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In this paper, the influence of the constituent volume fractions by 
changing the values of the power-law exponent with uniform 
pressure on the vibration frequencies of reinforced functionally 
graded cylindrical shells is studied. The FGM shell with ring is 
developed in accordance with the volume fraction law from two 
constituents namely stainless steel and nickel. These constituents are 
graded through the thickness direction, from one surface of the shell 
to the other, and are controlled by power-law volume fraction 
distribution. The reinforced FGM shell equations with ring and 
uniform pressure are established based on first order shear 
deformation theory. The governing equations of motion were 
employed using energy functional and by applying the Ritz method. 
The boundary conditions represented by end conditions of the FGM 
cylindrical shell are simply supported-simply supported, clamped-
clamped and free-free. Effects of the different values of the power-
law exponent, uniform pressure, reinforced ring and different 
symmetric boundary conditions on natural frequencies 
characteristics were also studied. To check the validity of the present 
study, the results obtained were compared with those available in the 
literature.  
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1. Introduction 
Shells as structural elements are found in 
engineering and industrial fields since they 
improve favorable conditions for dynamic 
behavior, strength and stability. The study of the 
vibration of shells is an important issue for 
successful applications of these structures. 

A special kind of shells is a cylindrical shell. 
Many applications of cylindrical shells are 
found in engineering from large aerospace, 
naval construction, civil and mechanical 
structures to small electrical components [1]. 
They are used as structures in aircrafts, ships, 
rockets, submarines, missile bodies, pressure 
vessels, and buildings, etc. For increase stiffness 
cylindrical shells and to avoid premature failure, 
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stiffeners are used [2-7]. Vibration behavior of 
cylindrical shells is an important area of research 
in structural dynamics and the characteristics of 
cylindrical shells have been studied by many 
researchers. It was first introduced by Love [8]. 
Leissa [9] presented various theories for the 
vibration of cylindrical shells. Analysis of 
natural frequencies and mode shapes of 
cylindrical shells was reported by Blevins [10]. 
Soedel [11] and Chung [12] worked on the 
vibration of circular cylindrical shells. Reddy 
[13] discussed the thickness changes of 
cylindrical shells and plates under vibration. 
Forsberg [14] studied the effect of boundary 
conditions on natural frequencies.  
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Functionally graded materials (FGMs) are 
fabricated by combining disparate materials 
which are graded in the thickness direction with 
variations in constituent volume fractions. These 
materials consist of a mixture of ceramic and 
metal, or a combination of different materials. 
The main advantage of using FGMs is that they 
can be used in environments with high 
temperature. FGM shells structures are 
generally used as structural components in 
missiles engines, resistant coatings in space 
plans, atomic reactors, spacecraft thermal 
shields, intelligent electrical components, 
submarines, turbine components, and so on [15]. 
Study on the vibration of cylindrical shells 
made-up of FGM is important in engineering 
applications. Since 1999, there are several 
reviews on vibration of FGM cylindrical shells 
without pressure. The first works on vibration 
analysis of FGM cylindrical shell was reported 
by Loy et al. [16]. They analyzed the natural 
frequency by constituent different volume 
fractions with simply supported boundary 
condition. Patel et al. [17] used finite element 
method for vibration analysis of FGM in 
cylindrical shells. Zhi and Hua [18] studied the 
natural frequencies of FGM cylindrical shell 
with cavities and effects of radius to span ratio. 
In FGMs, material distribution is controlled by 
the exponential volume fraction and this 
distribution leads to continuous change in the 
combination of the shell and results in gradient 
mechanical and thermal properties.  Arshad et al. 
[19] analyzed the frequency characteristic of 
FGM cylindrical shell by assuming 
mathematical forms of the volume fraction law. 
Shah et al. [20] applied modified volume 
fraction law for the fabrication of FGM 
cylindrical shell with simply supported 
boundary condition. Reported works on 
vibration of reinforced FGM cylindrical shell for 
changing the values of the power-law exponents 
with uniform pressure could not be found in the 
literature. 
The aim of this paper is to study the influence of 
constituent volume fractions with uniform 
pressure by changing the values of the power-
law exponents on the vibration behavior of 
reinforced FGM cylindrical shells. The analysis 
is carried out based on the first order shear 
deformation theory. The governing equations of 
motion are derived using Ritz method with 

energy functional. The boundary conditions of 
supported FGM cylindrical shell considered are 
the combination of simply supported-simply 
supported (SS-SS), clamped-clamped (C-C), 
and free-free (F-F). The influence of different 
values of the power-law exponent with uniform 
pressure and one ring, and the effect of the 
considered different boundary conditions on the 
natural frequencies are discussed. The validity 
and accuracy of the present method is checked 
by comparing the present results with those in 
the literature. 

