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In the present study, prediction of alumina recovery efficiency 

(A.R.E), the amount of produced red mud (A.P.R), red mud settling 

rate (R.S.R) and bound-soda losses (B.S.L) in Bayer process red mud 

has been carried out for the first time in the field. These predictions 

are based on lime to bauxite ratio and chemical analyses of bauxite 

and lime as the Bayer process feed materials. Radial basis function 

(RBF) and multilayer perceptron (MLP) as artificial neural network 

and the multiple linear regression (MLR) method have been used to 

predict these parameters in Iran Alumina Company. According to 

the obtained results, it is evident that the RBF method has 

outperformed the other two methods in the prediction of A.R.E, 

A.P.R and B.S.L. However, the multilayer perceptron (MLP) 

method can produce better and more precise results in the prediction 

of R.S.R. This research also exposes more effective variables on 

A.R.E, A.P.R, R.S.R, and B.S.L. 
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1-Introduction 

Alumina is an important basic raw material for 

national economic development [1] and Bayer 

process is known as extracting alumina from 

bauxite ore [2, 3]. Most of the bauxite ores 

found in Iran are dysphoric characterized by 

tough processing demands and low alumina to 

silica mass ratios (Al2O3/SiO2). This bauxite is 

mixed with lime, spent liquor and concentrated 

caustic soda solution at high temperature to 

dissolve alumina in caustic liquor [1, 4-6] and 

then this slurry is mixed with the red mud 

washing thickener overflow. In the next stage, 

the mixture enters into the separation thickener, 
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where red mud is separated from sodium 

aluminate solution and disposed into special 

ponds. The sodium aluminate solution is sent to 

the precipitation stage and then after cooling 

and adding seed, aluminum hydroxide, which is 

a white powder, is separated [7]. The process 

stages are given in Fig. 1.  

The equations of alumina extraction from 

diasporic bauxite and precipitation of aluminum 

hydroxide from sodium aluminate solution are 

given as follows [8]: 

2 2 3 22   2   2AlOOH NaOH Na OAl O H O  
  

1 

 2 2 3 2 3
 4   2  2Na OAl O H O Al OH NaOH  

  
2 
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Fig.1. process Diagram of Iran alumina complex

 

Silicon-containing minerals are the general 

impurities in bauxite including kaolinite, quartz, 

illite, pyrophyllite, etc. [9]. The most important 

and trouble making minerals in bauxite deposit 

are minerals that contain active silica, which 

have very undesirable effects on alumina 

recovery efficiency (A.R.E), so that for 1 ton of 

silica in the composition of clay minerals 1 ton 

of soda is wasted and if silica exists as quartz, 1 

ton of alumina is also wasted as sodalite 

precipitant [10]. This reaction can be 

represented by the following equation [5]: 

 

 

2 24

6 6 6 24 2 2 2

6 6

·6 6

SiO NaAl OH Na X

Na Al Si O Na X H O H O

  


  
 

3 

Where X represents inorganic impurity ions in 

the liquor, including carbonate, sulfate and 

chloride [5]. Kaolin, which is usually present in 

the bauxite, also reacts with the dislocation 

product (DSP) during the pre-desilication and 

digestion stages (Eqs. 4 and 5) [8]. 

 
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Most of the sodium aluminosilicate enters into 

the bauxite residue (red mud) and it is the main 

by-product generated in alumina production [1, 

11]. The loss of caustic and alumina from the 

liquor represents a significant and ongoing 

process cost [9, 11, 12]. 

 

 

Globally, there are approximately 120 million 

tons of red muds produced every year [13]. At 

present, about 615×103 tons of red mud are 

separated from the sodium aluminate solution 

and disposed in special ponds every year in 

Jajarm Alumina Complex which can cause high 

bound soda losses (B.S.L). 

Alumina recovery efficiency and bound-soda 

losses have a direct effect on the economic 

aspects of the process. The amount of produced 

red mud-dry basis (A.P.R) in the Bayer process 

can be used in the calculation of A.R.E and 

B.S.L. In addition, it affects the required space 

to dispose the red mud. A.P.R has also a direct 

influence on the red mud settling rate (R.S.R) 

and the level of mud in the separation and 

washing thickeners or their operational control. 

