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Abstract. This paper intends to establish several inequalities employing the Cartesian de-
composition of the operator. We used the results to determine the Berezin number inequali-
ties. Our results extend and improve some earlier inequalities.
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1. Introduction

In a complex Hilbert space H with the inner product 〈·, ·〉, we denote the C∗-algebra of
all bounded linear operators on H as B(H ). In the case when dimH = n, we identify
B (H ) with the matrix algebra Mn of all n × n matrices with entries in the complex
field C. For any T ∈ B (H ), we can write T = A + iB in which A = <T = T+T ∗

2 and

B = =T = T−T ∗

2i are self-adjoint operators. This is the so-called Cartesian decomposition
of T . For any T ∈ B(H ), we can determine its numerical radius and the operator norm,
respectively illustrated by ω(T ) = sup∥x∥=1 |〈Tx, x〉| and ‖T‖ = sup∥x∥=1 ‖Tx‖. Two
meaningful inequalities for the usual operator norm and numerical radius are that

‖Tn‖ ≤ ‖T‖n and ω (Tn) ≤ ωn (T ) ; n = 1, 2, . . . .

If T is normal, indicating T ∗T = TT ∗, it is widely known that ω(T ) = ‖T‖. However, this
equality fails for non-normal operators. Instead, we can establish the following inequality
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for any T ∈ B(H ):

1

2
‖T‖ ⩽ ω(T ) ⩽ ‖T‖. (1)

This inequality is essential because it approximates the numerical radius ω(T ) in terms
of the more computationally manageable quantity ‖T‖.

As a result, researchers have been concentrating on sharpening this and other inequal-
ities for the numerical radius, as found in [1, 14, 16–18, 21, 23]. Below, we list some
results concerning the inequality (1).

Kittaneh [20, Theorem 1] proposed an improvement of (1) in the following manner:

1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥ ≤ ω2 (T ) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥ .

In [18, Corollary 3.4], the previouse inequality was improved as follows:

ω (T ) ≤ 1

2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+ 2ω (|T | |T ∗|). (2)

After that, in [22, Corollary 2.8], inequality (2) was refined:

ω (T ) ≤ 1

2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+ ‖ |T | |T ∗|+ |T ∗| |T | ‖. (3)

Inequality (3) can be written in the following setup:

ω (T ) ≤ 1

2

√∥∥∥|T |2 + |T ∗|2
∥∥∥+ 2 ‖< (|T | |T ∗|)‖.

Here, we point out that inequalities (2) and (3) have been established and generalized
individually in [7] and [8].

A functional Hilbert space H = H(Ω) is a Hilbert space of complex-valued functions
on a (nonempty) set Ω, which has the property that point evaluations are continuous,
i.e., for each λ ∈ Ω the map f 7→ f(λ) is a continuous linear functional on H. The Riesz
representation theorem ensure that for each λ ∈ Ω there is a unique element kλ ∈ H such
that f(λ) = 〈f, kλ〉 for all f ∈ H. The collection {kλ : λ ∈ Ω} is called the reproducing
kernel of H. If {en} is an orthonormal basis for a functional Hilbert space H, then the

reproducing kernel of H is given by kλ(z) =
∑

n en(λ)en(z); (see [15, problem 37]). For

λ ∈ Ω, let k̂λ = kλ

∥kλ∥ be the normalized reproducing kernel of H. For a bounded linear

operator T on H, the function T̃ defined on Ω by T̃ (λ) = 〈T k̂λ, k̂λ〉 is the Berezin symbol
of T , which firstly have been presented by Berezin [4, 5]. Berezin set and Berezin number
of the operator, T , are determined by

Ber(T ) := {T̃ (λ) : λ ∈ Ω} and ber(T ) := sup{|T̃ (λ)| : λ ∈ Ω},

respectively, (see [19]). Of course, the Berezin norm of T can also be defined as follows:

‖T‖ber = sup
{∣∣∣〈T k̂λ, k̂µ〉∣∣∣ : λ, µ ∈ Ω

}
.
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We understand that ber(T ) ≤ ω(T ). Moreover, the Berezin number and the Berezing
norm of an operator T fulfills the following properties:

(P1) ‖αT‖ber = |α| ‖T‖ber and ber(αT ) = |α|ber(T ) for all α ∈ C.
(P2) ber(S + T ) ⩽ ber(S) + ber(T ).
(P3) ‖S + T‖ber ≤ ‖S‖ber + ‖T‖ber.
(P4) ‖T‖ber = ‖T ∗‖ber and ber (T ) = ber (T ∗).
(P5) [9, Proposition 2.11] ‖T‖ber = ber (T ), whenever T is positive.

The Berezin symbol has been thoroughly examined for the Toeplitz and Hankel op-
erators on the Hardy and Bergman spaces; it is broadly utilized in various analytical
inquiries and exclusively characterizes the operator (i.e., for all λ ∈ Ω, T̃ (λ) = S̃(λ)
implies T = S).

The Berezin number inequalities have been investigated by many mathematicians over
the years, the curious readers can see [2, 3, 9].

This paper desires to show considerable inequalities for inner products through the
operator’s Cartesian decomposition. The results are then used to determine the inequal-
ities in the Berezin number. Furthermore, our research improves and generalizes earlier
established inequalities.

In order to achieve these purposes, we will need the following facts:

(I) (Mixed Schwarz inequality [15, pp. 75–76]) For any T ∈ B(H ) and x, y ∈ H ,

|〈Tx, y〉|2 ≤
〈
|T |2νx, x

〉〈
|T ∗|2(1−ν)y, y

〉
; (ν ∈ [0, 1]) . (4)

(II) [12, (2.26)] For any x, y, z ∈ H ,

|〈z, x〉|2 + |〈z, y〉|2 ≤ ‖z‖2max
(
‖x‖2, ‖y‖2

)
+ |〈x, y〉| . (5)

(III) (Buzano inequality [10]) For any x, y, z ∈ H ,

|〈z, x〉| |〈z, y〉| ≤ ‖z‖2

2
(|〈x, y〉|+ ‖x‖ ‖y‖) . (6)

(IV) (Arithmetic-geometric mean inequality for the usual operator norm [6]) For any S, T ∈
B(H ),

‖ST‖ ≤ 1

2

∥∥∥|S|2 + |T ∗|2
∥∥∥ . (7)

2. Inner Product Inequalities

The following theorem suggests an upper bound for
∣∣∣〈T k̂λ, k̂µ〉∣∣∣ using polar decompo-

sition.

Theorem 2.1 Let S, T ∈ B (H ). Then

∣∣∣〈(S + iT ) k̂λ, k̂µ

〉∣∣∣2 ≤ max

(∥∥∥S∗k̂µ

∥∥∥2,∥∥∥T ∗k̂µ

∥∥∥2)+∣∣∣〈TS∗k̂µ, k̂µ

〉∣∣∣+2
∣∣∣〈Sk̂λ, k̂µ〉∣∣∣ ∣∣∣〈T k̂λ, k̂µ〉∣∣∣ ,
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for any vectors k̂λ, k̂µ ∈ H with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1. If T ∈ B (H ) with the Cartesian

decomposition T = A+ iB, then

∣∣∣〈T k̂λ, k̂µ〉∣∣∣2 ≤ max

(∥∥∥Ak̂µ

∥∥∥2,∥∥∥Bk̂µ

∥∥∥2)+
∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣+ 2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣ .
(8)

Proof. Letting x = S∗k̂µ, y = T ∗k̂µ and z = k̂λ with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1, in (5), we obtain