 
2. Materials and methods 
2.1. Modeling of Functionally Graded 

Materials  
Functionally graded materials (FGMs) are made 
up of variation of composition and different 
materials. The volume fraction distribution of 
each phase of material varies with a specific 
gradient in the thickness direction, thus the 
properties of functionally graded materials 
change along this direction. There are two 
possible structures of FGMs as shown in Fig. 1. 
For the first type, the volume fraction changes 
stepwise as shown in Fig. 1(a), while the second 
type, the variation is continuous as shown in Fig. 
1(b). 

 

 
Fig. 1. Structure of  the functionally graded 

material. 

The effective material properties, fgmQ of an 
FGM, depend on its properties and the volume 
fractions of the constituent materials, and it is 
defined as [21]: 
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where )T(Q j is the material property and 

)(zV jf is the volume fraction for the constituent 
material j. 
For FGM cylindrical shell made of two 
different materials, the volume fractions, 

)z(V f 1 and )z(V f 2 , are expressed as [21]:  
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where the power-law exponent N is a real value,
 N0 , and z denotes the radial distance 

measured from mid-surface of the FGM shell (
22 /hz/h  ). 

Structures using FGMs are generally used in 
high temperature environments and their 
material properties are temperature dependent.  
Material properties )T(Q j can be described as a 
function of temperature:

)TQTQTQTQ(Q)T(Q j,j,j,j,j,j
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where j,Q0 , j,Q 1 , j,Q1 , j,Q2  and j,Q3 are the 
temperature coefficients of the constituent 
material j.  
The materials of the FGM cylindrical shell 
considered in this study are composed of 
stainless steel and nickel, with the Young 
modulus, E, Poisson ratio, ν, and the mass 
density,  , is defined as:  
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2.2. First Order Shear Deformation Theory    
Consider a reinforced cylindrical shell made of 
functionally graded material (FGM) with one 
ring subjected to uniform pressure with the 
thickness h, radius of the shell R, length L, 
position of the ring support b, uniform pressure 
P, mass density , modulus of elasticity E, and 
Poisson ratio ν, as displayed in Fig. 2. The 
deformation of functionally graded material 
cylindrical shell is defined with reference to the 
coordinate system (x, θ, z) in which x and θ are 
axial and circumferential directions of the 
functionally graded cylindrical shell and z is in 
the radial direction to mid-surface. The 
corresponding displacements on the mid-surface 
of FGM cylindrical shell are defined by u, ν, and 
w.  
The displacement fields based on first order 
shear deformation theory for an arbitrary point  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Geometry of the reinforced FGM cylindrical shell with one ring subjected to uniform pressures. 

(2) 
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in the cylindrical coordinate system under the 
Kirchhoff hypothesis are expressed as follows: 
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where ),,( zxu  , ),,( zx  , and ),,( zxw  are the 
components of displacement in x, θ and z 
direction       respectively, ),(0 xu , ),(0  x and 

),(0 xw are the displacements of the mid-surface 
of the FGM cylindrical shell, and ),(  xx , 

),(   x are the rotations of the normal to the 
mid-surface of the FGM cylindrical shell about 
the x and θ axes, respectively. 
The strain-displacement relationships for FGM 
cylindrical shell are expressed by:  
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033                                                                 (14)   
where 1A and 2A  are the parameters of Lame for 
FGM cylindrical shell and defined by the 
following Soedel formulas [22]. 
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The stress-strain relation for a FGM cylindrical 
shell with plane-stress condition is expressed by: 

 

     Q                                                           (21)  

