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Abstract. The main purpose of this paper is to use the homotopy analytical method in
order to solve the linear space-fractional telegraph differential equation. Also, non-standard
finite difference method has been used to solve this equation numerically. Next, the concepts
of Lie symmetry is established and the symmetries of the equation are calculated. In this
article, Matlab software was used for simulation. Numerical results are presented to evaluate
the efficiency and usefulness of the proposed method.
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1. Introduction and preliminaries

One of the most important problems when dealing with a system of differential equa-
tions is finding a way to solve it. Both PDEs and ODEs are classified into two categories:
linear and non-linear equations and ordinary and partial equations. Each of these cate-
gories follows a specific method for solving.

There are several different methods for solving a given system of differential equations,
such as numerical methods, homotopy methods, repetition of changes etc. [8, 9, 12].
But symmetry method based on group analysis of differential equations is a powerful
method which gives general solutions of a given system. Having a symmetry group of
a system has many advantages. One of them is the classification of general solutions.
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When one is confronted with a complicated system of PDEs arising from some physically
important problem, the discovery of any explicit solutions whatsoever is of great interest.
Explicit solutions can be used as a models for physical experiments, as benchmarks for
testing numerical methods, etc., and often reflect the asymptotic or dominant behavior
of more general types of solutions. There are several methods for finding solutions of a
system of differential equations in both exact and approximate cases. The method of Lie
transformations (Lie symmetries or group theory of differential equations) is a strange
unlimited tool in order to find exact solutions for all kinds of systems containing both
ODEs or PDEs in linear or nonlinear form. Some differential operators called symmetries
are found for this purpose. These operators are the infinitesimal generators corresponding
to the largest group transformations acting on the independent and dependent variables
of the system with the property that they transform solutions of the system to other
solutions. So, if we have the group of symmetries together with an initial solution, the
wide range of solutions will be given by using this method. Symmetry method for solving
differential equations has powerful tools for this goal, specially when the purpose is based
on finding exact solutions of a given system. One of the most important application of
symmetry method is to reduce the systems of differential equations, i.e., finding equivalent
systems of differential equations of simpler form, that is called reduction process. This
method provides a systematic computational algorithm for determining a large classes
of special solutions. The solutions of the obtained equivalent system will correspond to
solutions of the original system. There is a lot of papers in the literature for this process
and one can find the classical reduction method in [1, 5, 6, 17].

The analytical homotopy method was first proposed by Liao. This method has been
successfully used to solve homogeneous and heterogeneous equations, scientific and en-
gineering problems. The analytical homotopy method has an auxiliary parameter that
shows a useful and simple method for adjusting and controlling the convergence region
and the convergence rate of the series solution. Analytical solutions to non-linear prob-
lems are also possible through analytical homotopy method [2–4, 16].

Fractional partial differential equations (FPDEs) are widely used to describe various
physical effects and many complex phenomena and the other various field such as electro-
chemistry, quantitative biology, engineering, mechanics and etc. Also the use of fractional
differentiation for the mathematical modeling of real world has been widespread at the
recent years. For example, the optical soliton perturbation with fractional temporal evo-
lution is one of the viable means to address a growing problem in telecommunication
industry, namely the Internet bottleneck. This problem leads to slow Internet traffic and
eventually blockage of the traffic. Several mechanisms have been proposed to address
this concern. One of them is to choose time-dependent coefficients of dispersion and non-
linearity. But, a better way is to consider fractional temporal evolution. Rezazadeh et.
al. have been solved the corresponding fractional equation in [19]. Also The magnetic
resonance imaging (MRI) is a routine example for the application of fractional deriva-
tive in biology. In this case the common feature observed in diffusion-weighted MRI of
the brain is anomalous diffusion. Fractional order models of diffusion capture this tissue
complexity by incorporating fractional order time and space derivatives in the govern-
ing Bloch-Torrey equation. The other example is to consider cells, bacteria, chemicals,
animals and so on as particles each of which usually moves around in a random way.