R.S.R in the thickener is also considered as one 

of the most important operational parameters in 

the Bayer process, which is dependent on the 

amount of the mud that enters into the thickener 

as well as chemical analysis of the bauxite and 

lime. 

The development of numerical tools, such as 

artificial neural network (ANN), has paved the 

way for alternative methods of prediction [14]. 

Artificial neural network with radial basis 

function (RBF) was explored for prediction of 

the vapor-liquid equilibrium (VLE) data [15]. 

MLP artificial neural network was also used for 

the prediction of thermal conductivity of 

Mg(OH)2–EG [16]. The artificial neural 

network has been applied for estimate natural 

gas/water interfacial tension, too [17]. It was 
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also used for predicting reverse osmosis 

desalination plants performance [18]. Some 

authors have reported the application of ANN 

for the estimation of alumina recovery from 

bauxite [19, 20]. 

In this work, for the first time, artificial neural 

network (ANN) methods and multiple linear 

regressions (MLR) were employed to develop 

an approach for predicting A.R.E, A.P.R, R.S.R 

and B.S.L in Jajarm Bayer process. These 

predictions are based on the composition of 

bauxite: Al2O3, SiO2, Fe2O3, TiO2, MgO, CaO 

and the concentration of CaOact in lime and also 

lime to bauxite ratio as the Bayer process feed 

materials and Al2O3, SiO2 and Na2O analyses of 

red mud as the Bayer process byproducts. This 

study also investigates more effective input 

variables on A.R.E, A.P.R, R.S.R and B.S.L 

from among the input parameters cited above 

(Fig. 1).  

 

 

Fig. 2. The process model architecture

 

This research can provide many advantages in 

the Bayer process, especially in Jajarm Alumina 

Complex. The output results of this research can 

provide the possibility of rapid prediction of 

processing behavior of bauxite in the Bayer 

process and the possibility of using the output 

data in the appropriate homogenization of 

bauxite before using it in the alumina 

production process. In addition, employing this 

method can prevent the problems resulting from 

the feed or take a remedy action beforehand. 

Explored or exploited bauxites, which have 

similar characteristics with consumed bauxites 

in Jajarm Alumina Complex, can also be easily 

investigated using these results and their 

behavior in the Bayer process can be predicted. 

High rate and low cost of this method are among 

the advantages of these techniques. Avoiding 

the need to perform further experiments and to 

employ laboratory technicians and expensive 

instruments are also considered the benefits of 

this study. In addition, the validity of the 

obtained results of these methods is more  

 

reliable since the model predictions are 

resulting from a great number of data compared 

with the result of one individual experiment 

which is subject to human and machine errors. 

These prediction methods have good results 

when lime and bauxite ores with different 

mineralogical and chemical analyses are used. 

 

2- Experiments 
Daily measurements of bauxite, lime and red 

mud chemical analyses in Jajarm Alumina 

Complex were performed. The data were 

recorded from 2011 to 2012, corresponding to 

333 data sets. The input parameters for this 

study consisted of Al2O3, SiO2, Fe2O3, TiO2, 

MgO and CaO analyses for the bauxite, 

chemical composition of lime and the ratio of 

lime to bauxite as the feed materials and the 

chemical analyses of Na2O, SiO2, and Al2O3 for 

the red mud. These data in the form of 

descriptive statistical results are presented in 

Table 1. Jajarm bauxite and red mud XRD 

analysis are shown in Figs. 3 and 4, 
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respectively. Table 2 shows mineralogical 

analysis of Jajarm bauxite.