where   ,   are the corresponding stress and 
strain vectors, respectively, and  Q  is the 
reduced stiffness matrix expressed as:                                                                                                  
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Substituting Eq.(8) into strain-displacement 
relationships (Eqs.(9)-(13)), and applying the 
cylindrical coordinate system, thus                                                        
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Then equation (21) can be expressed as: 
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For FGM cylindrical shells, the stiffness ijQ is 
defined as: 
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where K is the shear correction coefficient and 
is taken as K = 5/6 [23].  
The stress and moment resultants are defined 
respectively as: 
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Applying Eqs.(16)-(20) into Eq.(25) and then 
substituting into Eqs.(30)-(31) the stress and 
moment resultants are combined as: 
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][I  is the matrix of stiffness and can be written 
as:  
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where ijijij ZYX ,, are the extensional, coupling, 
and bending stiffness matrices, and ijV is 
thickness shear stiffness matrices and is defined 
as: 
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2.3. Energy Equations  
The expressions for the strain energy, the 
potential energy of uniform pressure and the 
kinetic energy depend on the theory chosen to 
describe the vibration of FGM cylindrical shell. 
2.3.1. Strain energy 
Based on first order shear deformation theory 
the strain energy U is expressed as: 
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2.3.2. Kinetic energy 
Based on first order shear deformation theory the 
kinetic energy for vibration of FGM cylindrical 
shell during  is given by: 
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where T is the density of unit length, and is 
defined as: 
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2.3.3. Uniform pressure distribution energy 
The potential energy of the uniform pressure P 
for FGM cylindrical shell based on first order 
shear deformation theory is: 
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Therefore, the energy functional for vibration of 
FGM cylindrical shell with reinforced and 
uniform pressure can be written as: 

VTUF                                        (41)    
                                                                                                               
2.4. The Displacement Field  
The displacement field for vibration of FGM 
cylindrical shell with a number of reinforced 
and uniform pressures can be expressed as:
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where 1 , 2 , 3 , 4  and 5 are the constants 
denoting the vibrational amplitude, )(x  is the 
axial function that satisfies the boundary 
conditions, ib is the position of reinforced ring, 
H is the number of reinforced, i is a parameter 
having a value of 1 when there is one ring, n is 
the circumferential waves number, and is the 
natural frequency. 
The axial function )(x  selected as the beam 
function is given by Moon and Shaw [24]: 
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where the values of )4,...,1(  ii , m and m
for FGM cylindrical shell with one reinforced 
and  uniform pressure for different symmetric 
boundary conditions are given in Table 1. In 
this Table, m represents the axial wave number. 
The symmetric boundary conditions for simply 
supported, free, and clamped that satisfy x = 0 
and  x = L can be expressed as:  
Simply supported boundary condition 
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Clamped boundary condition 
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2.5. The Ritz Method 
To determine the natural frequency of FGM 
cylindrical shell with reinforced and pressure, 
the Ritz technique is used. The energy 
functional, F, is defined by the Lagrangian 
function as: 

maxmaxmax VTUF                                  (47)     
Substituting Eq. (42) into Eqs. (37), (38), and 
(40) and applying the Ritz technique with 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 

minimizing the energy functional F, we have: 
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                                      (48)                                              

There are five equations of motion in Eq. (48) 
characterizing the vibration characteristic of 
FGM cylindrical shell with uniform pressure 
and reinforced pressure. Therefore, the 
governing eigenvalue equation can be written in 
a matrix form as: 
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          (49) 

The solution is obtained by setting the 
determinant of matrix C as equal to zero, i.e.: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. The values of mi  ,  and m for symmetric boundary conditions 

 
Symmetric Boundary 

Conditions 
 

 
)4,...,1(  ii  

 

m  

 

m  

Simply Support-Simply 
Support (SS-SS) 1,0

0,0

43

21




 

 

m  
 

1 

Clamped-Clamped 
(C-C) 1,1

1,1

43

21




 

2/)12( m  
mm

mm




sinsinh
coscosh

 

Free-Free 
                   (F-F) 1,1

1,1

43
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
  2/)12( m  

mm

mm


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)5,4,3,2,1,(0  jiCij                         (50)                                                 

The solution for equation (50) is obtained and the 
characteristic of the FGM cylindrical shell with 
uniform pressure and reinforced is expressed in 
the power of  as 

05
2

4
4

3
6

2
8

1
10          (51)                                      

The solution of equation (51) consists of ten 
roots, and the five positive roots are the natural 
frequencies. The smallest positive root is the 
frequency of interest in the present work.  
The functional graded material considered in this 
study is composed of stainless steel and nickel 
and the properties of the constituent materials are 
given in Table 2. 
 
2.6. Comparison Study 
In order to validate the accuracy of the present 
analysis, the results for FGM cylindrical shell 
without uniform pressure distribution and 
reinforced pressure are compared with the results 
available in the literature. Table 3 shows the 
variation of natural frequency with the 
circumferential wave numbers for FGM 
cylindrical shell without uniform pressure and 
reinforced pressure with two different h/R ratios. 
The comparisons presented in Table 3 show 
good agreeable results with the published works. 
 
