

 xyxyxyxy CBBAMN 


),(2),(
)1(2

1
),( +

+
= . 

 

(20) 

 

           

4. Plate Stability Equations 

   Stability equations of thin rectangular plates are derived using the energy method. If V is the total potential 

energy of the plate, the expandingV about the equilibrium state using Taylor series yields; 

 

+++= VVVV 32

!3

1

!2

1
 . (21) 
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The first variation V is associated with the state of equilibrium. The stability of the plate in the 

neighborhood of equilibrium condition may be determined by the sign of second variation. The condition 

02 =V is used to derive the stability equations for buckling problems [16]. Let us assume that iû  denotes 

the displacement component of the equilibrium state and iû the virtual displacement corresponding to a 

neighboring state. Denoting  the variation with respect to iû , the following rule, know as the Trefftz rule, is 

stated for the determination of the critical load. The external load acting on the plate is considered to be the 

critical buckling load if the following variational equation is satisfied ( ) 02 =V . Consider the state of 

primary equilibrium of a rectangular plate under general loading to be designated by ooo wvu ,, . For derived 

stability equations, virtual displacements are defined as: 

 

10 uuu +→ , 

10 vvv +→ , 

10 www +→ , 

 

(22) 

 

 

where 111 ,, wvu  are the virtual displacement increments. Substituting Eqs. (22) into Eq. (15) and collecting 

the second-order terms, we obtain the second variation of the potential energy as; 

 

( )

( ) ( )( ) 

( ) 

  dxdywNwwN2wN
2

1

w12ww2ww
)1(2

C

wvu1wvwuwvwu
1

B

vu
2

1
vu2vu

)1(2

A
V

2

1

2
y,1

0
yy,1x,1

0
xy

2
x,1

0
x

2
xy,1yy,1xx,1

2
yy,1

2
xx,12

xy,1x,1y,1xx,1y,1yy,1x,1yy,1y,1xx,1x,12

2
x,1y,1y,1x,1

2
y,1

2
x,12

2





++

+−+++
−

++−++++
−

−












+

−
+++

−
= 













 

(23) 

 

Applying the Euler equations (17) to the functional of Eq. (23), we find the stability equations as; 

 

0)wNw2Nw(NM2MM

0NN

0NN

yy1,

o

yxy1,

o

xyxx1,

o

xyyy1,xyxy1,xxx1,

yy1,xxy1,

yxy1,xx1,

=+++++

=+

=+

 (24) 

 

where 
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4.1 Governing Differential Equation for FGRP1  
     
      By substituting Eq. (25) into Eq. (24), the stability equations in terms of displacement components 

become; 

)()()()( ,1,1,1,1,,1,1,1,1, xyyxxxyyxxxxyxxyxx wwBwwBvuAvuA  +−+−+++  

                                      , 0)1()(
2

)1(
,1,1,1 =−−+

−
+ xyxyyy wBvu

A



   

xxyxyxxxxyxyx BwwBvuAvuA ,1,1,,1,1,1,1, )1()1()(
2

1
)(

2

1



−−−−+

−
++

−
 

                                               0)()( ,1,1,1,1 =+−++ xxyyyyxyyy wwBuvA   , 

 

)()()(2)( ,1,1,1,1,1,1,,1,1, xyyyyyxxyxxxxyxxxyxxx uvBvuBvuBvuB  +++++++  

       )()()1()()1( ,1,1,,1,1,1,1, yyxxxxxxyxyyxyyyx wwCvuBvuB  +−+−++−+  

    xxyyxyyxxyyxxxx CwwCwwC ,1,1,,1,1, )1(2)1(2)(2  −−−−+− +− xxxxwC ,1(  

   0]2)[1()() ,1
0

,1
0

,1
02

,1,1,1 =++−++− xyxyyyyxxxxxyyyyyyxxyy wNwNwNwwCw  . 