 

 
 

 

Table 1. Lime to bauxite ratio and chemical analyses of bauxite and lime 

 Variables Mean St. Dev Variance Minimum Maximum 

  Wt % 

Bauxite 

Al2O3 47.73 1.20 1.43 44.90 51.86 

SiO2 11.40 0.88 0.77 9.00 14.47 

Fe2O3 20.81 1.55 2.42 16.37 25.12 

TiO2 5.49 0.54 0.29 3.99 6.64 

CaO 0.91 0.21 0.04 0.46 1.62 

MgO 0.37 0.06 0.004 0.17 0.55 

Lime 
CaOact 83.51 5.83 34.04 65.10 92.90 

Lime/bauxite 9.24 0.98 0.97 6.00 10.00 

Red 

mud 

Na2O 5.47 1.07 1.150 3.90 6.49 

SiO2 14.60 0.84 0.70 8.79 17.26 

 Al2O3 17.97 0.721 0.52 16.27 20.43 

 

  

 
Fig.3. XRD analysis of Jajarm bauxite 
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Fig.4. XRD analysis of Jajarm red mud 

 

Table.2. mineralogical analysis of Jajarm bauxite (wt %)

 

The outputs of the investigated process are 

A.R.E, A.P.R, R.S.R, and B.S.L which refer to 

the alumina efficiency, the amount of produced 

red mud, red mud settling rate and bound-soda 

losses in the red mud, respectively. They were 

calculated using the following equations:  

A.R.E (%)= 1-((Al2O3(Red mud) × 

SiO2(Bauxite)) / (Al2O3(Bauxite) × 

SiO2(Red mud))     

(6) 

A.P.R (g/l)= R(v2)/V2 (7) 

B.S.L(%)= (SiO2(Bauxite) × Na2O(Red 

mud)) / SiO2(Red mud)    

(8) 

Where Al2O3(Bauxite) and SiO2 (Bauxite) is the mass 

fraction of alumina and silicon in the bauxite 

(%) and Al2O3(Red mud), SiO2(Red mud) and Na2O(Red 

mud) are the mass fraction of alumina, silicon and 

soda in the resulting red mud (%), respectively. 

Also, V2 is the sample volume of input slurry 

into the thickener (lit) and R(V2) is the amount of 

its dry red mud (g). Batch settling tests were 

also applied to calculate the rate of red mud 

settling in the thickener [21].  

Silicon-containing minerals are decomposed by 

alkali solution, most of which enters into the red 

mud and a little of which remains in the solution 

and slowly deposits [9]. Therefore, the ratio of 

bauxite to red mud (ton/ton) is determined from 

the ratio of SiO2 (Bauxite) to SiO2 (Red mud) in Eq. (6). 

normalization of the input data before 

submission to the neural network and regression 

models is vitally important. In general, all of the  

data values require to be normalized between 0 

and 1 to prevent the saturation effect of the 

transfer function. So, the input parameters are 

normalized according to the following equation 

[14]: 

Ui= (mi – mi,min) / (mi,max – mi,min) (9) 

Where Ui, mi, mi, min mi, max are the normalized 

parameter, the actual parameter, minimum of 

the actual parameters and maximum of the 

actual parameters, respectively. The normalized 

data were fed as the inputs to MLR, MLP, and 

RBF network for training whereas normalized 

A.R.E, A.P.R, R.S.R and B.S.L were kept as the 

outputs. 

 

3- Models 
3-1-Multi-layer perceptron network 

Feed forward multi-layer networks are listed as 

the most important and widely used artificial 

neural network structures [22-25]. Typically, 

the MLP is organized as a set of interconnected 

layers of artificial neurons, and the input layers, 

one or more hidden layers and the output layer 

[26]. It usually uses sigmoid activation function 

in the hidden layers and linear combination 

function in the hidden and output layers [27-31]. 

In neural network modeling, a training 

algorithm plays an important role in the process 

[32]. Throughout the process, the learning 

algorithm is used to adjust the weight, bias and 

other input parameters in such a way that the 

model is able to immediately count its best fit. 

 3-2- Radial basis function 

The radial basis function is another popular 

architecture utilized in ANN. The RBF, which 

is multilayer and feed-forward, is often used for 
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strict interpolation in multi-dimensional space. 