∣∣∣〈Sk̂λ, k̂µ〉∣∣∣2 + ∣∣∣〈T k̂λ, k̂µ〉∣∣∣2 = ∣∣∣〈k̂λ, S∗k̂µ

〉∣∣∣2 + ∣∣∣〈k̂λ, T ∗k̂µ

〉∣∣∣2
≤ max

(∥∥∥S∗k̂µ

∥∥∥2,∥∥∥T ∗k̂µ

∥∥∥2)+
∣∣∣〈S∗k̂µ, T

∗k̂µ

〉∣∣∣ .
Hence,

∣∣∣〈(S + T ) k̂λ, k̂µ

〉∣∣∣2
=

∣∣∣〈Sk̂λ, k̂µ〉+
〈
T k̂λ, k̂µ

〉∣∣∣2
≤

(∣∣∣〈Sk̂λ, k̂µ〉∣∣∣+ ∣∣∣〈T k̂λ, k̂µ〉∣∣∣)2
(by the triangle inequality)

=
∣∣∣〈Sk̂λ, k̂µ〉∣∣∣2 + ∣∣∣〈T k̂λ, k̂µ〉∣∣∣2 + 2

∣∣∣〈Sk̂λ, k̂µ〉∣∣∣ ∣∣∣〈T k̂λ, k̂µ〉∣∣∣
≤ max

(∥∥∥S∗k̂µ

∥∥∥2,∥∥∥T ∗k̂µ

∥∥∥2)+
∣∣∣〈TS∗k̂µ, k̂µ

〉∣∣∣+ 2
∣∣∣〈Sk̂λ, k̂µ〉∣∣∣ ∣∣∣〈T k̂λ, k̂µ〉∣∣∣ ,

i.e.,

∣∣∣〈(S + T ) k̂λ, k̂µ

〉∣∣∣2 ≤ max

(∥∥∥S∗k̂µ

∥∥∥2,∥∥∥T ∗k̂µ

∥∥∥2)+∣∣∣〈TS∗k̂µ, k̂µ

〉∣∣∣+2
∣∣∣〈Sk̂λ, k̂µ〉∣∣∣ ∣∣∣〈T k̂λ, k̂µ〉∣∣∣ .

(9)
We reach the desired inequality by substituting T by iT in the inequality (9). ■

Inequality (8) can be stated in the following arrangement:

Corollary 2.2 Let T ∈ B (H ) with the Cartesian decomposition T = A+ iB. Then

∣∣∣〈T k̂λ, k̂µ

〉∣∣∣2 ≤
1

2

(〈(
|A|2 + |B|2

)
k̂µ, k̂µ

〉
+

∣∣∣〈(|A|2 − |B|2
)
k̂µ, k̂µ

〉∣∣∣)+
∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣+2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣ ,

for any vectors k̂λ, k̂µ ∈ H with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1.
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Proof. We have

∣∣∣〈T k̂λ, k̂µ

〉∣∣∣2
≤ max

(∥∥∥Ak̂µ

∥∥∥2
,
∥∥∥Bk̂µ

∥∥∥2
)

+
∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣ + 2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣
=

1

2

(∥∥∥Ak̂µ

∥∥∥2
+

∥∥∥Bk̂µ

∥∥∥2
+

∣∣∣∣∥∥∥Ak̂µ

∥∥∥2
−

∥∥∥Bk̂µ

∥∥∥2
∣∣∣∣) +

∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣ + 2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣
=

1

2

(〈
|A|2k̂µ, k̂µ

〉
+

〈
|B|2k̂µ, k̂µ

〉
+

∣∣∣〈|A|2k̂µ, k̂µ

〉
−

〈
|B|2k̂µ, k̂µ

〉∣∣∣) +
∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣ + 2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣
=

1

2

(〈(
|A|2 + |B|2

)
k̂µ, k̂µ

〉
+

∣∣∣〈(|A|2 − |B|2
)
k̂µ, k̂µ

〉∣∣∣) +
∣∣∣〈BAk̂µ, k̂µ

〉∣∣∣ + 2
∣∣∣〈Ak̂λ, k̂µ

〉∣∣∣ ∣∣∣〈Bk̂λ, k̂µ

〉∣∣∣ ,
as desired. ■

The next theorem delivers an upper bound for the product of two operators.