3. Results and Discussion 
In this study, a reinforced FGM cylindrical shell 
according to different values of the power-law 
exponent with pressure is presented. The  
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

influence of constituent volume fractions is 
studied by varying the values of the power-law 
exponents (N) used for stainless steel and nickel. 
 
3.1. Variation of the volume fraction of the 
FGM 
Variations of the volume fractions fV of 
stainless steel and nickel for constituent 
materials placed at the inner and the outer shell 
surfaces in the FGM shell layers are shown in 
Figs. 3 and 4. 
In Fig. 3, the volume fraction of the constituent 
material nickel NfV decreased from its 
maximum value 1 at thickness variable z/h = -
0.5 to its minimum value 0 at thickness variable 
z/h = +0.5. In Fig. 4, the volume fraction of the 
constituent material stainless steel ssfV increased 
from its minimum value 0 at thickness variable 
z/h = -0.5 to its maximum value 1 at thickness 
variable z/h = +0.5. In Fig. 3, for z/h < 0 and N 
< 1, the rate of decrease of NfV is rapid while for 
z/h > 0 and N < 1, it decreases slowly. For z/h < 
0 and N > 1, the rate of decrease of NfV is slow 
while for z/h > 0 and N > 1, it decreases rapidly.  
 In Fig. 4, for z/h < 0 and N < 1, the rate of 
increases of ssfV is rapid while for z/h > 0 and N 
< 1, it increases slowly. For z/h < 0 and N > 1, 
the rate of increases of ssfV is slow while for z/h 
> 0 and N > 1, it increases rapidly. From these 
figures, it is observed that the variations of 
constituent material for FGMs are influenced by 
volume fraction laws. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Mechanical properties of constituent materials for FGM cylindrical shell [16] 

Coefficients 
of 

temperature 

Stainless Steel Nickel 
E(Nm 2 ) ν )( 3kgm  E(Nm 2 ) ν )( 3kgm  

Q 0  201.04109 0.3262 8166 223.95109 0.3100 8900 

Q 1  0 0 0 0 0 0 

Q 1  3.079 10-4 -2.002 10-4 0 -2.794 10-4 0 0 

Q 2  -6.534 10-7 3.797 10-7 0 -3.998 10-9 0 0 

Q 3  0 0 0 0 0 0 

          Q 2.07788
1011 

0.317756 8166 2.05098
1011 

0.3100 8900 
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3.2. Variation of natural frequencies with 
different values of the power-law exponent 
Tables 4-6 show the variation of the natural 
frequencies with the circumferential wave 
numbers for reinforced FGM cylindrical shell 
with different power-law exponent under 
pressures. The natural frequencies have been 
considered for the values of the different power-
law exponent N = 0.5, 2, 5, 15, 30, respectively. 
In these tables, the analyses are conducted by 
assuming the pressure as equal to 800 kPa and 
the reinforced position is placed along the length, 
i.e. at b = 0.5 L.  
It is seen from these Tables that different values 
of power-law exponent pressures affect the 
natural frequency of reinforced FGM cylindrical 
shell. As material properties of the reinforced 
FGM cylindrical shells are graded in the 
thickness direction according to a volume 
fraction power-law distribution with pressure, 
therefore, due to their configuration, the natural 
frequencies decreased with the increase in the 
values of the power-law exponent for different 
boundary conditions.  
The decrease in the natural frequencies in all 
boundary conditions from N = 0.5 to N = 30 is 
about 3.15% at n = 1 and about 3.09% at n = 10. 
Thus, the ordering of constituent materials in 
FGMs will determine the increment and 
decrements in the natural frequency with power-
law exponents. The results show that the shell 
frequency varies with the FGM distribution 
determined by the values of the power-law 
exponent with pressure. The obtained results 
 
 
 
 
 
 
 
 
 
 
 
 
 

also show that the natural frequency 
characteristics of a reinforced FGM cylindrical 
shell for different values of the power-law 
exponent with pressure are different for different 
boundary conditions. 
In Fig. 5, variation of natural frequencies of 
reinforced FGM cylindrical shell is plotted 
against the values of the power-law exponent 
with uniform pressure for SS–SS, C–C and F–F 
boundary conditions for circumferential wave 
number n = 5. It is observed that the natural 
frequencies decrease under the power-law 
exponent with uniform pressure for all the 
boundary conditions.  Moreover, natural 
frequency all the boundary condition behave 
alike and natural frequency responses of the 
reinforced FGM cylindrical shells under uniform 
pressure with various boundary conditions 
change for different values of circumferential 
wave number.  
For circumferential wave number n = 5, the 
natural frequencies of simply supported-simply 
supported boundary condition for reinforced 
FGM cylindrical shell under uniform pressures 
is higher and free-free boundary condition for 
reinforced FGM cylindrical shell under uniform 
pressure is lower than any other boundary 
conditions. 
It must be noted that in Fig. 5, natural frequency 
response of clamped-clamped boundary 
condition is very close to that of simply 
supported-simply supported boundary condition 
for a reinforced FGM cylindrical shell with 
pressures. 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
Fig. 3. Variation of volume fraction of Nickel NfV with thickness variable Z/h for reinforced FGM cylindrical 