A popular and important method for finding numerical solutions of a system of dif-
ferential equations is based on the use of standard finite difference methods to construct
discrete models of PDEs [7]. Due to the fact that standard finite difference method gen-
erally do not transfer the qualitative characteristics of the exact solution to the numer-
ical solution, so to eliminate this shortcoming, the use of non-standard finite difference
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schemes can be useful. The basis of non-standard finite difference schemes is derived
from exact differential schemes for a normal differential equation or part of an integer
order. Non-standard finite difference schemes, in addition to the important properties of
numerical methods, i.e. consistency and stability, maintain positivity and finiteness of
numerical solutions. In fact, these methods have been developed as numerical methods for
numerical solution of a wide range of mathematical problem models, including algebraic,
differential and biological models [7, 11, 20]. A summary of the results of these projects
up to 1994 is given in Mickens [12]. After that, non-standard finite difference methods
is applied for solving ODEs and PDEs of fractional order numerically were increasingly
implemented in areas such as mechanical system, signal processing and control [13].

Over the past few decades, fractional calculations have gained considerable importance
and necessity in a wide range of applications in fields including engineering, chemistry,
finance, physics, and so on. Many scientists believe that incorrect order derivatives are
suitable for describing many phenomena in nature, and also provide useful tools for
describing the shelf life and hereditary properties of various processes and materials
[10, 14]. In fact, it has been proven that fractional order models are more suitable for
describing the actual behavior of the system than the correct order models that have
already been implemented. Given that obtaining the analytical solution of PDEs is a
fractional order in most cases will not be easy, so using appropriate numerical methods
can be used to study the qualitative behavior of fractional order systems.

In this paper, Lie symmetries, homotopy method and non-standard finite difference
method are considered for space-fractional telegraph equation:

∂αu

∂xα
=
∂2u

∂t2
+
∂u

∂t
+ u, 0 < α ≤ 2, (1)

in order to find exact and numerical solutions. For this purpose some basic definitions
for fractional derivatives are given in Sec. 2. The methodology of non-standard finite
difference method including homotopy method with some numerical examples are coming
in the third section. Finally, in the Sec. 4 symmetry operators are stablished.

2. Preparations and requirements

Some main concepts of fractional derivatives based on Grünwald-Letnikov derivative
are coming below.

2.1 Fractional Order Derivative

As mentioned earlier, fractional calculus is a generalized form of non-integer integral and
derivative of the operator aD

α
t , where a and t are operators’ bounds and α is a real

number. The operator of continuous derivative-integral is defined by

αD
α
t =


dα

dtα
α > 0,

1 α = 0,∫ t

a
(dτ)α α < 0.

(2)

Next, we introduce three concepts that are highly used in fractional order derivatives.
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2.1.1 Grünwald-Letnikov Fractional Derivative

The theory of fractional order derivative by Grünwald-Letnikov is analyzed as follows
[18].

Assume that f is a continuous function. The first order derivative of function f is
defined by

f ′ (t) =
df

dt
= lim

h→0

f (t)− f (t− h)

h
. (3)

The same formula can be used to achieve second order derivative of function f , which is

f ′′ (t) =
d2f

dt2

= lim
h→0

f ′ (t)− f ′ (t− h)

h

= lim
h→0

1

h

{
f (t)− f (t− h)

h
− f (t− h)− f (t− 2h)

h

}
= lim

h→0

f (t)− 2f (t− h) + f (t− 2h)

h2
.

(4)

Using equations (3) and (4), the third order derivative of function f is achieved by

f ′′′ (t) =
d3f

dt3
= lim

h→0

f (t)− 3f (t− h) + 3f (t− 2h)− f (t− 3h)

h3
.

And finally, the n-th order (n∈N) derivative of function f through induction is achieved
by

f (n) (t) =
dnf

dtn
= lim

h→0

1

hn

n∑
r=0

(−1)r
(
n
r

)
f (t− rh) , (5)

where binomial coefficients are given as follows for constant values of n:(
n
r

)
=

n!

r! (n− r)!
=
n (n− 1) (n− 2) . . . (n− r + 1)

r!
,

and binomial coefficients for negative values of n are defined as(
−n
r

)
=

−n (−n− 1) . . . (−n− r + 1)

r!
.

Taking equations (3) to (5) into consideration, the derivative of real fractional order α
with respect to t can be written by

f (α) (t) = lim
h→0

1

hα

n∑
r=0

(−1)r
(
α
r

)
f (t− rh) .
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Definition 2.1 Grünwald-Letnikov fractional derivative of fractional order α of function
f is given by

GL
α Dα

t f (t) = lim
h→0

h−α
n∑

r=0

(−1)r
(
α
r

)
f (t− rh) , (6)

where

n =

[
t− a

h

]
,

(
α
r

)
=

Γ (α+ 1)

Γ (α+ 1)Γ (α− r + 1)
,

(
α
0

)
= 1,

and
[
t−a
h

]
depicts integer part of t−a

h . Here, t and a are the bounds of GL
α Dα

t f (t). By

replacing ω
(α)
r =(−1)r

(
α
r

)
, Grünwald-Letnikov fractional derivative can be rewritten as

GL
a Dα

t f (t) = lim
h→0

h−α

[ t−a

h ]∑
r=0

ω(α)
r f (t− rh) .