In the structure of RBF network, the input data, 

x, is a p-dimensional vector, which is 

transmitted to each of the nodes in the hidden 

layer [26]. The nodes calculate the Euclidean 

distances between the centers and the network 

input vector [29] and pass the results through a 

non-linear function [33]. The RBF network 

output can be obtained by following equation 

[26]: 

𝑦 =  𝐹(𝑋) =  ∑ 𝑊𝑖(G(𝑁
𝑖=1 𝑥′ , 𝑥𝑖))     (10) 

Where Wi denotes the hidden-to-output weight 

corresponding to the ith hidden node, and N, xi, 

and G are the total number of the hidden nodes, 

the mean (center) and Gaussian function, 

respectively. Radial basis function networks 

require more neurons than feed forward the 

standard networks with back propagation 

algorithm [34], but due to their better 

approximation capabilities, simpler network 

structures and faster learning algorithms, RBF 

networks have been widely used in many 

science and engineering applications [22, 35, 

36]. 

 

3-3- Multiple linear regression model (MLR) 

Multiple linear regression models are the best 

tools for predicting the future value of a variable 

based on the linear relationship between a 

dependent variable and independent variables 

[37-41]. MLR has been extensively applied as a 

predictive model in engineering and non-

engineering domains [42]. Equation 11 

represents the n-value MLR model [42]. 

Y= 𝛽0 + 𝛽1X1 + 𝛽2X2 + … + 𝛽nXn 

+ 𝜀 

      (11) 

β stands for the coefficient, n represents the 

explanatory variable, while X and Y are 

independent and dependent variables, 

respectively.  

 

4- Results and discussion 
4-1- Performance evaluation criteria 

The aim of this research is to apply MLR, RBF 

and MLP to numerical modeling prediction of 

A.R.E, A.P.R, R.S.R and B.S.L in the Bayer 

process. To compare the results of different 

numerical methods (neural networks and 

multiple linear regressions), three performance 

indices were calculated for each series: the 

correlation coefficient (R), mean square error 

(MSE) and absolute average deviation (AAD). 

The correlation coefficient (R) is expressed by 

Eq. (12) [26]: 

 

(12) 

The mean square error and absolute average 

deviation are defined by the following 

equations [43, 44]: 

𝑀𝑆𝐸 =  (1/𝑛) ∑(𝑦𝑖 –  𝑦𝑑𝑖)2

𝑛

1

 
(13) 

|𝐴𝐴𝐷 =  {[∑ (|𝑦𝑖 –  𝑦𝑑𝑖 |)/𝑛
𝑖=1

𝑦𝑑𝑖]/𝑛}  ×  100]  
(14) 

Where yi and ydi are the experimental and 

calculated responses, respectively, and n is the 

number of the experimental run. 

 

4-2- ANN results 

4-2-1- Application of MLP  

For training of multi-layer perceptron (MLP) 

network, a program code, including neural 

network toolbox was written (Eq. 15). Data 

randomization was conducted before the 

training process. In the training process, 70% 

and 15% of the total data were utilized for 

training and cross validation, respectively. 

Network testing was conducted using 15% of 

the total data. The number of neurons in the first 

and second hidden layers and the learning rates 

were determined based on several trials. The 

optimum properties of the MLP network are 

shown in Table 3. In order to train, test and 

validate the optimum model, statistical tests (the 

correlation coefficient (R), the mean square 

error (MSE) and the absolute average deviation 

(AAD)) between the measured and the 

estimated B.S.L were carried out. The results 

are summarized in Table 4 and Fig. 5.  

 

net = newff (P, T, S, TF, BTF) (15) 
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Table 3. The optimum structure of the MLP model 

R-by-Q matrix of Q input vectors (P)  8×333 

S-by-Q matrix of Q target class vectors (T)  1×333 

Number of hidden layers  2 

Number of neurons in the first hidden layer (S1)  15 

Number of neurons in the second hidden layer (S2)  13 

Activation function in the first hidden layer (TF1)  Tansig 

Activation function in the second hidden layer (TF2)  Tansig 

Activation function in the output layer Linear (TF3)  Purelin 

Training function (BTF)  Levenberg-marquardt 

Number of epochs for learning  100 

Goal  0 

 

Table 4. Testing performance of the MLP model 

 

 



M. Mahmoudian et al, Journal of Advanced Materials and Processing, Vol. 6, No. 1, 2018, 71-86 78 

 
 

Fig. 5. The scatter plot of actual data versus predicted data in MLP method 

 

4.2.2. Application of RBF  

A program code was written for the RBF model 

simulation (eq. 16). In the training of the RBF, 

the spread factor is the only parameter which is 

obtained by the trial and error method and 

unlike the MLP model, the optimum number of 

neurons is not required to be determined [45]. 