Theorem 2.3 Let A,B ∈ B(H ). Then

∣∣∣〈B∗Ak̂λ, k̂λ

〉∣∣∣2 ≤ 1

2

(
max

(∥∥∥|A|2k̂λ∥∥∥2 ,∥∥∥|B|2k̂λ
∥∥∥2)+

∣∣∣〈|B|2|A|2k̂λ, k̂λ
〉∣∣∣) ,

for any vector k̂λ ∈ H with
∥∥∥k̂λ∥∥∥ = 1.

Proof. Taking x = |A|2k̂λ, y = |B|2k̂λ, and z = k̂λ, in (5), we have

∣∣∣〈k̂λ, |A|2k̂λ
〉∣∣∣2 + ∣∣∣〈k̂λ, |B|2k̂λ

〉∣∣∣2 ≤ max

(∥∥∥|A|2k̂λ
∥∥∥2 ,∥∥∥|B|2k̂λ

∥∥∥2)+
∣∣∣〈|A|2k̂λ, |B|2k̂λ

〉∣∣∣ .
(10)

So,

2
∣∣∣〈B∗Ak̂λ, k̂λ

〉∣∣∣2 = 2
∣∣∣〈Ak̂λ, Bk̂λ

〉∣∣∣2
≤ 2

∥∥∥Ak̂λ

∥∥∥2∥∥∥Bk̂λ

∥∥∥2 (by the Cauchy-Schwarz inequality)

= 2
〈
Ak̂λ, Ak̂λ

〉〈
Bk̂λ, Bk̂λ

〉
= 2

〈
A∗Ak̂λ, k̂λ

〉〈
B∗Bk̂λ, k̂λ

〉
= 2

〈
|A|2k̂λ, k̂λ

〉〈
|B|2k̂λ, k̂λ

〉
≤

〈
|A|2k̂λ, k̂λ

〉2
+
〈
|B|2k̂λ, k̂λ

〉2

(by the arithmetic-geometric mean inequality)

=
∣∣∣〈k̂λ, |A|2k̂λ

〉∣∣∣2 + ∣∣∣〈k̂λ, |B|2k̂λ
〉∣∣∣2

≤ max

(∥∥∥|A|2k̂λ
∥∥∥2 ,∥∥∥|B|2k̂λ

∥∥∥2)+
∣∣∣〈|A|2k̂λ, |B|2k̂λ

〉∣∣∣ (by (10))

= max

(∥∥∥|A|2k̂λ
∥∥∥2 ,∥∥∥|B|2k̂λ

∥∥∥2)+
∣∣∣〈|B|2|A|2k̂λ, k̂λ

〉∣∣∣ .
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Accordingly,

∣∣∣〈B∗Ak̂λ, k̂λ

〉∣∣∣2 ≤ 1

2

(
max

(∥∥∥|A|2k̂λ∥∥∥2 ,∥∥∥|B|2k̂λ
∥∥∥2)+

∣∣∣〈|B|2|A|2k̂λ, k̂λ
〉∣∣∣) ,

as desired. ■

As a consequence of Theorem 2.3, we have:

Corollary 2.4 Let T ∈ B(H ) and let 0 ≤ ν ≤ 1. Then

∣∣∣〈T k̂λ, k̂λ〉∣∣∣2 ≤ 1

2

(
max

(∥∥∥|T |2ν k̂λ∥∥∥2 ,∥∥∥|T ∗|2(1−ν)k̂λ

∥∥∥2)+
∣∣∣〈|T ∗|2(1−ν)|T |2ν k̂λ, k̂λ

〉∣∣∣) ,

for any vector k̂λ ∈ H with
∥∥∥k̂λ∥∥∥ = 1.

