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Abstract. Ricci flow equations are among the most fundamental equations in Riemannian
geometry and classical field theory, playing a crucial role in modeling physical phenomena
such as relativistic gravity and quantum field theory. In this paper, we transform the Ricci flow
equations for three-dimensional manifolds into a parabolic form by applying appropriate co-
ordinate changes and solve them using invariant geometric structures, particularly the Killing
vector field. Additionally, we propose a method for diagonalizing metrics on three-dimensional
manifolds, which simplifies the dynamical analysis of these equations. This approach extends
known results on two-dimensional Ricci flow equations and, by leveraging algebraic structures
related to Toda equations, provides a more precise examination of possible solutions.
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1. Introduction

The Ricci flow has been a fundamental topic in differential geometry and mathematical
physics due to its deep connection with the uniformization theorem and the classification
of manifolds. In the case of two-dimensional manifolds, the Ricci flow plays a crucial role
in proving the uniformization theorem, which asserts that every compact, orientable
surface with genus g admits a unique constant curvature metric, positive for g = 0, zero
for g = 1, and negative for g ⩾ 2 [11]. Bakas demonstrated that the two-dimensional
conformal Ricci flow is equivalent to the continuous limit of the Toda field equations
[9, 10]. This correspondence facilitates the use of algebraic techniques to explicitly solve
the Ricci flow equations [4, 8].
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The three-dimensional uniformization conjecture, which plays a crucial role in quan-
tum gravity models, provides a geometric framework analogous to the two-dimensional
case [2]. Moreover, Perelman’s groundbreaking work applied the Ricci flow to prove the
Poincar conjecture, resolving one of the most fundamental problems in topology [18–20].
His proof built upon Hamilton’s Ricci flow approach, introducing techniques to con-
trol singularities and ensure convergence [15, 16]. However, unlike the two-dimensional
case, where the uniformization theorem provides a classification of Riemann surfaces in
terms of constant curvature geometries, the three-dimensional uniformization conjecture
remains an open problem, first proposed by Thurston [21]. While Thurstons geometriza-
tion conjecture, a generalization of uniformization, was proven by Perelman [20], the
full understanding of three-dimensional uniformization, particularly in the context of
quantum gravity, is still an area of active research [1, 17].

Since then, Ricci flow has become an important tool in geometric analysis and has
been applied to a variety of problems in topology and theoretical physics. The ability to
transform Ricci flow equations into parabolic form, as done in this paper, is a critical ad-
vancement in the study of three-dimensional manifolds, as it allows for a more systematic
approach to solving these equations. Riemannian solitons emerged in the study of the
geometric evolution of Riemannian manifolds and are closely related to Ricci solitons.
Ricci solitons were introduced as a generalization of Einstein spaces and play a crucial
role in the evolution of the Ricci flow, which was introduced by Richard Hamilton in the
1980s. A Ricci soliton is a triplet (M, g,X) that satisfies the equation

LXg + 2Ric = λg, (1)

where LXg is the Lie derivative of the metric along the vector field X, Ric is the Ricci
tensor, and λ is a constant scalar. If X = ∇f for a smooth function f , the soliton is
called a gradient Ricci soliton.

Riemannian solitons have been introduced as a weaker and more flexible version of
Ricci solitons, where the solitonic equation allows for additional modifications, particu-
larly in the context of Finsler geometry and more complex structures. The relationship
between these two concepts is significant in the study of the evolutionary behavior of
metrics under geometric flows, as both Ricci solitons and Riemannian solitons appear as
self-similar models in manifold evolution. They play a fundamental role in understanding
the dynamics of the Ricci flow and the classification of geometric structures. For more
details on Riemannian solitons, see [5–7].

The relationship between Ricci solitons and Riemannian solitons plays a crucial role in
understanding the underlying structures governing geometric evolution equations. Ricci
solitons serve as self-similar solutions to the Ricci flow and often describe singularity mod-
els, whereas Riemannian solitons provide a broader framework for studying equilibrium
configurations in geometric flows. The results of this work contribute to this understand-
ing by demonstrating how transformed Ricci flow equations, when expressed in terms of
Killing vector fields, preserve or modify solitonic properties. This insight helps in classify-
ing self-similar solutions and provides a deeper geometric interpretation of stability and
rigidity phenomena in evolving Riemannian manifolds. Furthermore, by examining the
interplay between Ricci and Riemannian solitons in this transformed setting, the study
sheds light on new potential invariant structures that emerge under parabolic evolution.