In this study, 85% and 15% of the total data 

were utilized for training and testing, 

respectively.  

Net= newrb (P, T, goal, spread, 

MN, DF)   

(16) 

The optimum structure of the RBF network is 

given in Table 5.

 

 

 

Table 5. The optimum structure of the RBF model 

 

R-by-Q matrix of Q input vectors                        (P)  8×333 

S-by-Q matrix of Q target class vectors              (T)  1×333 

Goal  0 

Spread  1.2 

Maximum number of neurons                             (MN)  20 

Number of neurons to add between displays       (DF)  1 

The results of statistical tests (R, MSE, and AAD) between the actual and the predicted A.R.E, A.P.R, 

R.S.R and B.S.L are shown in Table 6 and Fig. 6. 
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Table 6. Testing performance of the RBF model 

 
 

 

 
Fig. 6. The scatter plot of the actual data versus the predicted data in the RBF method 

 

 

4.3. Application of regression 

Table 7 presents the results of a statistical 

method (Pearson correlation and statistical  

 

 

significance) used for defining the correlations 

dependence between A.R.E, A.P.R, R.S.R and 

B.S.L and chemical analysis of bauxite and 

lime.
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Table 7. Correlation matrix for the input variables and A.R.E, A.P.R, R.S.R and B.S.L 

 
Variable

s 
 AL2O3 SIO2 Fe2O3 TiO2 CaO MgO CAOact 

𝐿𝑖𝑚𝑒

𝑏𝑎𝑢𝑥𝑖𝑡𝑒
 

B
au

x
it

e 

SiO2 
P.C* -0.53        

Sig** 0.0        

Fe2O3 
P.C -0.66 0.05       

Sig 0.0 0.36       

TiO2 
P.C 0.49 -0.26 -0.55      

Sig 0.0 0.0 0.0      

CaO 
P.C -0.06 0.04 -0.10 -0.19     

Sig 0.29 0.47 0.08 0.00     

MgO 
P.C -0.12 0.10 0.11 -0.19 0.18    

Sig 0.05 0.10 0.07 0.00 0.00    

L
im

e 

CAOact 
P.C -0.07 -0.09 0.20 -0.19 -0.11 0.08   

Sig 0.24 0.11 0.00 0.00 0.06 0.21   

𝐿𝑖𝑚𝑒

𝑏𝑎𝑢𝑥𝑖𝑡𝑒
 

P.C 0.36 -0.26 -0.38 0.69 0.11 0.02 -0.1  

Sig 0.0 0.0 0.0 0.0 0.06 0.68 0.09  

R
ed

 M
u
d
 

A.R.E 
P.C 0.51 -0.86 -0.06 0.19 0.05 0.05 0.05 0.29 

Sig 0.00 0.00 0.19 0.00 0.33 0.35 0.32 0.00 

A.P.R 
P.C -0.66 0.54 0.47 -0.49 0.014 0.02 0.05 -0.43 

Sig 0.00 0.00 0.00 0.00 0.79 0.73 0.35 0.00 

R.S.R 
P.C 0.22 -0.04 -0.37 0.48 -0.03 -0.10 -0.20 0.30 

Sig 0.00 0.44 0.00 0.00 0.61 0.076 0.00 0.00 

B.S.L 
P.C -0.18 0.55 -0.01 -0.3 -0.04 -0.04 -0.30 -0.46 

Sig 0.0 0.0 0.87 0.0 0.48 0.52 0.0 0.0 
* Pearson Correlation,     **Significant (P-Value) 

 

 

The results show that the value of P.C between 

the analyses of Al2O3, SiO2, TiO2 in bauxite and 

the concentration of CaOact in lime and the lime 

to bauxite ratio ((ton/ton)×100) and A.R.E, 

A.P.R, R.S.R and B.S.L are statistically 

significant (P-Value ≤0.05). 

