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Using the Frobenius series method (FSM), an amalysiolution is
developed to obtain mechanical stresses of thibkrspal pressure
vessels made of functionally graded materials (FIGMEhe
cylinder pressure vessel is subjected to unifortarival pressure.
The modulus of elasticity is graded along the rdadiaection
according to power functions of the radial directiti is assumed
that Poisson’s ratio is constant across the cylinitéckness.
Primarily, displacements and stresses have beeainebt as
closed-form solution. Next, the profiles are pldtt®r different
values of inhomogeneity constant along the radiméction.
Finally, the problem was solved by using the fidtement method
(FEM). The obtained results of finite element methwere
compared with those of the analytical method. Thalyical
solutions and the solutions carried out through FE showed
good agreement. The values used in this study ebitraaily
chosen to demonstrate the effect of inhomogeneity o
displacements, and stresses distributions.

1. Introduction

In materials science,

displacements in  functionally  graded
cylindrical and spherical vessels subjected to

functionally graded internal pressure. Assuming that the material

materials (FGMs) are advanced composite properties except Poisson’s ratio are variable as
materials whose mechanical properties varypower law of radius, Nayak et al. [3]
continuously from one surface to another atinvestigated displacements, strains, and stresses
macro level. From the perspective of solid of the FGM spherical vessel. Using an accurate
mechanics, FGMs are non-homogeneous elastienethod, elastic analysis of internally
mediums. Using this property in the FGMs, an pressurized thick-walled spherical pressure
engineer can design composite materials suchvessels of functionally graded materials was
that any portion of the materials reaches thestudied by You et al. [4]. Tutuncu [5] derived
same safety level [1]. the solutions of FGM thick cylindrical shells
Tutuncu and Ozturk [2], by using the with exponentially-varying properties.
infinitesimal theory of elasticity, obtained Assuming that the material properties are
closed-form solutions for stresses and
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variable in any arbitrary direction, and Poisson’s circumferential stress componentso, @nd

ratio is constant, by using tensor analysis, Zamaniy_ respectively) disregarding the body forces

Nejad et al. [6] obtained a complete and consisten P ; .
3-D set of field equations of FGM thick shells of and inertia terms takes the following form:

revolution with arbitrary curvature and variable O 1 29m " %0 g [2]
thickness. Chen and Lin [7] obtained the dr ! : . .
approximate solution for thick cylinders and TWO radial —and  circumferential  strain
spherical pressure vessels. Tutuncu and Temel [gfOMPonents £, and ¢, respectively) can be
gained axisymmetric displacements and stresses igxpressed as

functionally graded hollow cylinders, disks and . _ du, 3]
spheres subjected to uniform internal pressure " dr
using plane elasticity theory and complementary — u,
functions method. Assuming that the displacement®6e =~ [4]

function is unknown in the governing equation, Here, the displacement in thedirection is
Chen and Lin [9] obtained displacement and denoted by ‘U "

stresses in th.ick-walled cylinders and sphere; The stress and strain
made of functionally graded materials. Zamani
Nejad et al. [10] presented an analytical solution o A 2B ¢
and a numerical solution for stresses and radial{ " }:E{ }{ " } [5]
displacement of parabolic FGM solid spheres with | 966 = %o B A+B ]| €60 =g
parabolic varying properties subjected uniform WhereA andB are related to Poisson’s rati@s
external pressure. In another study, using an A= @-v) (6]
analytical method, Zamani Nejad et al. [11] "~ (1+v)(1- )
obtained an exact solution for stresses and
displacements of pressurized thick spheres made o8 = v
functionally graded material with exponentially- (1+v)(1- )
varying properties. Using Egs. [1] to [5], the Navier equation in
In this paper, by using the Frobenius seriesterms of the radial displacement is

method, a closed-form analytical solution for rzur"+r(2+ h)y =2 by ) y= ( 8]
displacements and stresses of FGM thick
spherical pressure vessels with exponential
varying properties has been obtained. For the Vl:L
numerical solution, a commercial finite element 1-v [9]
program ANSYS 12 has been used. h :bi

-a
2. Experimental Eq. [9] can be solve_d b_y using power series
Consider a functionally graded hollow sphere with Method with the solution in the form of
inner radiusaand outer radius. The sphere is - n+s
subjected to internal uniform pressure (Fig. 1) Ur = nz_:oa”

The material is isotropic and functionally e .