Proof. Letting B∗ = U |T |1−ν and A = |T |ν , in Theorem 2.3, we get

∣∣∣〈T k̂λ, k̂λ〉∣∣∣2 ≤ 1

2

(
max

(∥∥∥|T |2ν k̂λ∥∥∥2 ,∥∥∥U |T |2(1−ν)U∗k̂λ

∥∥∥2)+
∣∣∣〈|T |2ν , U |T |2(1−ν)U∗k̂λ

〉∣∣∣)
=

1

2

(
max

(∥∥∥|T |2ν k̂λ∥∥∥2 ,∥∥∥|T ∗|2(1−ν)k̂λ

∥∥∥2)+
∣∣∣〈|T |2ν k̂λ, |T ∗|2(1−ν)k̂λ

〉∣∣∣)
(by [13, Theorem 4 (ii), p. 58])

=
1

2

(
max

(∥∥∥|T |2ν k̂λ∥∥∥2 ,∥∥∥|T ∗|2(1−ν)k̂λ

∥∥∥2)+
∣∣∣〈|T ∗|2(1−ν)|T |2ν k̂λ, k̂λ

〉∣∣∣) ,

as needed. ■

Next, we obtain another upper bound for
∣∣∣〈T k̂λ, k̂µ〉∣∣∣ using polar decompostion.

Theorem 2.5 Let S, T ∈ B (H ). Then for any 0 ≤ ν ≤ 1,

∣∣∣〈(S + iT ) k̂λ, k̂µ

〉∣∣∣ ≤ √〈(
|S|2ν + |T |2ν

)
k̂λ, k̂λ

〉√〈(
|S∗|2(1−ν) + |T ∗|2(1−ν)

)
k̂µ, k̂µ

〉
,

for any vectors k̂λ, k̂µ ∈ H with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1. If T ∈ B (H ) with the Cartesian

decomposition T = A+ iB, then

∣∣∣〈T k̂λ, k̂µ〉∣∣∣ ≤ √〈(
|A|2ν + |B|2ν

)
k̂λ, k̂λ

〉〈(
|A|2(1−ν) + |B|2(1−ν)

)
k̂µ, k̂µ

〉
.
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Proof. Let k̂λ, k̂µ ∈ H with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1. Then

∣∣∣〈(S + iT ) k̂λ, k̂µ
〉∣∣∣ = ∣∣∣〈Sk̂λ, k̂µ〉+ i

〈
T k̂λ, k̂µ

〉∣∣∣
≤

∣∣∣〈Sk̂λ, k̂µ〉∣∣∣+ ∣∣∣〈T k̂λ, k̂µ
〉∣∣∣ (by the triangle inequality)

≤
√〈

|S|2ν k̂λ, k̂λ
〉〈

|S∗|2(1−ν)k̂µ, k̂µ
〉
+

√〈
|T |2ν k̂λ, k̂λ

〉〈
|T ∗|2(1−ν)k̂µ, k̂µ

〉
(by (4))

≤
√〈

|S|2ν k̂λ, k̂λ
〉
+

〈
|T |2ν k̂λ, k̂λ

〉√〈
|S∗|2(1−ν)k̂µ, k̂µ

〉
+

〈
|T ∗|2(1−ν)k̂µ, k̂µ

〉
(by the Cauchy-Schwarz inequality)

=

√〈(
|S|2ν + |T |2ν

)
k̂λ, k̂λ

〉√〈(
|S∗|2(1−ν) + |T ∗|2(1−ν)

)
k̂µ, k̂µ

〉
,

i.e.,

∣∣∣〈(S + iT ) k̂λ, k̂µ

〉∣∣∣ ≤ √〈(
|S|2ν + |T |2ν

)
k̂λ, k̂λ

〉√〈(
|S∗|2(1−ν) + |T ∗|2(1−ν)

)
k̂µ, k̂µ

〉
,

as expected. ■

3. Berezin Number Inequalities

This section derives several inequalities for the Berezin number. The first result reads
as follows.

