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In this paper, creep analysis of a thick-walled spherical pressure 

vessel made of Functionally Graded Material (FGM) under thermo-

mechanical loadings has been investigated based on Bailey-Norton 

Law. Considering the nonlinearity of the creep behavior, there is no 

analytical solution that can accurately determine the stresses of an 

FGM as a function of time and thermal boundaries, thus in this paper, 

a new method based on the Taylor Series expansion of the creep 

strain rate is developed to solve the Beltrami-Michell equation by 

employing an asymptotic method. The resulting quantities are 

compared with the numerical ones and show good accuracy. The 

impacts of FGM constants and wall-thickness, and series order on 

the creep stress and strain distributions are evaluated. The results are 

depicted graphically and reveal that even for vessels with high wall 

thickness and FGM constants, the proposed method equipped with 

high orders of the Taylor series produces accurate results. Also, due 

to the agreement of both numerical and analytical methods, this 

method can be generalized to study the creep of other symmetric 

FGM structures. 
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1. Introduction 
Conventional composite materials, besides their 

remarkable advantages such as alteration of 

properties and orientation of fibers, which might be 

reformed freely for various goals, suffer from some 

disadvantages like delamination and failure due to 

sharp layer-interface [1]. Thus, functionally graded 

materials, as a new class of composite materials with 

continuous change of properties in different 

directions, found a growing application [2]. Multi-

functional FGMs are advanced non-homogeneous 

composites whose structure is microscopically 

modified to provide desired material properties [3] 

and is usually made of combining metals and 

ceramics to increase thermal and mechanical 

resistance. FGM was first proposed in 1987 by Nino 

et al. in the Japanese National Aerospace Laboratory 

to produce a heat-resistant thermal barrier [4], and 

from then on, it is employed in a variety of 

applications due to its high versatility [5-7].  

Heat exchangers, thermal shields of space structures, 

reactor walls, engine parts, and all parts exposed to 

thermo-mechanical stresses such as pressure 

spherical vessels are some of FGM’s industrial 

applications. Attention should be paid to spherical 

vessels as they are under long-term thermo-

mechanical loadings, which expose the vessel to 

creep phenomenon. Thus, evaluating the visco-

elasto-plastic behavior of FGM vessels is of 

particular importance [8]. 

Creep is a complex function of lots of parameters 

such as stress, time, temperature, material grain size 

and shape, microstructures, and etc. [9]. Daghigh et 

al. investigated the initial thermo-elastic and time-

dependent creep evolution response of a rotating 

disk. To achieve the history of stresses, 

displacements, and creep strains, a numerical 

procedure using Taylor series and Prandtl-Reuss 

relation is utilized, which offers radial, 

circumferential and effective stress and strain 

histories [10]. To experimentally study the creep 

phenomenon, a series of uniaxial creep tests has been 

conducted by Cen and et al. [11] at 650° C. The 

experimental data have been applied to the structural 

integrity assessment of a thin-walled pressure vessel. 

Pathania and Verma [12] studied the temperature and 

pressure-dependent creep stress analysis of a 

spherical shell. Evaluating the effect of different 

parameters indicated that parameter n has a significant 

influence on the creep stresses and strain rates. 

Several researchers have studied the creep and 

thermo-elastic behavior of thick-walled vessels made 

of FGMs in the literature. A general analytical 

solution for one-dimensional steady-state thermal 

and mechanical stresses in an FG hollow sphere is 

done by Eslami et al. [13]. Bayat et al. [14] presented 

an analytical and numerical solution to obtain 

symmetric thermal and mechanical stresses in a 

thick-walled FG sphere under pressure and thermal 

loadings. Stresses and strains on an FGM cylinder 

under mechanical and thermal loading has been 

theoretically derived by Habib [15]. The results have 

been compared with the stresses obtained from a 

finite element simulation. Loghman et al. [16] 

investigated time-dependent creep stress 

redistribution of a thick-walled FGM sphere 

subjected to internal pressure and uniform 

temperature using successive elastic solution method. 

Jafari Fesharki et al. [17] used a semi-analytical 

numerical method as well as Prandtl-Reuss and 

Sherby relations to analyze the time-dependent creep 

behavior of an FG hollow sphere under 

thermomechanical loading. Yang [18] analyzed the 

time-dependent FGM cylindrical vessel considering 

the creep behavior of the structure. Based on the 

results obtained, the higher-order solution can be 

used to calculate the stresses for a long time creeping.  