 
(26.1) 

 

 

 

(26.2) 

 

 

 

(26.3) 

 

 

 

 

 

 

 
In the next step we eliminate variables vu,  in above relations; then the equations of stability (26) can be 

merged into one equation in terms of deflection component w  and pre-buckling forces only for linear 

thickness variation as:  

 

 
1 Functionally Graded Rectangular Plate 

( ) ( )( ) ( )( ) yyxxyxxx wwCBvuBAMN ,1,1,1,1211 ,,
1

1
, 


+−+

−
= , 

( ) ( )( ) ( )( ) xxyyxyyy wwCBuvBAMN ,1,1,1,1211 ,,
1

1
, 


+−+

−
= , 

( ) ( )( ) ( ) xyxyxyxy wCBvuBAMN ,1,1,111 ,2,
)1(2

1
, −+

+
=


, 

( ) ( ) 



 −


−+−+

−
=

11

1
,0,0,0,02

0
yyxxyxx wwBvuAN , 

( ) ( ) 



 −


−+−+

−
=

11

1
,0,0,0,02

0
xxyyxyy wwBuvAN , 

( ) xyxyxy w
B

vu
A

N ,0,0,0
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(27) 

 

 
where 

2

2

2

2

yx 


+




= . (28) 

 

4.2 Solution Method 

 
   The method of solving Eq. (27) is based on the series expansion developed by Galerkin [16]. It was 

originally proposed by Bubnov and sometimes is referred to as the Bubnov-Galerkin method. A brief 

description of the method is coming in the following.  

If the FGM rectangular plate is simply supported in all four edges, then the boundary condition are: 

 

0,0 ,11 == xxww            at    ax ,0= , 

0,0 ,11 == yyww            at    by ,0= ,                                                              
(29) 

The proposed deflection function 1w  for this case is assumed to be in the following series form; 

)/sin()/sin(1 bynaxmBw mn = ,                  ,...3,2,1),( =nm . (30) 

where mnB  are constant coefficients, and nm,  are the half wave numbers in the yx,  directions, 

respectively.  

In this article, in order to determine the critical load, the Galerkin method is used. According to this method,  

 




= 0),()( dxdyyxRw , 
(31) 

in which ),( yxR  is the residue function and )(w is the weight function.  

 

5. Thermal Buckling Analysis  

 
     In this section, the closed form solutions of Eq. (27) for three types of thermal loading conditions are 

presented. The plate is assumed to be simply supported in all edges and rigidity fixed against any extension.  

 

    Case A. Uniform Temperature Rises 
 

     The initial uniform temperature of the plate is assumed to be iT , the temperature can be uniformly raised 

to final value fT , such that the plate buckles. To find the critical buckling temperature difference i.e., 
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ifA TTT −= , the pre-buckling thermal forces, should be found. Solving the membrane form of 

equilibrium equations i.e., Eq (18), gives the pre-buckling force resultants as; 
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,   00 =xyN . (32) 

 

where 

)]12/()1/()([1 +++++= kEkEEEG cmcmmcmcmmmm  , (33) 

 

By substituting this type of loading in Eqs. (16), one can get; 

 

1GTA =       (34) 

 

Substituting Eq. (32) into Eq. (27), the buckling equation for this type of loading is obtained as; 
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(35) 

 

For the assumed displacement field given by Eq. (30) the result of Eqs.(31) ,(35) becomes; 
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(36) 

 

After carrying out the integration, one would get; 

( ) 22
/. nambHTA +=  (37) 

in which, 
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(38) 

 

where, 

 

)1/(
~

++= kEEA cmm ,,   )12)(22/(
~

++= kkkEB cm      

. )]44/(1)2/(1)3/(1[12/
~

+++−++= kkkEEC cmm  
(39) 

 

The critical buckling load 
cr
AT can be obtained for different values of nm,   such that it minimizes Eq.(37). 

Apparently, when minimization methods are used, the critical buckling load, 
cr
AT , is obtained for m=n=1, 

thus; 
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(40) 

when 0c1 = , Eq.(40) represents the critical thermal buckling load, 
cr
Ai

T of a FGM rectangular plate with 

constant thickness  hc2 = ,  i.e.; 
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(41) 

 
The result given in Eq. (41) is exactly the same as the one obtained by reference [9]. 

 

       Case B. Linear Temperature Change across the Thickness 
 

    For a functionally graded plate, the temperature change is not uniform. Usually, the temperature level is 

much higher at the ceramic side than that in the metal side of the plate. In this case, the temperature variation 

through the thickness is given by; 



15 
Journal of Mechanical Research and Application (JMRA), Vol. 13 No.3, 1402(2023),1-28 

 

m
B

2
zz 


 +


+


= )()(  (42) 

 

in which 
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cT  and mT  denote the temperature level at the top (ceramic side) and the bottom (metal side) surfaces, 

respectively. The pre-buckling forces now can be obtained by solving the membrane form of equilibrium 

equations, i.e. Eq. (18) this gives; 
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in which 

 

)]22/()2/()(2/[2 +++++= kEkEEEG cmcmmcmcmmmm  , 
 

(45) 

 
Substituting Eq. (44) into Eq. (27), buckling equation for this case of loading is obtained; 
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(46) 

 

By following similar steps to that given in case A, the buckling load for case B is; 
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(47) 

 

when 0c1 = , Eq. (47) is reduced to the critical buckling load 
cr
Bi

T  of a FGM rectangular plate with 

constant thickness  hc2 = ,  which is; 
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The result given in Eq. (48) is exactly the same as the one obtained by reference [9]. 
 