For r ∈ N∪{0}, ω(α)
r are known as Grünwald-Letnikov coefficients. Using the following

equation, these coefficients can be acquired recessively:

ω(α)
r =

(
1− 1 + α

r

)
ω
(α)
r−1, r = 1, 2, . . .

where ω
(α)
0 = h−α.

3. Methodology

The method of fininte difference scheme and homotopy will be provided in the sequel.

3.1 Non-standard finite difference scheme

Due to characteristics such as the simplicity of constructing and developing non-standard
finite difference schemes, these schemes are employed to numerically solve various dif-
ferential equations generated in relation to engineering and natural science. Historically,
for each ODE with the initial condition that it has a singular solution, Mickens proved
that there is an exact difference equation with zero local truncation error [7]. Neverthe-
less, the exact general solution to the differential equation is needed to construct the
exact difference equation. Assuming that structure of standard finite difference schemes
to solve differential equations may cause non-suitable behavior for the solutions (e.g.,
numerical instability and disheveled behavior). Mickens presented the following rules for
constructing non-standard finite difference schemes:

• Non-linear terms in the differential equation should be replaced by discrete localized
approximates.

• To make the first order derivative in differential equation discrete, the current denom-
inator of the fraction, namely h, can be replaced by more complex negative functions.
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• The order of the discrete derivatives must be exactly equal to the order of the corre-
sponding derivatives of the differential equations.

• Special solutions of the differential equations should also be special solutions of the
non-standard finite difference scheme.

• The scheme should preserve the qualitative behavior of exact solutions to the problem.

To describe non-standard finite difference scheme, we assume the following differential
equation

dy

dt
=f (t, y, λ) , y (0)=y0, t∈ [0, tf ] , (7)

where λ is a parameter and Euler’s discretization method is one of the most straightfor-

ward techniques. In this method, the derivative term of dy
dt is replaced by

y (t+h)−y (t)
h

.

However, in the Mickens scheme, this term is replaced by y(t+h)−y(t)
ϕ(h,λ) . Next, the following

discretization will be assumed tk = kh, k = 0, 1, . . . , N.
The non-standard finite difference scheme is constructed by two steps. The derivative

in the left side of equation (1) is replaced by discretized form

dy

dt
≈ yk+1 − yk

ϕ (h, λ)
,

where yk is an approximate of y (tk).
The non-linear term in equation (7) is replaced by the representation of discrete local-

ized F (t, yk+1, yk, . . . ,λ) which is based on some of the previous representations.
Hence, the following scheme is achieved

yk+1 − yk
ϕ (h, y)

= F (t, yk+1, yk, . . . , λ) . (8)

Discretization of derivative in the left side of equation (8) is a generalized form of
discretization of classic first-order derivative where the continuous function of ϕ (h, y) is
assumed with the constant of λ and step length of h. This function should satisfy the
condition ϕ (h, y) = h + O

(
h2
)
, h → 0. This discretization of first-order derivative can

be generalized to

dy

dt
= lim

h→0

y (t+ ψ1 (h))− y (t)

ψ2 (h)
, (9)

where functions of ψ1 and ψ2 can satisfy the following condition as long as h→ 0

ψi (h) = h+O
(
h2
)
, i = 1, 2. (10)

The following example functions are also satisfying the above conditions:

h, sin (h) , eh−1,
eλh − 1

λ
,

1− eλh

λ
. (11)

By selecting each ψi (h), optimal results for first-order derivatives can be achieved. If the
function of h is placed in equation (8) instead of ψi (h), equation (8) is altered to the
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definition of the ordinary derivative. In other words, dy
dt = lim

h→0

y(t+h)−y(t)
h . This method

of constructing discretization of derivatives can be generalized to discretization for dif-
ferential equations with partial derivatives. For instance, the following discretization can
be considered for the first-order partial derivative

∂u (x, t)

∂t
=
uj+1
i − uji
ψ (τ)

,

∂u (x, t)

∂x
=
uji+1 − uji
ϕ (h)

,

(12)

where unm is the numerical solution in (xm, tn) assumed from the meshed grid of the
solution domain. Similarly, the following discretization can be considered for the second-
order partial derivative