In the presence of time-dependent heat resource, the 

heat conduction equation is numerically solved for a 

two-dimensional hollow FG cylinder by Daneshjou 

et al. [19]. Delouei and et al. [20] obtained an 

analytical solution for the two-dimensional steady-

state heat transfer with general thermal boundary 

conditions in an FGM hollow sphere. 

Considering the extensive research on the thermo-

mechanical behavior of materials in the recent 

decade, the literature is quite narrow in FGM 

pressure vessels, especially the studies using 

analytical solutions. Furthermore, considering the 

creep behavior of FGMs, there are no analytical 

solutions that can accurately determine the stresses as 

a function of time and thermal boundaries conditions; 

and others are often examined the problem by 

conventional approximation and numerical methods. 

In this paper, the creep behavior of an FGM spherical 

vessel subjected to a uniform thermal flux and 

mechanical load is investigated by a new analytical 

procedure based on the asymptotic method. The 

effects of different parameters on the stress and strain 

fields are studied. Moreover, to validate the results of 

proposed method, a finite element analysis has been 

conducted.The results derived from the equations are 

compared with the numerical results from the 

simulation.  

2. Problem Formulation and Method 

2.1 Mathematical Approach 
A thick-walled spherical vessel made of functionally 

graded material is of concern. The inner and outer 

radii are a and b, respectively. The vessel is subjected 

to uniform internal and external pressure Pi and Po, 
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respectively. The interior surface is exposed to a 

thermal flux, while the exterior surface experiences a 

convective heat transfer with the environment. In this 

paper, it is assumed that the material of the FG 

pressure vessel is graded according to a power law in 

the following forms [21]: 

 𝐾(𝑟) = 𝐾𝑖 ( 
𝑟

𝑎
 )
𝛽1

 

(1) 𝐸(𝑟) = 𝐸𝑖 ( 
𝑟

𝑎
 )
𝛽2

 

 𝛼(𝑟) = 𝛼𝑖 ( 
𝑟

𝑎
 )
𝛽3

 

where Ki, Ei , and αi are respectively thermal 

conductivity, elasticity modulus, and coefficient of 

thermal expansion at the inner surface of the vessel. 

β1 , β2 and β3 are the graded factor of the FGM vessel. 

The Poisson’s ratio is assumed as constant. 

2.2 Conductive Heat Transfer Analysis 
Due to spherical symmetry in the geometry, as well 

as loading and boundary conditions, the system of 

governing equations of heat is as follows: 

(2) 
1

𝑟2
𝑑

𝑑𝑟
(𝐾(𝑟)𝑟

2
𝑑𝑇

𝑑𝑟
) = 0 

The boundary conditions of the internal and external 

surfaces of the vessel are: 

(3) 

{
 
 

 
 −𝐾𝑖

𝑑𝑇

𝑑𝑟
|
 

 𝑟=𝑎
 
= 𝑞                         
 

ℎ𝑇
 

 
|
 

 𝑟=𝑏
 + 𝐾0

𝑑𝑇

𝑑𝑟
|
 

 𝑟=𝑏
 = ℎ𝑇∞

 

where T∞ is the ambient temperature, and h is the 

convective heat transfer coefficient. By embedding 

the thermal conductivity of FGM in the heat 

equation: 

(4) 𝑇(𝑟) = 𝑐1𝑟
−1−𝛽1 + 𝑐2 

where c1 and c2 will be found from boundary 

conditions as: 

(5) 

{
 
 

 
 𝑐1 =

𝑞𝑎𝛽1+2

𝐾𝑖(1 + 𝛽1)
                                                                     

𝑐2 = 𝑇∞ + (
𝐾0
𝐾𝑖
) (
𝑎

𝑏
)
𝛽1+2

(
𝑞

ℎ
) + (

𝑎

𝑏
)
𝛽1+1

(
𝑎𝑞

𝐾𝑖(1 + 𝛽1)
)

 

3. Analytical Solution 
Various creep model equations are in use to represent 

the time-dependent deformation of the engineering 

materials [22]. In this study, Baily-Norton creep 

equation is used to describe creep behavior [23]. 

(6) 𝜀𝑒𝑞
𝑐 = 𝐵𝜎𝑒𝑞

𝑁 𝑡𝓍 

where B is the creep strain hardening coefficient. B, 

N, and x are temperature-dependent material 

constants that are generally independent of stress and 

are derived from uniaxial creep tests. Assuming x 

equal to 1, the Norton law models the secondary stage 

or steady-state section of creep phenomenon, in 

which strain rate is constant. Steady-state creep 

occurs after time-dependent strain rate stage, called 

transient or primary creep, when after a long period 

of time, the stress reaches a constant value over time.  