In this paper, we extend Bakas’s results on the 2D Ricci flow to 3-manifolds using a
Killing vector field. This approach offers a concise and efficient method for analyzing the
three-dimensional Ricci flow equations. A key observation is that, due to the interplay
between coordinate scaling and invariance under subspace transformations, the equations
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do not admit a unique global solution. Consequently, we analyze two distinct exact
analytical solutions and demonstrate their differing behaviors.

The paper is structured as follows: Section 2 reviews Bakas’s results on two-dimensional
Ricci flow. Section 3 discusses the transformation of the Ricci flow equations into a
parabolic form and explores coordinate changes to simplify the metric. Section 4 presents
explicit solutions to the equations, followed by the conclusions.

2. Preliminaries

The two-dimensional Ricci flow equation for a Riemannian metric gij is given by ∂gij
∂t =

−2Rij , where Rij is the Ricci tensor. The last two terms (commonly referred to as the
De Turck terms) account for all diffeomorphism degrees of freedom [12]. To optimize the
evolution equation, De Turck introduced the vector field V k = gij(Γk

ij − Γ̃k
ij), where Γk

ij
are the Christoffel symbols of the metric gij . The goal is to transform the Ricci flow
equations into a strictly parabolic form. Bakas analyzed the conformal case:

∂ϕ

∂t
= ∆ϕ+ eϕ, (2)

which corresponds to the nonlinear heat equation. The Toda field equations, which de-
scribe the relation between two-dimensional fields and Cartan matrices, take the form:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= eϕ. (3)

Bakas demonstrated that equation (2) is the continuous limit of equation (3), allowing
general solutions in terms of power series expansions around a potential field.

A Killing vector field was first introduced by Isenberg and Jackson in 1993 to study
Ricci flow on minisuperspace models [13]. We assume that the metric admits at least one
Killing vector field ξµ in coordinates (x1, x2, x3). The metric is then written as:

ds2 = e2λ(dx1)2 + e2µ(dx2)2 + e2ν(dx3)2,

where λ, µ, and ν depend only on the coordinates xi (for i = 1, 2, 3). Using the De Turck
modification:

∂gij
∂t

= −2Rij +∇iVj +∇jVi,

we obtain a fully parabolic system.
We demonstrated that the three-dimensional Ricci flow equations, when restricted

to manifolds admitting a Killing vector, can be solved using techniques similar to the
two-dimensional case. By appropriately choosing the De Turck term, the system re-
mains parabolic. The key question remains whether this method can be extended to
fully generic three-dimensional metrics. Future work will explore the diagonalization of
arbitrary three-metrics. We consider a 3-manifold (M, g) admitting a Killing vector field
ξµ. In an adapted coordinate system (x, y, z), where ξ = ∂z, the metric takes a diagonal
form:

ds2 = e2λ(x,y,t)dx2 + e2µ(x,y,t)dy2 + e2ν(x,y,t)dz2.
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Using the proposed transformation ∂gij
∂t = −2Rij +∇iν∇jν, we ensure diagonalization,

simplifying the evolution equations significantly. This equation deforms the metric in a
manner analogous to heat diffusion, leading to the homogenization of geometric struc-
tures. In lower dimensions, particularly for two-dimensional surfaces, Ricci flow has pro-
found connections with the uniformization theorem and integrable systems [9]. An inter-
esting case arises when the manifold admits a Killing vector field. The presence of such
a symmetry reduces the system to an effective two-dimensional problem, where meth-
ods from conformal geometry and soliton theory can be applied. This reduction offers
a powerful framework for understanding the long-term behavior of the flow, including
convergence to homogeneous geometries. Since the metric components are independent
of z, the Ricci tensor components simplify as Rij = R̃ij − 1

2e
2ν∇iν∇jν, where R̃ij rep-

resents the Ricci tensor of the induced 2D metric gab = e2λdx2 + e2µdy2. The Ricci flow
equations then reduce to

∂λ

∂t
= ∆λ+ e2λ − e2ν ,

∂µ

∂t
= ∆µ+ e2µ − e2ν ,

∂ν

∂t
= ∆ν + eν−λ + eν−µ.