∂2u (x, t)

∂t2
=
uj+1
i − 2uji + uj−1

i

(ψ (τ))2
,

∂2u (x, t)

∂x2
=
uji+1 − 2uji + uji−1

(ϕ (h))2
,

(13)

where

τ =
T

N
, tj = jτ, j = 0, 1, . . . , N

h =
X

M
, xi = ih, i = 0, 1, . . . ,M,

and function of ψ and ϕ should satisfy the following conditions:

ψ (τ) = τ +O
(
τ2
)
, ϕ (h) = h+O

(
h2
)
, τ → 0, h→ 0. (14)

In this section, linear PDEs with local and spatial fractional derivatives are solved
with the aid of a non-standard finite difference scheme. Assume that ∆x and ∆t are the
representations of local and spatial steps. Hence,

∆x = ∆t = h, xi = i∆x, tj = j∆t, i = 0, . . . ,M, j = 0, . . . , N,

and the functions of ϕ3 (h) , ϕ2 (h) and ϕ1 (h) in the denominator are chosen in the fol-
lowing form

ϕ1 (h) = 2
(
eh − 1

)
, ϕ2 (h) = 4sin2

(
h

2

)
, ϕ3 (h) = 2sin (h) , (15)

where they satisfy the following conditions:

ϕ1 (h) = 2h+O
(
h2
)
, ϕ2 (h) = h2 +O

(
h4
)
, ϕ3 (h) = 2h+ o

(
h2
)
, h→ 0.
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3.1.1 Numerical solution of space-fractional telegraphs equation

Consider the equation (1) with respect to the following initial and boundary conditions:

u (x, 0) = ex,
∂u (x, 0)

∂t
= −ex, 0 < x < 1, u (0, t) = e−t, u (1, t) = e1−t , t ≥ 0.

(16)

The exact solution of (16) is given as follows [15]:

u (x, t) = ex−t for α = 1.

After discretization, (16) is rewritten by

j∑
k=0

ω
(α)
k uj−k

i =
uj+1
i − 2uji + uj−1

i

ϕ2 (h)
+
uj+1
i − uj−1

i

ϕ1 (h)
+ 2(

uji+1 − uji−1

2
)− uj+1

i .

Hence,

uji+1 =

(
−β1 −

(
2ϕ1ω

(α)
0 + ϕ1ϕ2)ω

(α)
0

)
uji + ϕ1ϕ2(u

j
i+1 + uji+1

)
− (ϕ2 − ϕ1)u

j−1
i )

ϕ1ϕ2 − (ϕ1 + ϕ2)
,

where

β2 = ϕ1ϕ2

(
j∑

k=1

ω
(α)
k uji−k

)
, ω

(α)
0 =

(
ϕ1 (h)

2

)−α

. (17)

Now, the numerical solutions of the non-standard finite difference scheme are presented,
and we can compare the exact solutions.

Figure 1. The comparison between numerical and exact solutions, with respect to t=0.02 and α=1.
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Figure 2. The comparison between numerical and exact solutions, with respect to t=0.5 and α=1.

Figure 3. The comparison between numerical and exact solutions, with respect to x=0.1 and α=1.

Figure 4. The comparison between numerical and exact solutions, with respect to t=0.5 and α=1.
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3.2 Homotopy method

Suppose f and g are continuous function of x into y and a function like F : X×{1} →
Y is existed so that

F (x, 0) = f(x)

F (x, 1) = g(x).
(18)

Then f is a homotopy to g. For example we can consider the following homotopy

F (x, q) = qg (x) + (1− q) f (x) , (19)

when q = 0 then F (x, 0) = f(x) and when q = 1 then F (x, 1) = g(x). Hence change in
parameter q from 0 to 1 makes a change in F (x, q) from f(x) to g(x).

3.2.1 Explanation of homotopy analysis method

In 1992 professor S.J. Liao from China for the first time introduced homotopy analysis
method (HAM) as an analytical method for solving linear and non-linear problems [3].
This method has effective application in linear and non-linear problems. Now we explain
the method.