Stresses, strains, and displacements in a structure are 

determined using elasticity theory. By considering 

strain-displacement relations, Hooke's structural 

relation, and the static equilibrium equation in one 

element of the structure, this theory forms the system 

of differential equations that can be in terms of stress, 

strain, or displacement. In addition to the mechanical 

strains, thermal strains caused by the temperature 

gradient in the structure, should be considered in 

Hooke’s structural equation, which establishes 

thermo-elastic formulation of the structure.  

Due to the spherical symmetry, the circumferential 

components, θ and φ, of the stress and strains will be 

equal. In this case, the equilibrium equation, strain 

compatibility equation, and Hook’s general law in 

terms of strain components, which are a combination 

of elastic, thermal, and creep strains, are as follows: 

(7) 
𝑑𝜎𝑟𝑟
𝑑𝑟

+
2

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0 

(8) 
𝑑ℰ𝜃𝜃
𝑑𝑟

+
(ℰ𝜃𝜃 − ℰ𝑟𝑟)

𝑟
= 0 

(9) 
ℰ𝑟𝑟 =

1

𝐸
[𝜎𝑟𝑟 − 2𝜗𝜎𝜃𝜃]

+ 𝛼(𝑇(r,t) − 𝑇𝑟𝑒𝑓) + ℰ𝑟𝑟
𝑐  

(10) 
ℰ𝜃𝜃 =

1

𝐸
[(1-ϑ)𝜎𝜃𝜃 − 𝜗𝜎𝑟𝑟]

+ 𝛼(𝑇(r,t) − 𝑇𝑟𝑒𝑓) + ℰ𝜃𝜃
𝑐  

By embedding these equations and performing some 

simplifications, the Beltrami-Michell differential 

equation will be obtained in terms of radial stress of 

the vessel: 

(11) 

𝑟2
𝑑2 𝜎𝑟𝑟

𝑑𝑟2
+ 𝑟(4 − 𝛽2)

𝑑𝜎𝑟𝑟

𝑑𝑟
− 2𝛽2(

1−2𝜗

1−𝜗
)𝜎𝑟𝑟  

= −
2𝛼𝑖𝐸𝑖  𝑟

𝛽2+𝛽3+1

(1 − 𝜗)𝑎𝛽2+𝛽3

𝑑𝑇

𝑑𝑟
−
2𝛼𝑖𝐸𝑖𝛽3 𝑟

𝛽2+𝛽3

(1 − 𝜗)𝑎𝛽2+𝛽3
𝑇

−
2𝐸𝑖  𝑟

𝛽2+1

(1-ϑ) 𝑎𝛽2

𝑑ℰ𝜃𝜃
𝑐

𝑑𝑟

−
2𝐸𝑖  𝑟

𝛽2

(1-ϑ) 𝑎𝛽2
(ℰ𝜃𝜃

𝑐 − ℰ𝑟𝑟
𝑐 ) 

To solve this equation, it is necessary to transform the 

complex and nonlinear governing equation of strain 

rate, into simple polynomials. For this purpose, a 

method based on the Taylor series expansion for the 

components of creep strain rate is employed. Creep 

strains are zero in terms of the elastic solution, but at 

subsequent time steps, they will be obtained by the 

following equation: 
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(12) ℰ(j+1)
 c = ℰ(j)

 c + ℰ̇(j)
c ∆t 

Using the creep equation, the rates of the components 

of the creep strain at each jth time stepstage are found 

to be: 

(13) ℰ̇𝑟𝑟
𝑐 =

3

2
𝐵𝜎𝑒𝑞

(𝑁−1)
𝑆𝑟𝑟 

(14) ℰ̇𝜃𝜃
𝑐 =

3

2
𝐵𝜎𝑒𝑞

(𝑁−1)
𝑆𝜃𝜃 

The values of σeq and Srr and Sθθ are as: 

(15) σeq = |σrr − σθθ| 

(16) Srr =
2

3
(σrr − σθθ) 

(17) Sθθ =
1

3
(σθθ − σrr) 

In these equations, σeq, Srr, and Sθθ, are respectively 

the equivalent stress, radial deviator stress, and 

circumferential deviator stress of the vessel at each 

time step. 