Multiple linear regressions describe the 

relationship between the selected input 

variables and A.R.E, A.P.R, R.S.R and B.S.L. 

In this case, 85% of the total data was utilized 

for creation of the model, the same as MLP and 

RBF models, using 15% of the total data for 

testing. Equations 17-20 represent the linear 

model developed during the first phase of the 

MLR modeling procedure. 

A.R.E=1.10+0.185AL2O3-

1.11SiO2-0.113Fe2O3-0.145TiO2-

0.0168CaO+0.0471MgO+ 

(17) 
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0.002CaOact  + 

0.0107(Lime/Bauxite)  

A.P.R = 0.276 - 0.236 AL2O3 + 

0.499 SIO2 + 0.358 Fe2O3 - 0.118 

TiO2 

+ 0.0037 CaO - 0.0944 MgO + 

0.0610 CAOact - 0.0257 

(Lime/Bauxite) 

(18) 

R.S.R = 0.267 - 0.132 AL2O3 - 0.124 

SIO2 - 0.287 Fe2O3 + 1.15 TiO2  

+ 0.184 CaO - 0.049 MgO - 0.396 

CAOact - 0.0307 (Lime/Bauxite)   

(19) 

B.S.L = 0.611 + 0.315 AL2O3 + 

0.729 SIO2 - 0.0317 Fe2O3 - 0.135 

TiO2 

- 0.0728 CaO - 0.0590 MgO - 0.310 

CAOact - 0.327 (Lime/Bauxite)     

(20) 

In order to train and test the optimum model, 

statistical tests (the correlation coefficient (R), 

the mean square error (MSE) and the absolute 

average deviation (AAD)) between the 

measured and the estimated B.S.L were carried 

out. The results of the developed model are 

presented in Table 8 and Fig. 7.

  

Table 8. Testing Performance indices for the MLR model 

  Training Testing 

A.R.E% 

 

MSE 1.48 1.637 

AAD 1.281 1.429 

R 0.881 0.884 

Min Abs Error -5.69 -4.1 

Max Abs Error 3.87 3.23 

A.P.R g/l 

MSE 43.54 34.63 

AAD 3.94 3.52 

R 0.762 0.786 

Min Abs Error -14.4 -8.66 

Max Abs Error 19.39 18.82 

R.S.R m/hr 

MSE 0.037 0.037 

AAD 8.97 8.31 

R 0.53 0.51 

Min Abs Error -0.51 -0.49 

Max Abs Error 0.42 0.55 

B.S.L % 

 

MSE 0.189 0.18 

AAD 8.82 7.72 

R 0.738 0.723 

Min Abs Error -1.07 -0.54 

Max Abs Error 1.19 1.26 
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Fig. 7. The scatter plot of the actual data versus the predicted data in the MLR method 

 

 

4-4- The effect of lime to bauxite ratio and 

chemical analyses of bauxite and lime on 

A.R.E 

 In this work, three dimensional plots were used 

to indicate more effective input variables on 

A.R.E, A.P.R, R.S.R and B.S.L on the basis of 

the RBF method. The three-dimensional 

response surface plots are shown in Figs. 8(a-o). 

These factors in the form of descriptive statistic 

results are shown in Table 1.

  

 

  
 

  
 



M. Mahmoudian et al, Journal of Advanced Materials and Processing, Vol. 6, No. 1, 2018, 71-86 83 

 
 

 

  

 

  
 

Fig. 8. The three-dimensional response surface plot, (a) effect of Al2O3 and SiO2 on A.R.E, (b) effect of Fe2O3 

and Al2O3 on A.R.E, (c) effect of TiO2 and Al2O3 on A.R.E, (d) effect of 
lime

bauxite
 and Al2O3 on A.R.E, (e) effect 

of Al2O3 and SiO2 on R.S.R, (f) effect of Fe2O3 and TiO2 on R.S.R, (g) effect of Al2O3 and TiO2 on R.S.R, (h) 

effect of CaOact and 
lime

bauxite
 on R.S.R, (i) effect of Al2O3 and SiO2 on A.P.R, (j) effect of TiO2 and SiO2 on A.P.R, 