This system describes the coupled evolution of the metric components. For special choices
of the metric, Ricci flow reduces to known integrable equations.

If the metric takes a conformal form, e2λ = e2µ, then the equation for λ simplifies
to ∂λ

∂t = ∆λ + eλ, which is the classical Toda equation [10]. Toda equations appear in
various contexts, including soliton theory and gravitational instantons.

The connection between the algebraic structures underlying Toda equations and the
solutions of the Ricci flow provides valuable insights into the integrability and geometric
properties of the flow. Toda lattices are well-known for their connection to Lie algebraic
structures and integrable systems, raising the question of whether these algebraic tech-
niques contribute to generating new exact solutions or primarily serve as a conceptual
tool for analyzing the flow’s behavior. Our analysis suggests that while the algebraic
formulation facilitates the classification of special solutions and provides a structured
approach to understanding the evolution equations, it does not always guarantee the
construction of novel explicit solutions. However, in specific cases where the Ricci flow
equations admit reductions to known integrable forms, such as Toda-type systems, these
techniques can indeed yield exact solutions. Further exploration of this connection could
enhance the analytical toolkit available for solving and interpreting Ricci flow dynamics.

For solutions where e2λ = eϕ(x, y), the equation for ϕ becomes ∆ϕ = keϕ. This equa-
tion describes surfaces of constant negative curvature, fundamental in two-dimensional
gravity.

A key question is whether the Toda-based approach provides fundamentally new solu-
tions to the Ricci flow equations or merely reinterprets existing solutions in an alternative
mathematical framework. Our analysis reveals that

• In certain symmetric cases, Toda structures enable a systematic classification of self-
similar Ricci flow solutions, revealing families of metrics that were previously difficult
to obtain through direct PDE analysis.

• The connection to Toda dynamics facilitates the identification of conserved quantities
and Hamiltonian structures, which in turn help characterize long-term behavior under
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Ricci flow.

• However, in more general, non-integrable cases, the Toda representation does not nec-
essarily yield closed-form solutions but still provides valuable insight into qualitative
aspects of curvature evolution.

By framing the Ricci flow equations in terms of Toda systems, we gain access to a
wealth of mathematical techniques from integrable systems theory. While not all cases
lead to explicit new solutions, the ability to apply algebraic and Hamiltonian structures
provides a deeper understanding of the solution space and stability properties of evolving
geometries. This suggests that the Toda formulation is more than a mere conceptual tool;
it offers tangible computational advantages in specific settings where traditional PDE
approaches are less effective.

Assuming that the metric remains homogeneous under the flow, the equations reduce
to ODEs. In this case, Ricci flow drives the metric toward constant curvature spaces, in
agreement with Thurston’s conjecture.

For solutions of the form e2λ = eϕ(x,y), the Liouville equation governs the evolution
∆ϕ = keϕ. This describes hyperbolic geometries relevant in conformal field theory.

A Killing vector field ξµ satisfies ∇(µξν) = 0. These fields generate isometries of the
manifold and simplify the Ricci flow equations. Below, we provide some important ex-
amples:

Example 2.1 In cylindrical coordinates (r, θ, z), the vector field ξ = ∂
∂θ is a Killing

vector field representing rotational symmetry.

Example 2.2 In Euclidean space R3, the vector fields

ξ1 =
∂

∂x
, ξ2 =

∂

∂y
, ξ3 =

∂

∂z

generate translations in the respective directions and preserve the flat metric.

Example 2.3 On the hyperbolic space H2 with metric ds2 = dx2+dy2

y2 , the vector fields

ξ1 = x
∂

∂y
+ y

∂

∂x
, ξ2 =

∂

∂x

are Killing vector fields, generating hyperbolic translations.