At time=0, the stress components are obtained by the 

solution of the differential equation. At the following 

time steps, by calculating the creep strain rate at each 

time interval, the value of creep strain at each 

moment is obtained. Then, total strain and stress at 

the next time step will be found. Therefore, at each 

time step, the creep strain rate can be expressed in 

terms of stress components as: 

(18) 
ℰ̇𝑟𝑟
𝑐 | =𝑡𝑗

 𝐵|𝜎𝑟 − 𝜎𝜃|
𝑁−1. (𝜎𝑟

− 𝜎𝜃)|𝑡𝑗 

(19) 
ℰ̇𝜃𝜃
𝑐 | =𝑡𝑗

 −
𝐵

2
|𝜎𝑟 − 𝜎𝜃|

𝑁−1. (𝜎𝑟

− 𝜎𝜃)|𝑡𝑗 

Knowing that the volume does not change in a plastic 

flow, it can be concluded that the sum of the creep 

strain rates should be zero: 

(20) ℰ̇𝜃𝜃
𝑐 | = 

𝑡𝑗

 −
1

2
ℰ̇𝑟𝑟
𝑐 |  𝑡𝑗

  

Taylor series expansion of the creep strain rate is: 

(21) ℰ̇𝑟𝑟
𝑐 | = ∑ 𝐴𝑘

(𝑗)
(𝑟 − �̅�)𝑘

𝑘=𝑛

𝑘=0

 
𝑡𝑗

  

where;  

(22) 𝐴𝑘
(𝑗)
=
1

𝑘!
[
𝑑𝑘

𝑑𝑟𝑘
(ℰ̇𝑟𝑟

𝑐 | ) 
𝑡𝑗

 ]  0
𝑟=�̅�

  

The parameter j is time step counter, n is the Taylor 

series order, k is the derivative order, and �̅� is the 

coordinate of the vessel wall’s midpoint. 

Substituting temperature and creep strain equations 

into the Beltrami-Michell equation, the governing 

differential equation at the jth time step will be found 

as: 

(23) 

𝑟2
𝑑2𝜎𝑟𝑟

(𝑗)

𝑑𝑟2
+ 𝑟(4 − 𝛽2)

𝑑𝜎𝑟𝑟
(𝑗)

𝑑𝑟

− 2𝛽2(
1 − 2𝜗

1 − 𝜗
)𝜎𝑟𝑟

(𝑗)
 

= 𝑐3𝑟
𝛽3+𝛽2−𝛽1−1 + 𝑐4𝑟

𝛽3+𝛽2

+ ∑ 𝐼𝑘
(𝑗)

𝑘=𝑚

𝑘=0

𝑟𝑘+𝛽2 

 

where;  

(24) 𝑐3 =
2𝐸𝑖𝛼𝑖(1 + 𝛽1 − 𝛽3)

(1 − 𝜗)(𝑎𝛽2+𝛽3)
. 𝑐1 

(25) 𝑐4 =
−2𝐸𝑖𝛼𝑖𝛽3

(1 − 𝜗)(𝑎𝛽2+𝛽3)
. 𝑐2 

(26) 𝐼𝑘
(𝑗)
=
2𝐸𝑖[𝑋𝑘

(𝑗)
− (𝑘 + 1)𝑌𝑘

(𝑗)
]

(1 − 𝜗) 𝑎𝛽2
 

The solution of this differential equation, which is a 

Cauchy-Euler type, is given by: 

(27) 

𝜎𝑟𝑟
(𝑗)

= 𝑑1
(𝑗)
𝑟𝜉1 + 𝑑2

(𝑗)
𝑟𝜉2

+ 𝑑3
(𝑗)
𝑟𝜉3 + 𝑑4

(𝑗)
𝑟𝜉4

+ ∑ 𝐻𝑘
(𝑗)
𝑟𝑘+𝛽2

𝑘=𝑚

𝑘=0

 

where the coefficients are as: 

(28) 𝜉1 = (
𝛽2 − 3

2
) + √(

𝛽2 − 3

2
)
2

+ 2𝛽2 (
1 − 2𝜗

1 − 𝜗
) 

(29) 𝜉2 = (
𝛽2 − 3

2
) + √(

𝛽2 − 3

2
)
2

+ 2𝛽2 (
1 − 2𝜗

1 − 𝜗
) 

(30) 𝜉3 = 𝛽3 + 𝛽2 − 𝛽1 − 1 

(31) 𝜉4 = 𝛽3 + 𝛽2 

(32) 
𝑑3 =

𝑐3

𝜉3
2 + (3 − 𝛽2)𝜉3 − 2𝛽2(

1 − 2𝜗
1 − 𝜗

)
 

