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In the present work, a computer-based method is proposed to 

investigate the relationship between the steady-state grain size (ds) 

and stacking fault energy (SFE) in severely plastic deformed 

(SPDed) materials. The stacking fault energy, γ, plays an important 

role in determining the mechanical properties of face-centered cubic 

(fcc) metals. A number of models have been proposed to show this 

role. These models have several shortcomings, including complex 

computational variables, data constraints and small computational 

range constraints. The present model compatible with experimental 

results does not employ hard calculable variables. Besides, it is 

applicable not only for pure metals but also for alloys. The squared 

regression (R2) and error sum of squares (SSE) for the training and 

testing data of the presented model are 0.93, 0.0006 and 0.98, 

0.00018, respectively, which indicates the high accuracy of the 

proposed model. The slope of the log
Gb


 versus log sd

b
 is about 

0.6453 which is comparable to all the models offered in this field. 
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1. Introduction 
Severe plastic deformation (SPD) is a method to 

produce ultrafine bulk materials for industrial 

applications. In various systems such as Cu-Al, Cu-

Zn, and Pd-Ag, it has been demonstrated that ds or 

dmin (minimum grain size) is dependent on stacking 

fault energy (SFE) [1]. Many models have been 

proposed to confirm this dependence [2-9].This 

dependence is represented by a parameter called q 

(the average parameter q is approximately 0.65.), 

which is essentially the slope of the log
Gb


 versus 

log sd

b
, where b is the Burgers vector and G is the 

shear modulus. The proposed models are based on 

limited data and do not have a high computational 

theory. On the other hand, they cannot be used in 

alloys and are used only for pure metals, which 

confirms the lack of high potential in these models. 

In the present work, Gene Expression Programming 

(GEP) as one of the most important branches of 

artificial intelligence (AI) has been used for 

simulating the SPD process and providing a relation 

between the   and sd . According to the obtained 

results, the presented model overcomes the 

mentioned shortcomings (in other models) and then 

assesses its reliability and accuracy by experimental 

results.  

 

2. The model 
The exact functionality of this model has been 

explained in our previous work [10]. It is worth 

mentioning that prior to introducing the data to the 

model, they are divided into two groups, namely the 

training and the testing datasets. Testing data are 

randomly selected from all data and entered into the 

model to test the training data (see Table 1 and Table 

2). This guarantees that the model output for the 

training data will not be false. Genetic programming 

(GP), one of the newest paradigms of evolutionary 

computations, can automatically learn the introduced 

problem by mimicking the Darwinian evolution 

process [10]. Gene expression programming (GEP) 

as an extension of GP, is used in this paper to develop 

the model. GEP method includes individuals referred 

to linear strings with fixed-size called genome or 

non-linear entities containing various sizes and 

shapes called expression trees (ETs). Generally, any 

individual contains one chromosome having one or 

more genes, divided into head and tail parts [10]. 

Moreover, there are two languages in GEP: the 

language of the genes and the language of ETs. A 

simple chromosome as a linear string with two genes 

is encoded, as shown in Fig. 1 as an example for ET 

language. Its ET and the corresponding mathematical 

formula are also shown in the same figure.  

 

 
Fig. 1. A simple chromosome as a linear string with two genes 

 

3. Results and discussion 

Seven input parameters comprised of b, D, G, H, 

 , Q and T were inserted to the GEP model as 

input layers, while the output layer was set on ds.  

Fig. 2 shows an expression tree for the steady-

state grain size values (ds or dmin) of the SPDed 

materials as output layer in this research. It 

should be noted that the variables of d0, d1, d2, 

d3, d4, d5 and d6 are the values for the 

abovementioned input layers, which are b, D, G, 

H, , Q and T, respectively. 
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Table 1. Modeling database for various metals and alloys in training mode [6] 

Materials 

used in 

SPD  
process 

T (K) G (GPa) b (nm) D (m2s-1) Q (kJ/mol)  (mJm-2 ) H(GPa) ds(nm) 