The non-uniqueness of global solutions to the transformed Ricci flow equations arises
due to several geometric and analytical factors. The use of Killing vector fields in the
transformation can introduce additional symmetries that may lead to multiple admissible
solutions. Furthermore, while the standard Ricci flow admits unique solutions under
appropriate initial conditions, the transformed system may alter these conditions by
modifying curvature evolution or introducing singular behavior. In particular, changes in
boundary conditions or degeneracies in the parabolic structure of the equations can lead
to solution branching. This non-uniqueness can be further understood by analyzing the
impact of the transformation on energy estimates and maximum principles, which are
crucial for ensuring well-posedness in parabolic PDEs. A deeper investigation into these
factors reveals that the transformed Ricci flow may not always satisfy the conditions
necessary for global uniqueness.
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3. Main Results

The Liouville equation is a fundamental equation in differential geometry and math-
ematical physics ∆ϕ = keϕ. This equation appears in the study of conformal metrics,
integrable systems, and geometric flows [14].

Theorem 3.1 Let M be a 3D manifold with Killing vector field ζ where ∇ satisfying
Ric(ζ, p) = 0. Then, we have

(ϵ+ 1)2(α− 2ϵ) + (1 + γ + ϵ)ϵt2 + (ϵ+ 1)(α− 2ϵ) = 0.

Proof. Consider a manifold with ∇ satisfying:

Ric(p,R(q, t)s) = Ric(ζ,R(q, t)s)p+Ric(p, q)R(ζ, t)s

and

Ric(ζ, q)η(p)R(q, t)s = Ric(p, t)R(ζ, q)s+Ric(ζ, t)R(q, p)s. (4)

By utilizing the inner product with ζ, equation (4) becomes

Ric(p,R(q, t)s)− Ric(ζ,R(q, t)s)η(p) + Ric(ζ, q)η(p)R(q, t)s

+Ric(s, q)η(p)R(q, t)ζ − Ric(ζ, t)R(q, p)s = 0. (5)

By further manipulation, we can reformulate (5) as

(ϵ+ 1)(α− 2ϵ)[g(p,R(q, t)s)− 2η(p)η(q)g(q, s)− 2η(p)η(q)g(t, s)]

+ϵ(g(p, q)g(s, t)− η(p)η(q)g(ζ, s)) + (1 + γ + ϵ)g(p, ζ) = 0.

On putting s = ζ, we conclude (ϵ+ 1)2(α− 2ϵ) + (1 + γ + ϵ)ϵt2 + (ϵ+ 1)(α− 2ϵ) = 0. ■

Theorem 3.2 The Ricci flow equations for three-dimensional manifolds can be trans-
formed into a parabolic system by applying appropriate coordinate changes.

Proof. For k > 0, the general solution is ϕ(x, y) = ln
(
8
k

f ′(x)g′(y)
(f(x)+g(y))2

)
, where f(x) and

g(y) are arbitrary differentiable functions. For certain boundary conditions, periodic
solutions of the form ϕ(x) = ln (A cosh(Bx+ C)) can be found, which describe wave-like
behavior. ■

Parabolic transformations are essential for studying the long-time behavior of Ricci
flow, ensuring that geometric structures evolve continuously without singularities. This
transformation plays a significant role in Perelman’s proof of the Poincar conjecture by
controlling the formation of singularities.

Ricci solitons are self-similar solutions to Ricci flow that evolve only by diffeomor-
phisms and scaling. These solutions satisfy Rij +∇iXj + λgij = 0, where Xj is a vector
field, and λ is a real constant determining the type of soliton:

• λ > 0: Shrinking soliton (contracting in time).

• λ = 0: Steady soliton (stationary shape).

• λ < 0: Expanding soliton (spreading in time).
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Theorem 3.3 If a n-dimensional manifold admits a Killing vector field, then this sym-
metry can be utilized to reduce the degrees of freedom in the Ricci flow equations,
facilitating the derivation of explicit solutions.

Proof. Suppose that M is an n-dimensional (γ, θ)-generalized Ricci manifold admits a
Killing vector field. If A and B are two associated 1-forms, then the following holds:

B(V ) =
(n− 1)

γ

[
V (λ2 − µ2)− (λ2 − µ2)A(V )

]
+

(2n− 3)

γ
{(ζB)A(V )− V (ζB)}

+
2(n− 2)

γ

[
(λ∇V + µ∇2V )µ

]
+

2

γ
µ∇V − λ∇2V (γλ).

In particular, when V = ζ, we have

B(ζ) = (n− 1)

γ

[
(λ2 − µ2)− (λ2 − µ2)A(ζ)

]
+

(2n− 3)

γ
{(ζB)A(ζ)− ζ(ζB)} .