(33) 
𝑑4 =

𝑐4

𝜉4
2 + (3 − 𝛽2)𝜉4 − 2𝛽2(

1 − 2𝜗
1 − 𝜗 )

 

(34) 

𝐻𝑘
(𝑗)

=
𝐼𝑘
(𝑗)

(𝑘 + 𝛽2)
2 + (3 − 𝛽2)(𝑘 + 𝛽2) − 2𝛽2(

1-2ϑ
1-ϑ

)
 

 

The parameters d1(j) and d2(j) are the constants of 

integration and can be calculated from the boundary 

conditions. Finally, at each time step, the radial stress 

is obtained as: 

(35) 𝜎𝑟𝑟 =∑𝑑𝑘𝑟
𝜉𝑘

𝑘=4

𝑘=1

+ ∑ 𝐻𝑘𝑟
𝑘+𝛽2

𝑘=𝑚

𝑘=0

 

Substituting the radial stress into the equilibrium 

equation, circumferential stress will be obtained as:  
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(36) 

𝜎𝜃𝜃

=∑𝑑𝑘 (1 +
𝜉𝑘
2
) 𝑟𝜉𝑘

𝑘=4

𝑘=1

+ ∑ 𝐻𝑘 (1+
k+β

2

2
)𝑟𝑘+𝛽2

𝑘=𝑚

𝑘=0

 

Therefore, the distribution of the equivalent stress in 

the wall-thickness of the FGM sphere will be 

determined by:  

(37) 

𝜎𝑒𝑞 = |∑
1

2
𝜉𝑘𝑑𝑘𝑟

𝜉𝑘

𝑘=4

𝑘=1

+ ∑
1

2
(𝑘

𝑘=𝑚

𝑘=0

+ 𝛽)𝐻𝑘𝑟
𝑘+𝛽2| 

Total strains at each time-step can be found by 

substituting the above stress equations and creep 

strains as well as temperature distribution equation 

(4) into equations (9) and (10). 

(38) 

ℰ𝑟𝑟 =∑𝑑𝑘
∗𝑟𝜉𝑘−𝛽2

𝑘=4

𝑘=1

+ ∑(𝐻𝑘
∗+𝑋𝑘)𝑟

𝑘

𝑘=𝑚

𝑘=0

+ 𝑐1
∗𝑟𝛽3−𝛽1−1 + 𝑐2

∗𝑟𝛽3 

(39) 

ℰ𝜃𝜃 =∑𝑑𝑘
∗∗𝑟𝜉𝑘−𝛽2

𝑘=4

𝑘=1

+ ∑(𝐻𝑘
∗∗+𝑌𝑘)𝑟

𝑘

𝑘=𝑚

𝑘=0

+ 𝑐1
∗𝑟𝛽3−𝛽1−1 + 𝑐2

∗𝑟𝛽3 
where:  

(40) 𝑑𝑘
∗ =

𝑎𝛽2

𝐸𝑖
[1 − 2𝜗 (1 +

𝜉𝑘
2
)] 𝑑𝑘 

(41) 𝐻𝑘
∗ =

𝑎𝛽2

𝐸𝑖
[1 − 2𝜗 (1 +

𝑘 + 𝛽2
2

)]𝐻𝑘 

(42) 𝑑𝑘
∗∗ =

𝑎𝛽2

𝐸𝑖
[(1 − 𝜗) (1 +

𝜉𝑘
2
) − 𝜗] 𝑑𝑘 

(43) 
𝐻𝑘
∗∗ =

𝑎𝛽2

𝐸𝑖
[(1 − 𝜗) (1 +

𝑘 + 𝛽2
2

)

− 𝜗]𝐻𝑘 

(44) 𝑐1
∗ = 𝑎−𝛽3𝛼𝑖𝑐1 

(45) 𝑐2
∗ = 𝑎−𝛽3𝛼𝑖𝑐2 

Using the strain-displacement equation, we can also 

provide a radial displacement distribution at each 

time step as: 

(46) 

𝑢𝑟 =∑𝑑𝑘
∗∗𝑟𝜉𝑘−𝛽2+1

𝑘=4

𝑘=1

+ ∑(𝐻𝑘
∗∗ + 𝑌𝑘)𝑟

𝑘+1

𝑘=𝑚

𝑘=0

+𝑐1
∗𝑟𝛽3−𝛽1 + 𝑐2

∗𝑟𝛽3+1 

4. Numerical Modeling 
For a comparative study, a finite element numerical 

model of the FGM vessel was developed in order to 

verify the results of the proposed formulation. Due to 

symmetry, only a quarter of the vessel was modeled. 