Mg 922 17 0.3197 1.75 138 125 0.34 1000 

Fe 1809 82 0.2482 1.9 240 180 3.02 200 

Co 1768 82 0.2497 0.55 298 31 3.28 100 

Ni 1728 75 0.2492 1.77 285 125 3.02 170 

Pd 1825 46 0.2751 20.5 266 180 2.13 240 

Ag 1234 27 0.2889 27.8 182 16 0.94 220 

Al-Mg 906 26 0.2881 4.4 140 27 1.98 190 

Al-Ag 928 26 0.2864 0.33 125 175 0.59 500 

Al-Ag 920 26 0.2864 1.5 136 190 0.74 500 

Al-Cu 923 26 0.2858 0.18 126 166 2.01 207 

Cu-Al 1350 47 0.2565 0.287 188 37 2.1 65 

Cu-Al 1335 46 0.2578 1.293 191 8 2.51 118 

Cu-Zn 1283 41 0.2593 0.36 170 18 2.4 108 

Cu-Zn 1223 37 0.261 1.7 172 14 2.49 74 

Pd-Ag 1733 42 0.2779 17.6 126 125 2.92 150 

Ni-Fe 1713 78 0.2537 41.5 316 79 3.92 120 

Ni-Co 1733 76 0.2493 0.725 273 120 3.58 197 

Ni-Co 1738 78 0.2497 0.166 258 90 4.06 115 

 
Table 2. Modeling database for various metals and alloys in testing mode [6] 

Materials 

used in 

SPD  
process 

T (K) G (GPa) b (nm) D (m2s-1) Q (kJ/mol)  (mJm-2 ) H(GPa) ds(nm) 

Al 933 26 0.2864 17.6 126 166 0.31 1500 

Cu 1357 48 0.2556 35 204 45 1.3 400 

Al-Mg 930 26 0.2867 0.49 124 87 1.25 330 

Al-Mg 916 26 0.2874 0.32 122 54 1.8 230 

Al-Ag 906 26 0.2864 11 155 210 1.11 500 

Cu-Zn 1330 45 0.2575 0.13 170 35 2.23 110 

Pd-Ag 1774 44 0.2758 1.75 138 165 2.61 206 

Pd-Ag 1648 38 0.28 1.9 240 119 3 144 
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Fig. 2. The expression tree with 6 genes for predicting ds 

 

Table 1 and Table 2 show the experimental sets 

collected from the literature for the modelling 

process [5]. There are two sets of data in any 

simulating/modelling process, including training and 

testing which used for learning and generalizing 

model, upheaval buckling predictive models (for 

additional details, please refer to our previous work 

[10]). In this research 18 data were randomly chosen 

as the training and remained 8 data were used as 

testing. The model containing the best-predicted 
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values of ds in both of the training and testing data 

sets is adopted as the best model for simulating SPD 

process. The formula derived from the ETs presented 

in Fig. 2, with the procedure shown in Fig. 1, is in 

accordance with the following equation: 

   
1/3

1/3

1/2 2/3

7.3
/ 7.3exp Gexp exp( )

8.7G
s

m

Q b b D
d HD H D b

H T





          
                        

                                             (1) 

Or 

 
1/31/3

3/2 2/3

7.3
3.5 exps

m

G HbQd b D
b

b Gb H T





    
            

                                                                              (2) 

Two points are extracted from Eq.2: 

1- The Burgers vector, the frequency factor for pipe 

diffusion and the melting temperature play an 

exponential role, indicating they have a more 

important effect than the other mentioned 

parameters. 

2-  There is a linear relationship between 
Gb


 and 

sd

b
or between log

Gb


 and log sd

b
. 

The latter has been also reported in previous works. 

To illustrate, Qu et al. [1] analyzed the dependency 

of the normalized steady-state grain size on the 

normalized SFE for SPDed materials. They reported 

a simple linear relationship between 
Gb


 and sd

b
 . 

 Moreover, Mohamed et al. [2] presented a model in 

which log
Gb


 and log sd

b
 have a linear connection 

as follows: 

 

1/4 1/2 5/42

exp
4

sd Q DGb G
A

b RT vkT Gb H

       
       

      

       (3) 

where, A is a constant, β= 0.04, Q is the activation 

energy for self-diffusion, R is the gas constant, T is 

the absolute temperature, D is the frequency factor 

for pipe diffusion, v is the initial dislocation velocity, 

k is Boltzmann’s constant,   is the stacking fault 

energy, and H is the steady-state hardness.  

Another model which has been expressed by using 

thermodynamic relations and almost confirms the 

results of our model is Kazeminezhad model [3], 

which is expressed as follows:  
1/3 2/32

exp
3

sd Q DGb
A

b RT vkT Gb

     
     

    

              (4) 

where 0.037  . 

In addition, there are many experimental works 

reporting a power-law relationship for the 

dependency of ds to SFE [2-9]. These models have 

great potential for simulating SFE. However, several 

major flaws are common to all of them: 

a) The initial speed of dislocation to which these 

relations have referred is almost hardly calculable 

and, as a consequence, it reduces the precision of the 

models.  

b) The amounts of α and β can only be measured by 

experimental data and no mathematical theory 

supports them. This also results in obscurity and the 

reduction of the precision of the models. 

c) The number of experimental data for making a 

linear relationship is too small. 

d) They are applicable only for pure metals but not 

for alloys 

Our presented model (Eq.1) covers all the above 

flaws. Firstly, it does not need to calculate ambiguous 

variables (such as α or β); secondly, it covers a wide 

range of alloys and pure metals, and thirdly, it is very 

accurate. 