3.2.2 Metamorphosis zero order equation

In most cases a non-linear problem is described by a set of equations, early and bound-
ary conditions. Here, for brevity, we consider a non-linear equation in the form of [16],

N [u(r, t)] = 0. (20)

So that N is a non-linear function, u(r, t) is an unknown function, t, r are accordingly
dependent variable to place and time, u(r, t) is the primary guess of precise solution,
h ̸= 0, u(r, t) is auxiliary parameter, H(r, t) ̸= 0 auxiliary function and L is auxiliary
linear operator written by the characteristics L[f(r, t)] = 0. Then

f(r, t) = 0. (21)

By using embedded parameter q ∈ [0, 1] we created a homotopy as follow:

H [ϕ (r, t; q) , U0 (r, t) , h, q] = (1− q)L [ϕ (r, t; q)− U0 (r, t)]− qhH (r, t)N [ϕ (r, t; q)].
(22)

It should be noted that having h as auxiliary parameter and auxiliary function H(r, t)
are very important in above homotopy. The auxiliary parameter h and the auxiliary
function H(r, t) play a very important role inside of HAM format.

We have to emphasize that we have a big degree of freedom in deciding about initial
approximation of u(r, t), L, h and H(r, t). By having the above equation equal to zero,
we will have metamorphosis zero order equation

(1−q)L [ϕ (r, t;q)−u. (r, t)]−qhH (r, t)N [(r, t;q) ] = 0. (23)

So that ϕ (r, t; q) is the solution not only depends on u0 (r, t) , L, h and H(r, t) but also
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depends on q ∈ [0, 1]. When q = 0, (23) turns to

L [ϕ (r, t;0)−u0 (r, t)]= 0. (24)

By using the characteristics of operator L we conclude

ϕ (r, t;0)=u.(r, t). (25)

In fact is same primary function (20), provided that

N [ϕ (r, t;1)]=u (r, t) , ϕ (r, t;1)=u(r, t). (26)

In this case according to (26) when q increases from 0 to 1, ϕ (r, t; q) from u (r, t) to
precise solution u (r, t) is changing. Now, we define derivative of metamorphosis of order
m as

u[m] (r, t)=
∂mϕ(r, t;q)

∂qm
|q= 0. (27)

By Taylor proposition, we can expand ϕ(r, t; q) in a power of q as the following identity

ϕ (r, t;q)=ϕ (r, t;0)+

∞∑
m−1

u[m] (r, t)

m!
qm. (28)

By considering

u[m] (r, t)=
u[m] (r, t)

m!
=

1

m!

∂mϕ(r, t;q)

∂qm
|q= 0, (29)

the power series (28) converts to

ϕ (r, t;q)=u. (r, t)+

∞∑
m−1

um(r, t)qm. (30)

Considering the vast degrees of freedom that we have in choosing u0(r, t), L, h andH(r, t),
we assume that all of them have been chosen rightfully, which

(1) The solution of ϕ (r, t; q) from metamorphosis zero order equation (23) for each
q ∈ [0, 1] is existed.

(2) Metamorphosis derivative u[m] (r, t) for each m = 0, 1, . . ., ∞ is existed.
(3) Power series (28) in q = 1 is convergent.

Then from (26) and (28) and by having these assumptions we have the solutions to u (r, t)
per q = 1 as follows

u (r, t)=u0 (r, t)+

∞∑
m=1

um(r, t). (31)
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3.2.3 High order metamorphosis equation

Consider the vector

−→un = {u(r, t), u1(r, t), . . . , un(r, t)}. (32)

By considering equations (23) and (22), we derive m times relative to q and divide the
solution to m!, then we will have m order metamorphosis equation such as

L[um (r, t)−χmum−1(r, t)] = hH(r, t)Rm
−−−→um−1, (33)

so that

Rm
−−−→um−1 =

1

(m−1!)

∂m−1Nϕ(r, t;q)

∂qm
|q= 0, (34)

where

χm=

{
0 m≤1,
1 m> 1.

(35)

By inserting (28) to (32) we conclude

Rm
−−−→um−1 =

1

(m−1)!

{
∂m−1

∂qm
N

[ ∞∑
m−1

un(r, t)q
m

]}
|q= 0. (36)

It should be noted that high order metamorphosis equation of (33) is under the effect
of operator L and Rm

−−−→um−1 can easily be just dependent on −−−→um−1. Therefore we solve
accordingly u1 (r, t) u2 (r, t) , . . . by the solution of (31). We can get m order approxi-
mation from u(r, t) through the following equation

u (r, t)=

∞∑
m−1

uk(r, t). (37)

Now we can create a more general zero order metamorphosis equation from (23).
Let us assume A(q) and B(q) are analytical complex functions in |q|≤1 area, called

the embedded functions which satisfy

A (0)=B (0)= 0 , A (1)=B (1)= 1. (38)