The model has been developed as an axisymmetric 

shell, and the spherical coordination system is used. 

In order to execute non-homogeneous behavior of the 

vessel’s thickness, the wall is discretized into 

numerous ultra-thin layers along the radial direction, 

and the material properties for each layer are obtained 

by using Eq. (1). 

A Mesh sensitivity study has been conducted to find 

the appropriate element size, therefore,9664 of 8-

node axisymmetric thermally coupled quadrilateral, 

biquadratic displacement, bilinear temperature, 

reduced integration elements, and 26125 nodes are 

employed to analyze the thermal and mechanical 

field of the model. 

The thermal and mechanical loadings were applied as 

boundary conditions. To model the creep behavior, a 

power-law model utilized by active strain-hardening, 

along with two coupled thermal-displacement 

analyses, one for the steady-state elastic solution, and 

the other one for the creep solution, have been 

applied. The model is solved to compute the strain 

and stress fields during and after creep up to 55000 

seconds in each condition. 

5. Results and Discussion 
In the following section, a FE numerical model is 

used to validate the results of the analytical solution. 

Furthermore, the influence of different parameters on 

the accuracy and efficiency of the proposed method 

has been investigated. These parameters include the 

thickness of the vessel, the gradient properties of 

FGM in the radial direction, and the Taylor series 

order. 

  



Ali Ziaei- Asl et al, Journal of Advanced Materials and Processing, Vol. 8, No. 3, Summer 2020, 53-64 58 

 

5.1 Analytical Method Validation 
For verifying the proposed method, the analytical 

solution and numerical analysis presented in the 

previous sections were applied to a thick FGM 

spherical pressure vessel with inner and outer radii, 

respectively equal to a = 20 mm and b = 40 mm, as a 

case study. The data in Table 1 are implemented in 

the analysis. Mechanical and thermal properties of 

the material are assumed to obey the power-law 

variation with βi=0.1, and the Taylor series of order 

9 is adopted to calculate the stress and strain fields.  

Stress and strain distributions, as well as 

deformations and temperature in the FGM spherical 

vessel at time=0 (equivalent to thermo-elastic 

solution) and during stress rearrangement and creep 

period, have been evaluated. 

 

Table 1. Loading and material properties of the FGM sphere used in the case study [21] 

Value Unit Property 

80 MPa iP 
0 MPa oP 
207 GPa iE 
10.8×10-6 k-1 αi 
43 w/m°C iK 
0.292 - v 
3000 w/m2 q 
6.5 W/m2°C h 
25 °C T∞ 
2.25 - N 
1.4×10-8 - B 

 

 
Fig. 1. Temperature distribution along the thickness of FGM spherical 

 

 
 

a) radial stress b) circumferential stress 
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c) radial strain d) circumferential strain 

Fig. 2. Stress and strain distributions of FGM sphere in elastic mode and after 15-hour creep calculated by numerical 

and analytical methods 
 

Fig. 2 shows the distribution of temperature through 

the wall thickness of the FGM sphere. A comparison 

between the results indicates that the analytical 

solution has good accuracy. The distributions of 

radial and circumferential stresses and strains for the 

thermo-elastic stage and 15-hour creep, resulting 

from numerical and analytical methods, are plotted in 

Fig. 2. As shown in Fig. 2a, the gradient of the radial 

stress along the wall-thickness, r, reduces over time 

due to the creeping behavior of the FGM sphere. 

Except for the boundary points, after 15 hours of 

creeping, the radial stress reaches a relaxation level, 

which is called stress rearrangement. This 

phenomenon occurs for circumferential stress either. 

As depicted in Fig. 2c, it can be seen that while the 

radial strain of the thickness is tensile at the elastic 

stage, it decreases to compressive values after 

creeping, especially on the inner surface, which 

indicates that the inner surface of the sphere 

encounters a high compression, and the wall becomes 

thinner. On the contrary, the circumferential strain 

through the wall is tensile and increases over time 

(Fig. 2d). Consequently, it can be stated that the inner 

surface experiences high radial and circumferential 

strains. 

Fig. 3 illustrates radial displacement at a time equal 

to zero and after 15-hour creep, calculated by 

numerical and analytical methods. It shows that after 

15 hours, the radial displacement of the wall 

increases up to 3 times. 

 

 
Fig. 3. Radial displacement distribution of FGM sphere in elastic mode and after 15 hours of creeping calculated by 

numerical and analytical method  
 

For a better understanding of the stress rearrangement, 

strain and stress histories of three layers of the 

vessel’s thick wall with equal distances are studied. 