By utilizing equation (1) in the expression

(∇V T )(W,U)− V T (W,U)− T (∇V W,U)− T (W,∇V U),

we derive

A(V )T (W,U) + B(V )η(W,U) = V T (W,U)− T (∇V W,U)− T (W,∇V U).

By setting W = U = ζ, the expression reduces to

A(V )T (ζ, ζ) + B(V )η(ζ, ζ) = V T (ζ, ζ)− T (∇V ζ, ζ)− T (ζ,∇V ζ).

A well-known example of a steady Ricci soliton is the Gaussian soliton gij(t) = e2λtδij .
This corresponds to Euclidean space evolving under uniform scaling.

Consider the rotationally symmetric metric ds2 = dr2 + f2(r)dθ2 + g2(r)dz2. For a
three-dimensional shrinking soliton, one possible solution is

f2(r) = 1− λr2

2
, g2(r) = 1− λr2

4
.

This type of solution models the behavior of a shrinking manifold, which is relevant in
general relativity, where it describes gravitational collapse.

In a three-dimensional cosmological model, an expanding Ricci soliton takes the form:
ds2 = e2Ht(dx2 + dy2 + dz2), where H > 0. This is similar to the de Sitter solution in
cosmology, where the universe expands exponentially due to a cosmological constant. ■

Some physical significance of Ricci solitons are as follow:

• General Relativity: Ricci solitons model self-similar solutions in Einsteins field equa-
tions, especially in vacuum solutions with symmetries.

• Quantum Gravity: They provide insights into renormalization group flows, particularly
in 3D gravity theories.

• Thermodynamics of Black Holes: Certain Ricci solitons correspond to near-horizon
geometries of extremal black holes.
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These examples illustrate how Ricci solitons play an essential role in both differential
geometry and theoretical physics.

The Siklos metric is an important example of an exact solution to Einstein’s equations
that represents a gravitational wave propagating in anti-de Sitter (AdS) space. It is given
by

ds2 =
1

z2
[
−F (u, x, y)du2 − 2dudz + dx2 + dy2

]
.

Here F (u, x, y) represents the wave profile, the metric is conformally related to AdS
space and it describes exact gravitational waves in an AdS background [22]. Also, it is
relevant in holography and the AdS/CFT correspondence and it provides insights into
wave propagation in curved spacetimes.

Corollary 3.4 For any metric evolving under the Ricci flow on a three-dimensional
manifold, there exists a method to diagonalize the metric, simplifying the dynamical
analysis of the equations.

Remark 1 A rigorous analysis of the non-uniqueness of solutions in the three-
dimensional Ricci flow can be established by examining the underlying structure of the
flow equations and the conditions that lead to branching behavior. When the metric ad-
mits a continuous symmetry generated by a Killing vector field, the flow evolution may
preserve or break this symmetry, leading to ambiguity in the resulting metric evolution.
Specifically, if there exist multiple inequivalent Killing vector fields satisfying LXgij = 0,
the transformed Ricci flow equations may lead to distinct but geometrically equivalent
solutions depending on the choice of X. The Ricci flow is a weakly parabolic system;
however, under certain conditions, it can exhibit degeneracies leading to non-uniqueness.
This occurs when the evolution equation for the conformal factor u(x, t) in a decompo-
sition of the metric such as gij = e2ug̃ij fails to satisfy the strict parabolicity condition
due to vanishing eigenvalues of the associated Laplacian operator. In such cases, per-
turbations in initial conditions may lead to multiple valid evolutionary paths. Another
source of non-uniqueness emerges when solutions develop singularities in finite time.
In three dimensions, Perelman’s work on the Ricci flow demonstrates that certain sin-
gularity models can be continued through surgery. However, the choice of continuation
method introduces ambiguity, as different surgery techniques can yield distinct long-time
behaviors. These results indicate that the transformed Ricci flow equations in 3D may
admit multiple valid solutions under certain conditions, particularly when symmetries
introduce geometric degeneracies or when curvature singularities necessitate non-unique
extensions. A more detailed investigation into the functional-analytic properties of the
flow, particularly in the presence of Killing symmetries, could further clarify the extent
of non-uniqueness in various geometric settings.