Maclaurin series for A(q) and B(q) are

A (q)=

∞∑
k=1

akq
k B (q)=

∞∑
k=1

bkq
k. (39)

Because A(q) and B(q) are analytical in |q|≤1 area, we conclude from (38)

∞∑
k=1

ak= 1 ,

∞∑
k=1

bk= 1. (40)



S. Mohammadi and S. R. Hejazi / J. Linear. Topological. Algebra. 13(03) (2024) 197-216. 209

Now we create a more general zero order metamorphosis equation as follows

[(1−B(q)] {L [ϕ (r, t;q)−u. (r, t)]}=A(q)hH (r, t)N [ϕ (r, t;q) ], (41)

and the general form of high order metamorphosis equation is

L[Um (r, t)−
m−1∑
k−1

bkUm−k(r, t)]= hH (r, t) km
−−−→um−1 (r, t) , (42)

so that

km
−−−→um−1 (r, t)=

m∑
k−1

akδm−k(r, t), (43)

where

δn (r, t)=
1

n!

∂nN [ϕ(r, t, q)

∂qn
|q= 0. (44)

We can clearly see that zero order metamorphosis equation (32) and high order metamor-
phosis equation (33) accordingly are special kind of (41) and (42) when B(q) = A(q) = q.

3.2.4 Convergence of the method

In general condition we can prove that the series solution of (31) which is derived
through analytical homotopy method is convergent only when it’s a solution for a non-
linear problem.

Theorem 3.1 Convergence TheoremSeries u (r, t) +
∑∞

m=1 um(r, t) is convergence iff it
is a solution of (20).

Proof. Ssee (21) for proof. ■

3.3 Solution of space-fractional telegraphs equation by homotopy
method

Consider the equation (10) with the following initial and boundary conditions:

u (x, 0) = 1 + x, 0 < x < 1,
∂u (0, t)

∂x
= −e−t, u (0, t) = e−t, t > 0. (45)

The u0 (x, t) is selected as follows [15]:

u0 (x, t) = e−t (1 + x) . (46)

Consider the following linear operators

L
[
ϕ (x, t; p) = D0

∗x[ϕ (x, y; p)
]
, (47)
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and

N [ϕ (x, y, t; p) = Dα
∗x[ϕ (x, t; p)]−

∂2

∂t2
[ϕ (x, t; p)]− ∂

∂t
[ϕ (x, t; p)]− ϕ (x, t; p) . (48)

Let construct a zero-order metamorphic equation

(1− p)L [ϕ (x, t; p)− u. (x, t)] = hN [ϕ (x, t; p) . (49)

When p = 1, p = 0 we have

ϕ (x, t; 0) = u0 (x, t) , ϕ (x, t; 1) = u (x, t) . (50)

The m-order metamorphic equation is as follows

L[L[um (x, t)− χmum−1(x, t)] = hRm(um−1, x, t), (51)

where

χm =

{
0 m ≤ 1,
1 m > 1.

and

Rm(um−1, x, t) = Dα
∗xum−1 (x, t)−

∂2um−1 (x, t)

∂t2
− ∂um−1 (x, t)

∂t
− um−1 (x, t) . (52)

By using Iα on both sides (51) and replacing (47) and (52) we have

um−1 (x, t) = (χm + h)um−1(x, t)− (χm + h)um−1(0, t)

− (χm + h)
∂um−1 (0, t)

∂x
x− hIα

[
∂2um−1

∂t2
− ∂um−1

∂t
+ um−1

]
.

(53)

Finally

u (x, t) = u0 (x, t) +

∞∑
m=1

um(x, t), (54)
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and

u0 (x, t) = e−t (1 + x) ,

u1 (x, t) = −he−t[
xα

Γ(α+ 1)
+

xα+1

Γ(α+ 2)
],

u2 (x, t) = (1 + h)u1 (x, t)− he−t

[
x2α

Γ(2α+ 1)
+

x2α+1

Γ(2α+ 2)

]
,

...

u (x, t) =

[
e−t

(
1 + x−

(
3x+ 3x2 + x3

)( xα

Γ (α+ 1)
+

xα+1

Γ (α+ 2)

−
(
2x+ x2

)( x2α

Γ (2α+ 1)
+

x2α+1

Γ (2α+ 2)

))
− x

(
x3α

Γ (3α+ 2)
+

x3α+1

Γ (3α+ 2)

)]
+ · · · .