shell with uniform pressure. 
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Fig. 4. Variation of volume fraction of Stainless Steel ssfV with thickness variable Z/h for reinforced FGM 

cylindrical shell with uniform pressure. 
 

Table 4. Variation of the natural frequency with different values of the power-law exponent with uniform 

pressure for reinforced FGM cylindrical shell under SS-SS boundary conditions (h/R = 0.002, L/R = 20) 

 
n 

 
m 

P = 800 kPa, a/L = 0.5 

 
N = 0.5                  N = 2                       N = 5                    N = 15                     N = 30 

 

1 1 492.193 484.134 480.225 477.821 477.129 

2 1 834.684 821.028 814.402 810.325 809.151 

3 1 838.301 824.603 817.953 813.860 812.681 

4 1 843.351 829.594 822.911 818.795 817.608 

5 1 849.819 835.986 829.260 825.115 823.919 

6 1 857.687 843.762 836.984 832.803 831.597 

7 1 866.936 852.901 846.062 841.840 840.620 

8 1 877.541 863.380 856.472 852.201 850.966 

9 1 889.478 875.175 868.187 863.861 862.610 

10 1 902.721 888.258 881.182 876.796 875.526 
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Table 5. Variation of the natural frequency with different values of the power-law exponent with uniform 

pressure for reinforced FGM cylindrical shell under C-C boundary conditions (h/R = 0.002, L/R = 20) 

 
n 

 
m 

P = 800 kPa, a/L = 0.5 

     
        N = 0.5                     N = 2                     N = 5                    N = 15                      N = 30 
 

1 1 504.649 496.386 492.378 489.914 489.204 

2 1 833.806 820.164 813.545 809.472 808.299 

3 1 837.677 823.989 817.344 813.254 812.075 

4 1 842.779 829.032 822.353 818.240 817.054 

5 1 849.271 835.447 828.726 824.583 823.388 

6 1 857.153 843.237 836.463 832.285 831.079 

7 1 866.412 852.386 845.552 841.331 840.113 

8 1 877.026 862.874 855.969 851.701 850.467 

9 1 888.971 874.676 867.692 863.369 862.118 

10 1 902.220 887.766 880.693 876.310 875.041 

 

 

Fig. 5. Variation of natural frequency of reinforced FGM cylindrical shell with power-law exponent with 
pressure for different boundary conditions 

(m = 1, h/R = 0.002, L/R = 20, P = 800 kPa, a/L = 0.5) 
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4. Conclusions 
This study presents the effect of constituent 
volume fractions by changing the values of the 
power-law exponent with uniform pressure on 
the vibration of reinforced FGM cylindrical 
shells for different boundary conditions. The 
FGM is made up of a distribution of stainless 
steel and nickel, and the material properties are 
graded along the thickness direction, according 
to a volume fraction power-law exponent. The 
first order shear deformation theory is employed 
and the governing equations of motion were 
derived, using energy functional applied in Ritz 
method.  
Natural frequencies of reinforced FGM 
cylindrical shell change with volume fraction 
power-law exponent with uniform pressure for 
the symmetric boundary conditions. The 
symmetric boundary conditions are simply 
supported-simply supported, clamped-clamped, 
and free-free.  
It is observed that material distribution is 
controlled by the volume fraction power-law 
with uniform pressures, and affects the natural 
frequencies of a reinforced FGM cylindrical 
shell. Natural frequencies of the reinforced FGM 
cylindrical shell with different values of the 
power-law exponent with uniform pressure for  
different boundary conditions are affected by the 
variation of circumferential wave number.  
This study also shows that the natural frequency 
response decreased with the increase in the 
values of the power-law exponent with uniform 
pressure for different boundary conditions. 
Thus, the constituent volume fraction power-law 
exponent with uniform pressures affects the 
natural frequencies of reinforced FGM 
cylindrical shell. 
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