Proposition 3.1 Let S, T ∈ B(H ). Then

‖S + T‖2ber ≤
1

2
min

(∥∥∥|S|2 + |T |2
∥∥∥
ber

+
∥∥∥|S|2 − |T |2

∥∥∥
ber

,
∥∥∥|S∗|2 + |T ∗|2

∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+min (ber (T ∗S) ,ber (TS∗)) + 2 ‖S‖ber ‖T‖ber .

Proof. It observes from (9) that

∣∣∣〈(S + T ) k̂λ, k̂µ
〉∣∣∣2

≤
1

2

(〈(
|S∗|2 + |T ∗|2

)
k̂µ, k̂µ

〉
+

∣∣∣〈(|S∗|2 − |T ∗|2
)
k̂µ, k̂µ

〉∣∣∣)+
∣∣∣〈TS∗k̂µ, k̂µ

〉∣∣∣+ 2
∣∣∣〈Sk̂λ, k̂µ〉∣∣∣ ∣∣∣〈T k̂λ, k̂µ

〉∣∣∣
≤

1

2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+ ber (TS∗) + 2 ∥S∥ber ∥T∥ber .

Now, by taking supremum over all vectors k̂λ, k̂µ ∈ H with
∥∥∥k̂λ∥∥∥ =

∥∥∥k̂µ∥∥∥ = 1, we obtain

‖S + T‖2ber ≤
1

2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+ber (TS∗)+2 ‖S‖ber ‖T‖ber .

(11)
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If we substitute S and T by S∗ and T ∗, in (11), we deduce

‖S + T‖2ber
= ‖S∗ + T ∗‖2ber

≤ 1

2

(∥∥∥|S|2 + |T |2
∥∥∥
ber

+
∥∥∥|S|2 − |T |2

∥∥∥
ber

)
+ ber (T ∗S) + 2 ‖S∗‖ber ‖T

∗‖ber

=
1

2

(∥∥∥|S|2 + |T |2
∥∥∥
ber

+
∥∥∥|S|2 − |T |2

∥∥∥
ber

)
+ ber (T ∗S) + 2 ‖S‖ber ‖T‖ber ,

(12)

thanks to (P-4).
We conclude the desired result by combining two inequalities (11) and (12). ■

The second result can be stated as follows.

Proposition 3.2 Let S, T ∈ B(H ). Then

ber2 (S + T ) ≤ 1

2
min

(∥∥∥|S|2 + |T |2
∥∥∥
ber

+
∥∥∥|S|2 − |T |2

∥∥∥
ber

,
∥∥∥|S∗|2 + |T ∗|2

∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+min (ber (T ∗S) ,ber (TS∗)) + 2ber (S)ber (T ) .

Proof. Letting k̂µ = k̂λ, in (9), we observe that∣∣∣〈(S + T ) k̂λ, k̂λ

〉∣∣∣2
≤

1

2

(〈(
|S∗|2 + |T ∗|2

)
k̂λ, k̂λ

〉
+

∣∣∣〈(|S∗|2 − |T ∗|2
)
k̂λ, k̂λ

〉∣∣∣)+
∣∣∣〈TS∗k̂λ, k̂λ

〉∣∣∣+ 2
∣∣∣〈Sk̂λ, k̂λ〉∣∣∣ ∣∣∣〈T k̂λ, k̂λ

〉∣∣∣
≤

1

2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+ ber (TS∗) + 2ber (S)ber (T ) ,

which implies

ber2 (S + T ) ≤ 1

2

(∥∥∥|S∗|2 + |T ∗|2
∥∥∥
ber

+
∥∥∥|S∗|2 − |T ∗|2

∥∥∥
ber

)
+ber (TS∗)+2ber (S)ber (T ) .

If we substitute S and T by S∗ and T ∗, in the above inequality, we infer

ber2 (S + T ) ≤ 1

2

(∥∥∥|S|2 + |T |2
∥∥∥
ber

+
∥∥∥|S|2 − |T |2

∥∥∥
ber

)
+ber (T ∗S)+2ber (S)ber (T ) ,

thanks to (P-4).
Now, the result follows by incorporating these two inequalities. ■

The following result is a product of Theorem 2.3.