       Case C. Buckling of FGRP under Non-linear Temperature Change across the 

Thickness 

     

In this section, the governing differential equation for the temperature distribute through the thickness is 

given by one-dimensional Fourier equation under steady state heat condition as;   

 

0)( =








dz

dT
zK

dz

d
, (49) 

 

where, K(z) is the coefficient of thermal conduction. Similar to what was considered for the variation of the 

elastic modulus and coefficient of thermal expansion, here the coefficient of the heat conduction is also 

assumed to change according to a power law in terms of z as represented by Eq. (4.3). 

By inserting Eq. (4.3) into Eq. (49) one would get; 
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(50) 

 

in which; 





2

2 +
=

z
m . (51) 

 

and boundary conditions across the plate thickness are; 

 

1, == mTT c , 

0, == mTT m
, 

 

(52) 

 
The solution of Eq. (50) can be obtained by means of polynomial series. Taking the first seven terms of the 

series, we have; 
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in which 
iĈ  are constant coefficients to be evaluated. After substituting Eq. (53) into Eq. (50) 

imposing the boundary conditions and doing some mathematical manipulations, one can get;  

 



17 
Journal of Mechanical Research and Application (JMRA), Vol. 13 No.3, 1402(2023),1-28 

 

)(
ˆ

)(
0

zL
C

T
TzT c

m


+= . (54) 

in which   

5

5

4

4

3

3

2

2

0
)15()14()13()12()1(

1ˆ

m

cm

m

cm

m

cm

m

cm

m

cm

Kk

K

Kk

K

Kk

K

Kk

K

Kk

K
C

+
−

+
+

+
−

+
+

+
−= , 

 

15

5

5
14

4

4
13

3

3

12

2

2
1

)
2

2
(

)15(
)

2

2
(

)14(2

2

)13(

2

2

)12(2

2

)1(2

2
)(

)(

)()()(

+++

++

+

+
−

+

+
+

+

+
−

+

+
+

+

+
−

+
=

k

m

cmk

m

cmk

m

cm

k

m

cmk

m

cm

z

Kk

Kz

Kk

Kz

Kk

K

z

Kk

Kz

Kk

Kz
zL

























mcc TT −=  

 

(55.1) 

 

 

 

(55.2) 

 

 

 

 

(55.3) 

 

The pre-buckling resultants loads for this case can be obtained by solving the membrane form of equilibrium 

equations i.e., (Eq. (18)) which yields to; 
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(56) 

 

In the next step, we substitute T(z) in Eqs. (16) and calculate  as; 
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By Substituting Eq. (56) into Eq. (27), the buckling equation  for this case of loading is obtained. By 

performing an analysis similar to that given for the case A, the thermal critical buckling load, 
cr

CT , for case 

C is determined to be: 

 

)2/34/)(
~

/
~~

(
)2/)(1(

]1)/[( 3
2

2
21

2
2

2
1

33
1

2

321
2

22

caccaccacABC
Gcacb

ab
T cr

C +++


 −

++

+
=



  

 


3

1
2

2
1

3
12222

2222
2 )2/(

)(

)(~
/

~~
6 )(

G

GT
ccac

ab

abba
ABC m−+

+

+
−+



  

 

(58) 

 

in which 
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(59) 

 

when 0c1 = , Eq. (58) will reduced to the critical buckling load 
cr

Ci
T of a FGM rectangular plate with 

constant thickness  hc2 = ,  which is; 
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The result given in Eq. (60) is exactly the same as the one obtained by reference [9]. 
 