Fig. 4 displays the variations of radial and 

circumferential stresses and strains in these layers. As 

can be seen from Fig. 4c-d, strain variations at inner 

layers are more severe. Moreover, whereas radial 

strain changes to compressive strain over time, the 

circumferential strain becomes more extensional.  Fig. 

4a-b shows that the stress components vary over time 

only at the first hours. Afterward, stress components 

almost remain unchanged, while creep strain rises 

continuously, up to a rupture, predictably at the 

points where the growth rate of creep strain is higher. 

On the other hand, one can deduce that by progressing 

creep strains, tensile stress moves from the high-

stresses points to the points with lower strain rates. 
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a) radial stress rearrangement b) circumferential stress rearrangement 

  
c) radial strain d) circumferential strain 

Fig. 4. variations of stresses and strains at three layers of sphere-wall  

 

In this section, the creep behavior of the vessel has 

been investigated by using the proposed method 

based on the Taylor series as well as the finite 

element method. Comparing the results from the two 

methods showed that the results obtained from the 

proposed method, including temperature, stress, 

strain, and displacement, are in good agreement with 

the ones from FEM.  

5.2 Influence of the Effective Factors on the 

Accuracy of the Proposed Method 
In this section, the order of Taylor Series for strain-

rate approximation, distribution of FGM properties, 

and wall thickness of the vessels have been chosen as 

parameters affecting the accuracy of the method. 

The Effect of Taylor Series order 
Here, to investigate the effect of Taylor series order 

on the accuracy of the proposed method, different 

orders of Taylor series are adopted, while the other 

conditions are the same as. The results have been 

compared with finite element results. The 

distribution of circumferential stresses after stress 

rearrangement is shown in Fig. 5 for the series orders 

of 3, 5, and 7. 

 

 
Fig. 5. Steady-state circumferential stress distribution computed by FEM and different orders of Taylor series 
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It can be found out that the major computational 

errors occur at the inner and outer surfaces of the 

sphere, which can be minimized by increasing the 

series order. Fig. 6 displays the histories of equivalent 

stress at the inner and middle layers of the wall with 

different Taylor orders. It shows that using low 

orders of the series leads to divergence of the results 

and, by using higher orders of the Taylor series, the 

responses converge. Therefore, it is essential to select 

the appropriate order of the series to obtain accurate 

results. 

 

 
 

a) equivalent stress rearrangement at r=20mm b) equivalent stress rearrangement at r=30mm 
Fig. 6. Variations of equivalent stress at the inner and middle surfaces of FGM spherical with different orders of Taylor 

series 

 

The Effect of the Distribution of FGM 

Physical Properties 
In order to study the effect of the FGM properties on 

the accuracy of the proposed method, the case study 

sphere with varying values of β (= -0.1, -0.9, -2, -3) 

has been analyzed. Fig. 7 plots the variation of steady 

circumferential stress through the wall-thickness for 

β = -0.9, -2. One can deduce that β constant does not 

affect the steady-state stress distribution during 

creep; meanwhile, more accurate responses are 

obtained with higher orders of the Taylor series. 

Furthermore, it can be seen that the inner surface is 

the most sensitive point to series order. For varying 

values of β and different orders of Taylor series, a 

detailed comparison about the steady circumferential 

stress at the inner surface of the sphere, computed by 

FEM and proposed method, is presented in Table 2.  

 
 

Table 2. Steady circumferential stress values and error percentage at the inner surface of the FGM sphere, for different 

values of β and Taylor Series order 

  β (grade factor of the FGM) 

Series Order  -0.1 -0.3 -0.9 -2 -3 

5 σθ (MPa) 22.06  25.56  28.32  44.46  64.66  

Error (%) 162 203.56 236.34 428.03 667.93 
       

6 σθ (MPa) 14.94  16.57  17.67  24.85  33.49  

Error (%) 77.43 96.79 109.86 195.13 297.74 
       

7 σθ (MPa) 10.99  11.66  12.17  15.20  19.29  

Error (%) 30.52 38.48 44.54 80.52 129.10 
       

8 σθ (MPa) 9.54  9.83  10.01  11.21  12.14  

Error (%) 13.30 16.75 18.88 33.14 44.18 
       

9 σθ (MPa) 8.85  8.97  9.04  9.58  10.70  

Error (%) 5.11 6.53 7.36 13.78 27.91 
       

10 σθ (MPa) 8.61  8.65  8.71  8.96  9.32  

Error (%) 2.26 2.73 3.44 6.41 10.69 
       

FEM σθ (MPa) 8.42  
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a) circumferential stress for β= - 0.9 b) circumferential stress for β=-2 
Fig. 7. Distribution of steady circumferential stress in FGM sphere wall for two different β constants  

 

Considering the error, it can be concluded that for a 

specific order of the Taylor series, the smaller value 

of β, the more accurate results will be. Therefore, for 

FGMs with high-intensity gradients, higher Taylor 

orders should be used. 