Corollary 3.3 Let A,B ∈ B(H ). Then

ber2 (B∗A) ≤ 1

2

(
max

(
‖A‖4ber, ‖B‖4ber

)
+ ber

(
|B|2|A|2

))
.

The following theorem suggests an upper bound for the Berezin number of the product
of two operators.
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Theorem 3.4 Let A,B ∈ B(H ). Then for any r, s ≥ 1,

ber (B∗A) ≤

√√√√∥∥∥∥∥ |A|2r + |B|2r

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |A|2s + |B|2s

2

∥∥∥∥∥
1

s

ber

.

Proof. It has been demonstrated in [11, Corollary 4] that

∥∥∥∥B∗A+A∗B

2

∥∥∥∥
ber

≤

√√√√∥∥∥∥∥ |A|2r + |B|2r

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |A|2s + |B|2s

2

∥∥∥∥∥
1

s

ber

,

which can be written as

‖R (B∗A)‖ber ≤

√√√√∥∥∥∥∥ |A|2r + |B|2r

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |A|2s + |B|2s

2

∥∥∥∥∥
1

s

ber

.

Replacing A by eiθA, we receive

∥∥∥Reiθ (B∗A)
∥∥∥
ber

≤

√√√√∥∥∥∥∥ |A|2r + |B|2r

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |A|2s + |B|2s

2

∥∥∥∥∥
1

s

ber

.

Now taking supremum over θ ∈ R, we infer that

ber (B∗A) ≤

√√√√∥∥∥∥∥ |A|2r + |B|2r

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |A|2s + |B|2s

2

∥∥∥∥∥
1

s

ber

,

due to sup
θ∈R

∥∥ReiθT
∥∥
ber

= ber (T ) [24]. ■

Remark 1 The case s = r, in Theorem 3.4, reduces to berr (B∗A) ≤
1
2

∥∥∥|A|2r + |B|2r
∥∥∥
ber

.

By using the same technique as in the proof of Corollary 2.4, we can write from
Theorem 3.4 that:

Corollary 3.5 Let T ∈ B(H ). Then

ber (T ) ≤

√√√√∥∥∥∥∥ |T |2rν + |T ∗|2r(1−ν)

2

∥∥∥∥∥
1

r

ber

∥∥∥∥∥ |T |2sν + |T ∗|2s(1−ν)

2

∥∥∥∥∥
1

s

ber

; (r, s ≥ 1, 0 ≤ ν ≤ 1) .

Remark 2 The case s = r, in Corollary 3.5, reduces to

berr (T ) ≤ 1

2

∥∥∥|T |2rν + |T ∗|2r(1−ν)
∥∥∥
ber

.
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It is easy to see that if T = A + iB is the Cartesian decomposition of T ∈ B (H ),
then ‖T‖ber ≤ ‖A‖ber + ‖B‖ber. Closely related to this inequality, one may note the
following result, a natural consequence of Theorem 2.5.

Corollary 3.6 Let S, T ∈ B (H ) be two self-adjoint operators. Then for any 0 ≤ ν ≤ 1,

‖S + iT‖ber ≤
√∥∥∥|S|2ν + |T |2ν

∥∥∥
ber

∥∥∥|S|2(1−ν) + |T |2(1−ν)
∥∥∥
ber

.

If T ∈ B (H ) with the Cartesian decomposition T = A+ iB, then

‖T‖ber ≤
√∥∥∥|A|2ν + |B|2ν

∥∥∥
ber

∥∥∥|A|2(1−ν) + |B|2(1−ν)
∥∥∥
ber

.

Remark 3 Put ν = 1 in Corollary 3.6, we obtain ‖S + iT‖2ber ≤ 2
∥∥∥|S|2 + |T |2

∥∥∥
ber

.