In order to assess the precision of the presented 

model, we have to compare the slope of the straight 

line in Fig. 3a (which the slope of the log
Gb


 versus 

log sd

b
) with that of the diagram obtained from the 

presented model (Fig. 3b). If we consider Fig.4a 

which has been drawn on the basis of experimental 

data [11-17], it can be observed that the slope of the 

straight line (q) is 0.63 (plotting the logarithm of the 

normalized steady-state grain size against the 

normalized stacking fault energy, gives a straight 

line), which is in agreement with the results obtained 

by previous studies [2-9]. In the latter diagram, which 

has been drawn based on the predicted ds, it can be 

seen that the slope is q=0.6453. Mohammed et al. [2], 

and Kazeminejard et al. [3] reported a value of 0.65 

and 0.66 for q, respectively. Other studies in this field 

have reported almost the same results for the value of 

q as 0.65 [7], 0.69 [8], 0.63 [9], 0.64 [19]. 
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(a)                                                                        (b) 

Fig. 3. Normalized steady-state grain size (ds / b) vs. the normalized stacking fault energy (  /Gb ) for a: experimental 

and b) modelling results 

 
One of the significant advantages of this model over 

the other mentioned models is its rich database (Table 

1 and Table 2). As can be seen in these Tables, the 

materials selected for modelling process are not only 

pure metals but also a variety of different alloys. This 

makes the model applicable for both pure metals and 

alloys.  

To assess the ability of the GEP-based formulation 

(Eq. 1), the developed regression-based formulation 

R-square (R2) was used as the measurements index 

between the experimental and predicted ds values 

according to the following equation ]18]:     

 

      

2

2

2 22 2

i i i i

i i i i

n t o t o
R

n t t n o o




 

  

   

          (5)   

where ‘‘t’’ is the experimental value, ‘‘o’’ is the 

predicted value, and ‘‘n’’ is total number of data.  

Figure 4 shows the comparison between the 

experimental values of ds and the predicted ones 

obtained from the training and testing results of the 

GEP model. As can be seen, the R2 and error sum of 

squares (SSE) values are shown in this figure for the 

training (Fig. 4a) and testing (Fig. 4b) datasets. There 

is no need to explain that the high amount of R2 

ensures that the values obtained for the training and 

testing datasets in the GEP model are very close to 

the experimental results. The R2 values in the training 

and testing sets show that the proposed GEP is 

suitable and can predict ds very close to the 

experimental values. 

 

 
(a)                                               (b) 

Fig. 4. The correlation of the measured and predicted ds in (a) the training and (b) the testing phase 

 

 

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

2.6

2.8

3

3.2

3.4

3.6

log ( /Gb)

lo
g
 d

m
in

 /
b

 

 

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

2.6

2.8

3

3.2

3.4

3.6

3.8

log ( /Gb)

lo
g
 d

m
in

 /
b

 

 

Zr
Pd

ZnFe
Au

Ag

Co

Experimental works: :

     f(x) = p1*x + p2

Coefficients (with 95% confidence

bounds):

       p1 =      0.6399  (0.1951, 1.085)

       p2 =       4.312  (3.357, 5.267)

GEP model :

     f(x) = p1*x + p2

Coefficients (with 95% confidence
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Linear model for testing dataeset :

     f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

       p1 =       1.089  (0.9741, 1.203)

       p2 =       -72.5  (-141.5, -3.516)

Goodness of fit:

  SSE: 1.89e+04

  R-square: 0.989

Linear model for training dateset:

     f(x) = p1*x + p2

Coefficients (with 95% confidence

bounds):

       p1 =      0.9802  (0.8403, 1.12)

       p2 =       3.771  (-41.51, 49.05)

Goodness of fit:

  SSE: 6.078e+04

  R-square: 0.9324
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4. Conclusion 
In this study, a computer-based model was 

introduced for dependent of the steady-state grain 

size to stacking fault energy. The evaluation of model 

using experimental data showed that there is a perfect 

match between the current and previous models. 

However, there are several advantages to this model. 

First, it is applicable not only for pure metals but also 

for alloys, second, it does not employ hardly 

calculable variables and third, it is more accurate and 

more diverse. The slope of the log
Gb


 versus 

log sd

b
 is about 0.6453 which is comparable to all the 

models offered in this field. In this research, 18 sets 

were randomly chosen as the training and remained 8 

sets were used as testing. R2
 values for training and 

testing datasets of the proposed model are 0.93 and 

0.98, respectively, which confirms the high accuracy 

of the model. 
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