6. Results and Discussions 
  

      In this paper, the pre-buckling and critical thermal buckling loads of a thin rectangular FGM plate with 

variable thickness are obtained. Thickness variation follows simultaneously with two different types of linear 

changes both in x and y directions, respectively. In order to conduct further calculations, a functionally graded 

material consisting of aluminum and alumina is considered in which the Young,s modulus, conductivity, and 

the coefficient of thermal expansion, are: for the aluminum, GPaEm 70= , mKWKm /204=  , )/1(1023 6 Co

m

−=  

and for the alumina, GpaEc 380= , mKWKc /4.10= , )/1(104.7 6 Co

c

−=  and  3.0== cm   for both. 

The critical temperature change Cr versus the aspect ratio ab / , 1c , and volume fraction exponent k  for 

two types of linear change of thickness at yx,  directions and three types of thermal loadings are shown in 

Figs. (2-13). To begin with, we start with the variation of the critical temperature difference 
cr

A  of FGRP 

under uniform temperature rise vs. different geometric parameter (b/a), for different volume fraction 

exponent. The variations are plotted in Figs. (2-5). By comparing The values of the critical temperature 

differences 
cr

AT calculated with using linear change in the plate thickness at the x direction are lower than y 

direction. For the plate of FGM material (k>0), the critical temperature difference of the buckling for 

thickness variation in the y-direction is higher than of x-direction. Therefore, the plate strength against 

buckling with respect to all kinds of thermal loads is higher in y-direction when the plate has a variable 

thickness.  
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Fig.2. Variation of buckling critical temperature gradient vs. b/a for different FGRP with linear thickness 

change in x direction under uniform temperature rise (c1, c2 =const.)                                                              
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Fig.3. Variation of buckling critical temperature gradient vs. b/a for different FGRP with linear thickness 

change in y direction under uniform temperature rise (c1, c2 =const.)                                                                            
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   Fig. (4) illustrates the variation of the buckling critical temperature gradient of different FGRP versus 

thickness variation parameter c1 for the linear change in the plate thickness in both x and y directions 

subjected to uniform temperature rise when b/a =1 and c2 = constant. Notice that cr

A  has a shallow increase 

specially for 0k . Moreover, k=0 represents a fully ceramic plate. 
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Fig.4. Variation of buckling critical temperature gradient vs. c1 for different FGRP with linear thickness 

change in both x and y directions and under uniform temperature rise (b/a =1, c2 =const.)   
 

Fig. (5) displays the variation of the buckling critical temperature gradient, cr

AT  vs. the material index k for a 

FGRP with linear thickness change in both x and y directions under uniform temperature rise when b/a =1, c2 

=const. From Fig. (5) we can see that unlike the former case, the critical temperature difference demonstrates 

a decreasing trend with increasing gradient index k. It is evident that  cr

AT  changes very slowly when the 

material gradient index k is greater than 1. Moreover, again k=0 represents a fully ceramic plate. 



21 
Journal of Mechanical Research and Application (JMRA), Vol. 13 No.3, 1402(2023),1-28 

 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

k


T

A
c
r (o

C
) c1=0.005

c1=0.004

c1=0.001

 
Fig. 5. Variation of the buckling critical temperature gradient vs. material index k for different FGRP with 

linear thickness change in both x and y directions under uniform temperature rise (b/a =1, c2 =const.) 

   

  In Figs. (6-9) the graphs of buckling critical temperature gradient of different FGRP’s under linear 

temperature change across the thickness vs. different types of geometric parameter and volume fraction 

exponent k, are plotted.  
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Fig. 6.  Variation of the buckling critical temperature gradient vs. b/a for different FGRP with linear 

thickness change in x direction under linear temperature change across the thickness (c1, c2 =const.)  

 


T

B
c
r (0

C
)

0

100

200

300

400

500

600

700

800

1 1.5 2 2.5 3 3.5 4 4.5 5

b/a

k=0 k=0.3 k=0.5 k=1 k=10 50

 
Fig. 7.  Variation of the buckling critical temperature gradient vs. b/a for different FGRP with linear thickness 

change in y direction under linear temperature change across the thickness (c1, c2 =const.)  
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Fig. 8.  Variation of the buckling critical temperature gradient vs. c1 for different FGRP with linear thickness 

change in x and y directions under linear temperature change across the thickness (b/a=1, c2 =const.) 
  

Fig. (9) demonstrates the variation of buckling critical temperature cr
BT vs. the material graded index k. 