The Effect of the Vessel Geometry 
Another key parameter is the thickness of the vessel. 

Fig. 8 shows the influence of the wall thickness on 

the distribution of steady circumferential stress of the 

wall. It can be seen that at the inner and outer 

surfaces, stress values are more sensitive to the 

Taylor series order. 

The results show that with the increase in the sphere 

wall thickness, it is necessary to use high orders of 

Taylor series to obtain acceptable solutions.  

Table 3 presents the value of steady circumferential 

stress on the sphere’s inner surface for different wall 

thicknesses and Taylor series orders. According to 

this table, while the lower orders lead to acceptable 

results in the thinner sphere walls, for the thick-wall 

spheres, higher orders should be employed. 

 

 

  
a) circumferential stress, thickness=5mm b) circumferential stress, thickness=15mm 

 
 

c) circumferential stress, thickness=20mm d) circumferential stress, thickness=30mm 
Fig. 8. Distribution of steady circumferential stress through FGM sphere wall with varying thickness 
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Table 3. Steady circumferential stress at the inner surface of the FGM sphere with different wall thicknesses 

  Wall Thickness (mm) 
Series Order  5 10 15 20 

3 σθ (MPa) 128.5 51.55 50.56 72.20 

Error (%) 1.02 8.05 135.93 757.48 
      

4 σθ (MPa) 127.5 48.94 34.99 48.47 

Error (%) 0.24 2.58 63.28 475.65 
      

5 σθ (MPa) 127.28 47.96 26.01 25.56 

Error (%) 0.06 0.52 21.37 203.56 
      

6 σθ (MPa) --- 47.74 23.19 16.57  

Error (%) --- 0.06 8.21 96.79 
      

7 σθ (MPa) --- --- 22.00 11.66 

Error (%) --- --- 2.66 38.48 
      

8 σθ (MPa) --- --- 21.63 9.83 

Error (%) --- --- 0.93 16.75 
      

9 σθ (MPa) --- --- --- 8.97 

Error (%) --- --- --- 6.53 
      

10 σθ (MPa) --- --- --- 8.65 

Error (%) --- --- --- 2.73 
      

FEM σθ (MPa) 127.2 47.71 21.43 8.42 

 

6. Conclusion 
In this paper, an analytical method based on the 

Taylor series is introduced to study the creep 

behavior of an FGM thick-walled sphere under 

mechanical and thermal loadings with the Baily-

Norton model. To achieve the steady-state solution, 

the asymptotic method is employed, and the histories 

of strain and stress are presented at the initial elastic 

stage and then at steady-state creep stage. The results 

have been compared with the results of a developed 

FE model, and good agreements have been observed. 

The effects of FGM material constants, wall-

thickness of the sphere, and order of the series on the 

accuracy of the proposed method have been studied 

and discussed in detail.  

By investigating temperature, stress and strain fields, 

it is concluded that the order of Taylor series has a 

significant influence on strains and stresses of the 

vessel, and the following results are obtained: 

 The analytical method can solve the heat equation 

and determine the temperature distribution through 

the sphere’s wall. The results corresponds with the 

results from finite element method.  

 The distributions of stress and elastic deformation 

derived from the analytical method are in good 

agreement with the finite element results.  

 While the material gradient constant has a 

significant influence on the distribution of elastic 

stress and strain, it does not affect the steady-state 

creep stress. 

 Due to the increase of creeping strains over time, 

stresses are rearranged to a new distribution. 

Afterward, stress components almost remain 

unchanged, while creep strain rises continuously. The 

rearrangement time depends on the FGM constants. 

 The inner surface of the FGM vessel experiences 

the greatest radial and circumferential strain rates. 

 By progressing creep strains, tensile stress moves 

from the high-stress points to the points with lower 

strain rates. 

 Employing higher order of the Taylor series 

produces more accurate creep strain and stress. In the 

cases of thinner-wall spheres or FGM with lower 

constants, lower orders of the series can be employed. 
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