graded while the Poisson’s ratio remains constantSUbStItUtIng Eqg. [10] into Eq. [8]
throughout the entire sphere. Modulus of ao[(s‘ (s 3} i
elasticity E is assumed to vary exponential form w

as follows: +> [(n+s=9(n+ s+ 3 3

relations for non-
homogeneous and isotropic spherical shell are

[7]

Where

[10]

r-a
E=Eae[b'a) [1] +h(n+s- 1 ) 3] F°= ¢
Where E and g are modulus of elasticity in [11]

inner surface and inhomogeneity constant,Eq. [11] has an indicial equation and a
respectively. In the symmetrical deformation recurrence relation, respectively. Singez 0
case, the equilibrium equation for the radial and
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L ()'r(n+2,-2)
=72 2(n)Y(n-3)'r (v, - 2)

and

i[m(L)]ls:Sz =1.5+ er((}))jr((:: 2})11: ;)

M(2v-2) r(n-23 r(m)

h" [20]

Fig. 1. Cross section of the FGM thick-walled M(2vi-2) r(n-2 r(n+)
spherical pressure vessel [21]
It is obvious that
n=+l r'(2)
s-=1(st34=0 - 12 Y(z)=—— 22
(s-(s+ 2 {522 12 ()= 22
h(n+s- 1+ %) Where¥(z) is called Psi (Digamma) function.

&n = “n+s-)(nr 3 (131 with substituting Eq. [22] into Eq. [21]
The indicial equation has roots that differ by an —[In )]ls=s =15+ 20 () +W(n+ 2y - 3
integer, thus only one of the solutions is in the d

form of Eq. [10]. Expansion of the above ~¥(2v1-2)-%(n-2-w(n+}

recurrence relation, the coefficieat in terms _ _ [23]
of a; and Gamma functions are obtained. Hence, the final form ofcC,(s,) will be as
0= (-)"r (n+s+ ;) (s 3° g R follows

"s(s+(sr Ar(s )r(mMH(nB) (-)"r(n+2,-2 H'

C =
[14] (%) 2ni(n-3Ir(v, -2
For the first roofs=+1,a,=1, the first [15+ 20 ()+W(n+ 2,- 2
solution of Eq. [8] obtained in the form of W(2v-2)-w(n-2-W(n+ 1]
- 1-2)- -9

Up=r+ Z a,(g) Pt [15] [24]
Thus, the complete solution far is expressed
Where as

6(-1)" T (n+ 1+ 2y) coUtols o wS 41
F(2v1+1)r(n+])r(n+é)w [16] Hm AT 2 Zaﬂ( 91 ]

an(g)=

The second solution fos, =-2 will be of the
form +Cp [H’Zan P+l] I )
W, =QuyIn(r)+r= {1+icn(sz)r“} [17] ©
sy en(s) r“”
Where oyt 3 [ ; :
o _ _ v (I-vg)(1- 2y [25]
= =
Q=lims_.s, (s=2) an( § 3 Substituting Eq. [25] into Eq. [5]
_dr ©
Ca(s2) = (%) a( ¥ :qulh 2,43 Fan( 3 ?]
(18] n=1
Assuming that ZJ_—Vl
+AEC,| Q| (1+ 24) In( 1)+ 1| -
()" T (n+s+ ;)M (s ¥ 2{ [(tr2) In()+ r3

hence,

_ h" [19] o @
s(s+Ir(s- 2)r(m pr( m s )3 +QZ[FIn(f)+1]@1(§) P*Z GG( ) rFS]

(26]
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Where (@)
F=n+1+ 2 —pe \b-a
Opp=— |1+ 20—k 1+ 24) |
{G:n—2+ 2, [27] ® " p,-kD, [ 1 [Q[( 1) (9
The constant coefficients, and c, are found 1-v; | [
using the boundary conditions,, (r =a)=-P +vq]+ 3 }“Z[F -kQ[FDIH( )
=1
ando, (r=b)=0 : )
e s wlJan(5) A GG (9 9-3]
AE;[DyD4~D,D3 n=1
P [28] [32]
Cp = Ds Where
AE;[DyD4-D,D3 D,
Where k= D_4
D1=1+2\,1+Zpaﬂ(si) | Fl=v(n+2)+1 [33]
n=1 GD=V1(I’1—])+1

0, =Q[(1+ 2) (3 + - 25

N Fl 1 B S G ng3 3. Results and Discussion
+Qn2=“l[ n(a)+ } 3(9) +Z o 8 Consider a thick spherical pressure vessel under

- the internal pressure of 40 MPa. The pressure
D=1+ 2\,1+z Fan(g) B vessel has the inner and outer radii 30 cm and 60
cm, respectively. In this study, it is supposed tha
- the modulus of elasticity at the internal radius ha
_ 2} Vi . .
Dy = Q[ (1+ 1) In(b) + 1] - 03 the value of 200 GPa and the Poisson’s ratio,
has a constant value of 0.3. For a comparative

+QZ[Fln(b)+1} a(s) B+z GG( 5 B3 study on numerical analysis of this problem, a
n=1 n=1

n=1

n=1

geometric specimen is modeled using
[29] commercial finite element code, ANSYS 12.