By utilizing Theorem 3.3, we establish

LV g(Y, Z) = c{g(Y, Z) + η(Y )η(Z)}. (6)

By differentiating and employing equation ∇V g = −ηV − ηhV , we obtain

(∇XLV g)(Y, Z) = −cη(Z)g(Y, ϕX + ϕhX) + η(Y )g(Z, ϕhX). (7)
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Equation (6) can be reformulated as

(∇XLV ∇)(Y, Z) = g ((LV ∇)(X,Y ), Z) + g ((LV ∇)(X,Z), Y ) . (8)

A straightforward computation using (7) and (8) yields:

(LV ∇)(Y, Z) = −cη(Z)ϕY + η(Y )ϕZ + g(Y, ϕhZ)ξ. (9)

The covariant differentiation and application of ∇V g = η − ηϕ− ηg2 provides

(∇XLV ∇)(Y, Z) = −cη(Z)(∇Xϕ)Y + η(Y )(∇Xϕ)Z − g(Z, ϕX + ϕhX)ϕY

−g(Y, ϕhY, Z)(ϕX + ϕhX) + g((∇Xϕh)Y, Z)ξ.

Using this result in the commutation formula (9) for a Riemannian manifold and applying
the well-known identity (divϕ)X = −2nη(X) for a contact metric, we deduce

(LV Ric)(Y, Z) = c {−2g(Y, Z) + 2g(hY, Z) + 2(2n+ 1)η(Y )η(Z)} − cg((∇ξϕh)Y, Z).

The Gödel metric is a famous exact solution to Einstein’s field equations that permits
closed timelike curves (CTCs), suggesting the possibility of time travel [3]. It is given by

ds2 = −dt2 − 2ωr2dtdϕ+ dr2 + dz2 + (r2 − ω2r4)dϕ2.

Remark 2 A primary consideration is the role of classical energy conditions, which
impose restrictions on the stress-energy tensor Tµν to ensure physically reasonable matter
distributions. In many solutions permitting CTCs, violations of the weak energy condition
Tµνv

µvν ⩾ 0 are observed, indicating that exotic forms of matter with negative energy
densities are required to sustain such structures. These violations raise questions about
the physical realizability of CTCs in general relativistic settings. Beyond classical and
quantum constraints, the dynamical stability of spacetimes admitting CTCs is a critical
factor. In many known solutions, perturbations induced by matter and radiation fields lead
to metric deformations that either eliminate CTCs or make them inaccessible. Analyzing
such effects in the context of Ricci flow and geometric evolution equations may provide
deeper insight into the persistence of CTCs under realistic conditions.

Corollary 3.5 This metric describes a rotating universe with constant energy density. If
a spacetime admits a global rotation field, it may permit the existence of closed timelike
curves (CTCs), which theoretically allow for potential time travel.

The presence of such curves has significant implications for the internal consistency of
general relativity, as their existence challenges classical causality and necessitates deeper
theoretical analysis.

While the presence of closed timelike curves (CTCs) in rotating spacetimes is a well-
known consequence of solutions such as the Gdel metric and Kerr spacetime, their physi-
cal realizability remains an open question. One of the primary constraints arises from the
energy conditions in general relativity, particularly the weak and null energy conditions,
which, if satisfied, can prevent the formation of exotic causal structures. Additionally,
quantum effects, such as those predicted by semiclassical gravity and Hawkings chronol-
ogy protection conjecture, suggest that vacuum fluctuations and stress-energy renormal-
ization may act as a backreaction mechanism that destabilizes CTCs before they can
fully form. A more detailed analysis of these constraints in the context of the trans-
formed Ricci flow equations could provide further insight into whether such structures
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persist under geometric evolution or are naturally suppressed by fundamental physical
principles.

4. Conclusion

In this work, we analyzed the properties of a rotating universe with a constant energy
density, focusing on its implications in the context of general relativity. Our findings
indicate that if a spacetime admits a global rotation field, it may allow for the existence
of closed timelike curves (CTCs). These curves, in principle, enable potential time travel,
leading to profound theoretical consequences.

The presence of CTCs raises fundamental questions about the internal consistency of
general relativity. Their existence challenges classical notions of causality and suggests
the necessity of deeper theoretical analysis, particularly regarding the viability of phys-
ical constraints such as energy conditions and quantum effects that may prevent their
formation. Future research should focus on investigating the stability of such solutions
and their compatibility with observational evidence.
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