(k) effect of TiO2 and Fe2O3 on A.P.R, (l) effect of TiO2 and 
lime

bauxite
 on A.P.R, (m) effect of TiO2 and Al2O3 on 

B.S.L, (n) effect of SiO2 and Al2O3 on B.S.L, (o) effect of TiO2 and Fe2O3 on B.S.L 

  

It is observed from Figs. 8(a and c) that an 

increase in SiO2 and TiO2 leads to a decrease in 

A.R.E. The effects of silica on A.R.E were 

represented by equations 3-5 and the harmful 

effect of TiO2 on alumina recovery efficiency is 

because of the formation of a thick layer of 

NaTiO3 on the diaspore surface during the 

Bayer digestion process [7]. Figs. 8(b and d) 

show that there is an increase in A.R.E value 

when Al2O3 and 
lime

bauxite
 increase. 

Figs. 8(e and f) show that with an increase in the 

concentration of SiO2 and Fe2O3, the R.S.R 

decreases. Figs. 8(g and h) expose that R.S.R 

value increases with a rise in TiO2 and 
lime

bauxite
 

Figs. 8(k and j) indicate the A.P.R is increased 

with the escalation of Fe2O3 and SiO2 

concentration in bauxite. In addition, A.P.R 

declines with growth in the Al2O3 and 
lime

bauxite
 

(Figs. 8(i and L)). The obtained results also 

show an increase in Al2O3, SiO2 and Fe2O3 

causes the B.S.L to increase (Figs. 8(m, n and 

o)). These results indicate that TiO2 makes the 

bond-soda losses in red mud to increase as well 

(Figs. 8(m and o))  

  

5- Conclusion 
In this work, MLR, MLP and RBF models were 

adapted for estimating A.R.E, A.P.R, R.S.R and 

B.S.L of Iran Alumina Company. The 

predictive performance of each model was 

assessed using three statistical measures: R, 

MSE and AAD. The application of the RBF 

network using the testing data set resulted in 

smaller amounts of MSE and AAD, i.e. 1.57 and 

1.363, respectively, as compared with the MLP 

and MLR models for prediction of A.R.E. 

Furthermore, this research showed that when 

predicting A.P.R and B.S.L via the RBF 

method, the values of MSE and AAD are less 

than the corresponding values produced by the 
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other two methods; however, in the prediction 

of R.S.R via MLP method, MSE and AAD 

values were lower than those obtained via RBF 

and MLR methods. This study also illustrated 

that compared with MLP and MLR methods, 

RBF has the highest correlation coefficient, R, 

between the real data and the prediction results 

of A.R.E, A.P.R, and B.S.L; however, the value 

of R to predict R.S.R via the MLP method was 

greater than those of the other methods. The 

minimum and maximum error values presented 

in Tables 4, 6 and 8 are an indication of the 

minimum error variation of RBF method 

outputs in the course of A.R.E, A.P.R and B.S.L 

prediction, and also MLP method in the course 

of R.S.R prediction, not only from the optimum 

value (zero), but also from the values of each 

other. In addition, our investigation revealed 

that the average rate of error in the prediction of 

A.R.E, A.P.R and B.S.L via RBF method and 

the average rate of error within R.S.R prediction 

when applying MLP method are at their 

minimum. 

To sum up, it can be concluded that RBF neural 

networks can be considered as the best-fitted 

approach to predict the mentioned parameters 

providing the highest levels of accuracy and 

reliability. However, exceptionally, it is better 

to apply the RBF method to predict A.R.E, 

A.P.R, and B.S.L, whereas the MLP method is 

recommended to predict R.S.R. The three-

dimensional response surface plots present that 

the concentration of Al2O3, SiO2, TiO2 and 
lime

bauxite
 have an influence on A.R.E. Al2O3, SiO2, 

Fe2O3 and 
lime

bauxite
 affect A.P.R too. These results 

also imply that R.S.R is dependent on SiO2, 

Fe2O3, TiO2 and 
lime

bauxite
 and B.S.L is a fraction 

of Al2O3, SiO2, Fe2O3 and TiO2. 
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