(55)

By insering h = 1 in (55) we have

u (x, t) = e−t

(
1 + x+

xα

Γ (α+ 1)
+

xα+1

Γ (α+ 2)
+

x2α

Γ (2α+ 1)
+

x2α+1

Γ (2α+ 2)
+ . . .

)
.

(56)

Similarly by inserting α = 2 in (56) we have

u (x, t) = e−t

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . .

)
= ex−t. (57)

The solution obtained for α = 2 in (57) is an exact solution for the space-fractional
telegraph equation. Figures 5 to 8 demonstrate the solutions of equation (1) can be seen
for different states.

Figure 5. The exact solution for α=2 , t=1, x=0.5.
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Figure 6. The exact solution for α=2 , t=0.5, x=1.

Figure 7. The exact solution for α=2 , t=0.25, x=1.

Figure 8. The exact solution for α=2 , t=1, x=0.25.
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4. Lie symmetry operators

Consider the following FDE

∂αt u = F (t, x, y, u, ux, uxx, uxxx, . . . ) , ∆ = ∂αt u− F, (58)

where x and t are independent variables and u is a dependent variable, ux, uxx, uxxx, . . .
are partial derivatives with respect to x and ∂αt is the symbol of fractional derivative
with respect to time.

Suppose G is a local group of transformations applied on O and v is an extremely small
generator of it, where O is an open subset of the total space of (58) and v is a vector
field on O with a one-parameter group of exp (εv) . The extent of (α, n)-order is shown
as v(α,n), which is a vector field on (α, n)-order jet space, and it is called an extremely

small generator of the one-parameter group of [exp (εv) ](α,n). Meaning that

v(α,n)
∣∣∣
(x,u(n)

=
d

dε

∣∣∣∣
ε=0

[exp (εv) ](α,n)
(
x, u(n)

)
. (59)

Considering the above-mentioned concepts, Lie’s one-parameter group of G is parameter
ε of extremely small transformations given by

t = φ (t, x, u, ε) , x = ψ (t, x, u, ε) , u = π (t, x, u, ε) . (60)

According to the theory of Lie Group, constructing a asymmetry group of G yields,

t = t+ ετ (t, x, u) +O
(
ε2
)
,

x = x+ εξ (t, x, u) +O
(
ε2
)
,

u = u+ εη (t, x, u) +O
(
ε2
)
,

uαt = uαt + εηα,t (t, x, u) +O
(
ε2
)
,

ux = ux + εηx (t, x, u) +O
(
ε2
)
,

uxx = uxx + εηxx (t, x, u) +O
(
ε2
)
,

uxxx = uxxx + εηxxx (t, x, u) +O
(
ε2
)
.

(61)

Lie algebra, which depends on the group (61), is generated by the vector field

v = τ (t, x, u)
∂

∂t
+ ξ (t, x, u)

∂

∂x
+ η (t, x, u)

∂

∂u
, (62)

and its components are calculated by

dt

dε

∣∣∣∣
ε=0

= τ (t, x, u) ,
dx

dε

∣∣∣∣
ε=0

= ξ (t, x, u) ,
du

dε

∣∣∣∣
ε=0

= ζ (t, x, u) . (63)

According to the invariance criterion, the transformation group of (62) will be approved
by equation (61) as the asymmetry group; if and only if the effect of the extended
generator (which is the order of highest order extension of derivative in the equation)
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becomes zero on the manifold of its solutions. In other words,

v(α,n) (∆)
∣∣∣
∆=0

= 0, α ∈ (0, 1) . (64)

The extent of (α, n)-order of field vector v equals to

v(α,n) = v + ηα,t∂∂α
t u + ηx∂ux

+ ηxx∂uxx
+ ηxxx∂uxxx

+ ηxxxx∂uxxxx
+ . . . , (65)

and the extent coefficients of ηx, ηxx, ηxxx, and . . . are calculated by

ηx = Dx (η)− utDx (τ)− utDx (ξ) ,

ηxx = Dx (η
x)− utxDx (τ)− uxxDx (ξ) ,

ηxxx = Dx (η
xx)− utxxDx (τ)− uxxxDx (ξ) ,

ηxxxx = Dx (η
xxx)− utxxxDx (τ)− uxxxxDx (ξ) .