We have the displacement and stressesPUe ©© the geometrical symmetry in the sphere,
equations in the following form: only a quarter of the specimen geometry in the

_p K finite element model was considered. In order to
Uy =———— r(l— kQIn( r))—— represent the non-homogeneous specimen, an
AE;[Dy —kD,] 2 , . .
=1 2 r 8-node axisymmetric quadrilateral element was

o q o L used. The variation in material properties was
+> [1-kQIn(r) & (g) F**-K" G(s) F implemented by 20 layers, with each layer
n=1 =1 having a constant value of material properties,

[30]  for modeling of the FGM spherical pressure
(g vessel.
o, = -Pe [1+ v, - k[ Q(1+ y) In( § Fig. 2 shows the distribution of elastic modulus
D, -kD» in the radial direction. The elastic modulus
1-v o increases g8 increases.
+1] -2 31}+Z[F— kQ FIn( 1) Fig. 3 shows the distribution of tensile radial
r n=1 displacement along the normalized radial
o direction. It is obvious in this curve that the
+1]]a, (g) -1 GG(9) ?_3] radial displacement decreasespascreases at
n=1 the same position.

[31] In Fig. 4 distribution of compressive radial
stress along normalized radial direction is
shown. It is perceived that the radial stress
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g3 r
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Fig. 4. Radial distribution of radial stress
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Fig. 5. Radial distribution of circumferential stress

increases for higher valuesf. (04=0,-0,) is plotted in the radial direction.

In Fig. 5 the tensile circumferential stress The yon Mises equivalent stress decreases as
along normalized radial direction for different ne radius increases for #glvalues.

values off is plotted. Here, it should be noted

that in the same situation, approximately, for 54ial

(r-a/b-a)<05, the value of the
circumferential stress decreasegjancreases,
whereas for (r-a/b-a)>0.5 this situation
was reversed.

Further, along the radial direction,
approximately, for <1 the circumferential
stress decreases, while almost f6r-1, the
circumferential stress increases.

It should also be noted that for all the
considered conditions, for g=1 the

In Figs. 7 to 10, the radial displacements,
circumferential and von Mises
equivalent stresses values obtained from
ANSYS commercial finite elements analysis
program are represented.

For verification, the Frobenius series method
results are compared with those of the
numerical solution of Chen and Lin method [9]
(Figs 11 and 12 4=30cm, b=60cm,

v =0.3)).

4. Conclusions
The Frobenius series method is a powerful

circumferential stress remains almost uniform technique for obtaining solutions of certain

along the radius of the sphere. The issue can bgjifferential

a valuable factor for controlling the stress.

equations which  occur in
applications. Based on basic equations of

For the purpose of studying the stress elasticity and using FSM, closed-form solutions

distribution along the spherical pressure vesselhave been derived for

stresses and the

radius, in Fig. 6 the von Mises equivalent stress
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Fig. 6. Radial distribution of von Mises equivalenfig. 7. Radial displacement obtained from ANSYS
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Fig. 8. Radial stress obtained from ANSYS code iRig. 9. Circumferential stress obtained from ANSYS
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Fig. 10. Von Mises equivalent stress obtained from.

ANSYS code in an FGM spherical pressure vesddp- 11. Non dimensional radial stress in spherical
(B=1) pressure vessel with an inner presstire

displacements of thick spherical pressure this, profiles are plotted for different values of
vessels made of functionally graded materialsinhomogeneity constant for the radial
with exponential varying properties. Following displacement, radial stress, and circumferential
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Fig. 12. Non dimensional tangential stress in
spherical pressure vessel with an inner preBure

stress, as a function of radial direction. In this 7.
study, a numerical solution using a commercial

finite elements code, ANSYS 12,

is also

presented. Good agreement was found between

the analytical

solutions and the solutions 8-

carried out through finite element code. The
presented results show that the inhomogeneity

constant

has a significant influence on

mechanical behaviors of the thick spherical
pressure vessels made of functionally graded
material with exponential varying properties.
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