Remark 4 Letting ν = 1
2 in Corollary 3.6 to get

‖S + iT‖ber ≤ ‖ |S|+ |T | ‖ber ≤ ‖S‖ber + ‖T‖ber

where the second inequality is obvious by the triangle inequality. By substituting S = <T
and T = =T , we deduce

‖T‖ber ≤
1

2

∥∥∥√TT ∗ + T ∗T + 2<T 2 +
√

TT ∗ + T ∗T − 2<T 2
∥∥∥
ber

≤ ‖<T‖ber + ‖=T‖ber .

Corollary 3.7 Let T ∈ B (H ) with the Cartesian decomposition T = A + iB. Then
for any 0 ≤ ν ≤ 1,

ber (T ) ≤ 1

2

∥∥∥|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)
∥∥∥
ber

.

Proof. Letting k̂µ = k̂λ, in Theorem 2.5, we can write

∣∣∣〈T k̂λ, k̂λ〉∣∣∣ ≤ √〈(
|A|2ν + |B|2ν

)
k̂λ, k̂λ

〉〈(
|A|2(1−ν) + |B|2(1−ν)

)
k̂λ, k̂λ

〉
≤ 1

2

〈(
|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)

)
k̂λ, k̂λ

〉
≤ 1

2

∥∥∥|A|2ν + |A|2(1−ν) + |B|2ν + |B|2(1−ν)
∥∥∥
ber

,

where the second inequality is observed from the arithmetic-geometric mean inequality.
Taking supremum over all vectors k̂λ ∈ H yields the desired result. ■

Another corresponding result can be stated as follows.

Proposition 3.8 Let T ∈ Mn. Then
∥∥∥|T |2∥∥∥

ber
≤

∥∥T ∗T + i=T 2
∥∥
ber

.
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Proof. For any A,B ∈ Mn∥∥∥|A+B|2
∥∥∥
ber

= ‖(A+B)∗ (A+B)‖ber

= ‖A∗A+B∗B +A∗B +B∗A‖ber
= ‖A∗A+B∗B + 2< (A∗B)‖ber
= ‖< (A∗A+B∗B + 2A∗B)‖ber
≤ ‖A∗A+B∗B + 2A∗B‖ber.

Thus,
∥∥∥|A+B|2

∥∥∥
ber

≤ ‖A∗A+B∗B + 2A∗B‖ber. If we replace B by iB, we obtain∥∥∥|A+ iB|2
∥∥∥
ber

≤ ‖A∗A+B∗B + 2iA∗B‖ber. Now, if T = A + iB is the Cartesian de-

composition of T ∈ Mn (noticing that A and B are self-adjoint now), then∥∥∥|T |2∥∥∥
ber

=
∥∥∥|A+ iB|2

∥∥∥
ber

≤
∥∥A2 +B2 + 2iAB

∥∥
ber

≤
∥∥∥(<T )2 + (=T )2 + 2i (<T ) (=T )

∥∥∥
ber

=
∥∥T ∗T + i=T 2

∥∥
ber

i.e.,
∥∥∥|T |2∥∥∥

ber
≤

∥∥T ∗T + i=T 2
∥∥
ber

, as required. ■

Remark 5 Notice that∥∥∥|T |2∥∥∥
ber

=
∥∥∥|A+ iB|2

∥∥∥
ber

≤
∥∥A2 +B2 + 2iAB

∥∥
ber

= ‖A (A+ iB) + (iA+B)B‖ber
= ‖A (A+ iB) + (A+ iB)∗ (iB)‖ber
≤ ‖A‖ber‖A+ iB‖ber + ‖(A+ iB)∗‖ber‖iB‖ber
= ‖A+ iB‖ber (‖A‖ber + ‖B‖ber)

= ‖T‖ber (‖<T‖ber + ‖=T‖ber) .

Therefore, by Proposition 3.8, we conclude that∥∥∥|T |2∥∥∥
ber

≤
∥∥T ∗T + i=T 2

∥∥
ber

≤ ‖T‖ber (‖<T‖ber + ‖=T‖ber) .
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