(66)

Symbols of Dt and Dx are the representation of total derivatives with respect to t, x and
they are presented as

Dt = ∂t + ut∂u + utt∂ut + uxt∂uz + · · · ,

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · .
(67)

The coefficient of ηα,t in operator (43) is calculated using the following system

Dα,t = Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (Dt (τ)u)−Dα+1
t (τu) + τDα+1

t (u) .

The generalized Leibniz formula is given by

Dα
t (f (t) g (t)) =

∞∑
n=0

(α
n

)
Dn

t f (t)D
α−n
t g (t), (68)

where(α
n

)
=

Γ (α+ 1)

Γ (n+ 1)Γ (α+ 1− n)
, D0

t f (t) = f (t) , Dn+1
t f (t) = Dt (D

n
t f (t)) .

Thus we conclude that

ξDα
t (ux)−Dα

t (ξux) = −
∞∑
n=1

(α
n

)
Dn

t (ξ)D
α−n
t (ux),

and

Dα
t (uDt (τ))−Dα+1

t (τu) + τDα+1
t (u) = −αDt (τ)D

α
t u−

∑
n=1

(
α

n+ 1

)
Dn+1

t (τ)Dα−n
t (u).
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Hence,

ηα,t = Dα
t (η)− αDt (τ)D

α
t u−

∞∑
n=1

(α
n

)
Dn

t (ξ)D
α−n
t (ux)

−
∞∑
n=1

(
α

n+ 1

)
Dn+1

t (τ)Dα−n
t (u) . (69)

The generalized chain rule for the composite function is

dαf (g (t))

dtα
=

∞∑
n=0

Un

n!

dnf (z)

dzn

∣∣∣∣
z=g(t)

, (70)

where Un is defined by

Un =

m∑
k=0

(−1)k
(n
k

)
gk (t) ∂αt

(
gn−k (t)

)
.

After executing the calculations, we acquire the following explicit term for fractional
differential operator

Dα
t = ∂αt η + ηu∂

α
t u− u∂αt ηu +

∞∑
n=1

(α
n

)
∂nt ηu∂

α−n
t u+ µ, (71)

and the following equation is utilized to calculate µ in the above formula:

µ =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
l=0

(α
n

)( n
m

)(k
l

)
tn−α

k!Γ (n+ 1− α)
(−u)l ∂

m

∂tm

(
uk−l

) ∂n−m+k

∂tn−m∂uk
. (72)

It is worth noting that if η is linear with respect to the dependent variable of u, the
value of µ will be zero and this is due to the existence of derivative ∂k

∂uk , k≥2 in µ
equation. Ultimately, the following explicit formula for ηα,t is acquired by epitomizing
the mentioned reasonings:

ηα,t =

∞∑
n=1

[(α
n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1

t (τ)

]
∂α−n
t u−

∞∑
n=1

(α
n

)
Dn

t (ξ) ∂
α−n
t (ux)

+ ∂αt η + (ηu − αDt (τ)) ∂
α
t u− u∂αt ηu + µ.

(73)

To determine which symmetries are approved by equations (61), the differential operator
of v(α,n) is applied to equation (61) and then categorized the equations according to their
dependent variables and their derivatives; next, we place their coefficients equal to zero.
As a result, we achieved a group of characteristic equations, namely PDEs and FDEs.
We will acquire equation symmetries under discussion by solving these characteristic
equations.

Consider (1). In this section, we intend to find symmetries in this fractional equation
with the presented method. Using equation (65), by inserting terms of η(α,t), ηxx, and ηx

achieved in equations (67) and (68), we conclude that the above equation depends on
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Dα−n
t u, Dα−n

t ux, and ux, uxx, uxt, ut, . . .(n = 1, 2, . . .). We will achieve an over deter-
mined system of fractional and space-fractional equations by placing various powers of u
derivatives. By solving this system, the functions of ξx, ξt, and η are achieved as follows:

ξx = F1 (x) , ξt = F2 (x) , η = F3 (x, t) + u F4 (x) . (74)

5. Conclusion

In this paper, the basic ideas of a new kind of analytical technique, namely the ho-
motopy analysis method is implemented. The non-standard finite difference method was
then used to numerically solve several practical examples for PDEs with spatial fractional
derivatives, and the numerical results of these approximate methods were compared with
the exact solution of the problem. The analytical homotopy method shows a useful and
simple method for adjusting and controlling the convergence region and the convergence
velocity of the series solution. Homotopy analysis is also an efficient and useful method
for solving FDEs. Finally, an attempt has been made to solve the equation considered
in this paper with an algebraic view of the concept of Lie symmetry and the methods
derived from it.
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