From Fig. (9) we can see that unlike the former cases, the critical temperature difference demonstrates a 

decreasing trend with increasing gradient index. It is evident that cr
BT changes very slowly or constant when 

the material gradient k is greater than 10. 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
k


T

B
c
r (o

C
)

c1= 0.005

c1= 0.004

c1= 0.001

 



24 
Journal of Mechanical Research and Application (JMRA), Vol. 13 No.3, 1402(2023),1-28 

 

Fig. 9. Variation of the buckling critical temperature gradient vs. material index k for different FGRP with 

linear thickness change in both x and y directions under linear temperature across thickness (b/a =1) 

 

In Figs. (10-13) the graphs of buckling critical temperature gradient of FGRP under non-linear temperature 

change across the thickness versus two types of different geometric parameter and volume fraction exponent 

k, are plotted. 
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Fig. 10. Variation of the buckling critical temperature gradient vs. b/a for different FGRP with linear thickness 

change in x direction under non-linear temperature rise across the thickness (c1, c2 =const.)  
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Fig. 11.  Variation of the buckling critical temperature gradient vs. b/a for different FGRP with linear 

thickness change in y direction under non-linear temperature rise across the thickness (c1, c2 =const.) 
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Fig. 12.  Variation of the buckling critical temperature gradient vs. c1 for different FGRP with linear thickness 

change in x and y directions under non-linear temperature change across the thickness (b/a =1, c2 

=const.)  
 

In Fig. (13) variation of the buckling critical temperature gradient vs. material index k for different FGRP 

with linear thickness change in both x and y directions under non-linear temperature across thickness when 
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b/a =1 is plotted. As it is seen in this figure, the critical temperature gradient has the highest variation for the 

range of  0<k<10 and for k values greater than 10 it flattens and reaches to a steady state condition.  
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Fig. 13.  Variation of the buckling critical temperature gradient vs. material index k for different FGRP with 

linear thickness change in both x and y directions under non-linear temperature across thickness (b/a 

=1) 

 
In an overview of all above cases, one can say that the buckling critical temperature gradient of a 

homogeneous ceramic plate (k=0), is higher than the FGM plate. This result is justifiable, because the 

coefficient of the thermal expansion of ceramic plate is lower than the FGM plate.  Referred to Figs. (10-11) it 

can be said that the difference between variation of buckling critical temperature gradient of the homogeneous 

ceramic plate (k=0) and the FGM plate (k>0) is not significantly high but rather small. Contrary to this, on the 

other types of loadings the difference is much higher; therefore, this type of loading results in a more 

acceptable thermal stress distribution in the plate.  

 

In Figs. 2-13, it is found that the critical temperature difference of FGRP is higher than that of the fully metal 

plate but lower than that of the fully ceramics plate. In addition, the critical temperature change decreases as 

volume fraction exponent k is increased. In all cases, the critical temperature difference increases, when the 

geometric parameter b/a is increased.  

 

6. Conclusions 

    
   In the present paper, equilibrium and stability equations for a simply supported rectangular functionally 

graded plate with its thickness varying along both the x and y axes as a linear function, under thermal loading 

are obtained according to the classical plate theory. The buckling critical temperature gradient for three 

different types of thermal loadings is derived using Galerkin method. From the obtained results, primarily one 

can conclude that the thickness change causes the reinforcement or reduction of the load-carrying capacity of 
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plate structure. So, this effect should be taken into account in the engineering design of plate structures. 

Moreover, based on the analysis of numerical results, the following conclusions are reached: 

1. The critical buckling temperature difference 
crT for FGRP are generally lower than the corresponding 

values for homogeneous ceramic plate (k=0). 

2. The critical buckling temperature difference crT for a FGRP will increase as ab / and 1c increase. 

3. The critical buckling temperature difference 
.

,,

cr

CBAT for a FGRP is decreasing the volume fraction 

exponent k increases. 

4. The critical buckling temperature difference 
cr  for FGRP with a linear thickness change in x direction 

is lower than the one for the plate with a linear thickness change in y direction. 

5. The critical buckling temperature difference 
cr increases steadily as c1 increases. This indicates that no 

sudden variation can occur on the critical buckling load under this condition hence, it can be regarded as an 

advantage. 

6. The difference between variation buckling critical temperature gradient of the homogeneous ceramic plate 

(k=0) and the FGM plate (k>0) is not significantly high but rather small. Contrary to this, on the other types 

of loadings the difference is much higher; therefore, this type of loading results in a more acceptable 

thermal stress distribution in the plate. 

7- For the nonlinear type of loading in z-direction, the plate experiences a thermal stress distribution which is 

lower than the one induced by two other linear types. 
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