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Received 25 May 2024; Revised 19 September 2024; Accepted 23 September 2024.

Communicated by Hamidreza Rahimi

Abstract. In this study, we delve into the discrete TC of surjective simplicial fibrations,
aiming to unravel the interplay between topological complexity, discrete geometric structures,
and computational efficiency. Moreover, we examine the properties of the discrete TC number
in higher dimensions and its relationship with scat. We also touch on the basic properties of
the notion of higher contiguity distance and show that it is possible to consider discrete TC
computations in a simpler sense.
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1. Introduction

The discrete topological complexity (TC) of a space serves as a fundamental measure
of capturing the intricacy of its motion-planning capabilities. Originating from the field
of robotics, TC offers a quantitative framework to understand the computational com-
plexity of designing feasible paths in a given space. Particularly, in algebraic topology,
TC provides valuable insights into the structural characteristics of topological spaces and
their associated mappings.

The notion of the discrete topological complexity on simplicial complexes is first given
in [8] by using Farber subcomplexes. [8, Theorem 3.4] relates this characterization to
contiguity distance which is the discrete version of the concept of homotopic distance
[14]. The contiguity distance between simplicial maps is studied in [5], and hence, some
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homotopy-related concepts, such as contractibility or having the same homotopy type,
are transferred from topological spaces to simplicial complexes. With the help of these
studies, it has now become possible to examine the problem of determining the TC num-
ber of a simplicial map via the contiguity distance. On the other hand, a fibration between
simplicial complexes is introduced in [7]. Moreover, in Theorem 8 of [7], the discrete TC
number of a finite simplicial complex L is presented by using the simplicial path-fibration
PL → L × L. In addition, for a given finite simplicial complex, a discrete topological
complexity for the geometric realization of this complex is given in [10]. In this study,
we focus on investigating the TC of surjective simplicial fibrations (generally between
finite complexes), a class of mappings that exhibit crucial properties in both algebraic
topology and differential geometry. Surjective simplicial fibrations serve as essential tools
for studying the topology of fiber bundles, providing a means to understand the interplay
between base spaces and fibers. Our exploration of TC within this context aims to shed
light on the computational complexity underlying the continuous deformation of spaces
under surjective simplicial fibrations.

Understanding TC in the context of surjective simplicial fibrations entails a comprehen-
sive analysis of discrete structures that underlie continuous mappings. By discretizing the
domain and codomain of such mappings, we can effectively capture the essential geomet-
ric and topological features while providing a computationally tractable framework for
analysis. Through this, we aim to unravel the intricate interplay between the topological
complexity of the base space and the geometric properties of the fiber, elucidating how
these factors collectively influence the TC of surjective simplicial fibrations.

This exploration consists of the following concepts: In Section 2, we recall the basic prop-
erties of simplicial complexes and the important consequences of maps between simplicial
complexes, especially simplicial fibrations. In Section 3, we present the discrete topolog-
ical complexity of a surjective fibration via the Schwarz genus of a simplicial fibration.
This definition is enriched with different types of examples of simplicial complexes. We
also generalize the notion of contiguity distance to use it effectively in other sections. The
following two sections, Section 4 and 5, deal with the generalized version of TC number
computation of a simplicial complex and a surjective simplicial fibration. Furthermore,
Section 6 is dedicated to the study of the relationship, in the discrete sense, between
TC numbers and the Lusternik-Schnielmann category of simplicial complexes denoted
by scat (see [1, 6, 9, 16] for more information on cat of topological spaces or scat of
simplicial complexes).

2. Preliminaries

Simplicial complexes are fundamental structures in algebraic topology, providing a
combinatorial framework for studying topological spaces. They are constructed from
simple geometric elements called simplices, which are higher-dimensional analogs of tri-
angles and tetrahedra. We now present the general properties of simplicial complexes or
maps between them.

2.1 Simplicial complex and simplicial homotopy

A simplicial complex L is a set of simplexes in Rn which satisfies

• σ ∈ L implies that L has every face of σ,
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• σ1, σ2 ∈ L implies that the intersection σ1 ∩ σ2 is equal to either null or a common
face of σ1 and of σ2 [15].

If L has a finite collection of simplexes that satisfies the above conditions, then we say
that L is a finite simplicial complex. The vertex set of a simplicial complex L is defined
by the collection of all points (0−simplexes) in L, and we denote it by VX(L). Let N
and L be any simplicial complexes. Then N is called a subcomplex of L if σ ∈ N , then
σ ∈ L with the property VX(N) ⊂ VX(L) [15].

Definition 2.1 [15] A map φ : L → L
′
between any simplicial complexes L and L

′
is

called a simplicial map provided that the map φ : VX(L) → VX(L
′
) has the property

that σ ∈ L implies φ(σ) ∈ L
′
.

A simplicial map φ : L→ L
′
is called a simplicial isomorphism if it is bijective, and the

inverse φ−1 is a simplicial map. Given two simplicial maps φ1, φ2 : L→ L
′
, they are said

to be contiguous provided that the fact a simplex σ ∈ L implies that φ1(σ)∪φ2(σ) ∈ L
′
is

also a simplex [17]. Two simplicial maps φ1 and φ2 to be contiguous is generally denoted
by φ1 ∼c φ2.

Definition 2.2 [17] Given two simplicial maps φ, φ
′
: L → L

′
, they are in the same

contiguity class with n steps provided that there exists a sequence of simplical maps
φi : L→ L

′
for i = 0, · · · , n that satisfes φi ∼c φi+1 with φ0 = φ and φn = φ

′
.

The notation φ ∼ φ
′
is generally used to express that two simplicial maps φ and φ

′
are in

the same contiguity class. For simplicial maps, the contiguity is known as the homotopy
counterpart and is defined so that various simplicial approximations to the same con-
tinuous map are contiguous. Note that being in the same contiguity class for simplicial
complexes and simplicial maps can be thought of as the discrete form of homotopy.

Proposition 2.3 [7] Let Im = [0,m]. Assume that φ, φ
′
: L → L

′
are two simplicial

maps. Then φ ∼ φ
′
if and only if there exist at least one m ⩾ 1 and one simplicial map

G : L× Im → L
′
with the property G(σ, 0) = φ and G(σ,m) = φ

′
for any σ ∈ L.

Assume that L and L
′
are two simplicial complexes. Then their categorical product

L Π L
′
is defined as follows [13]:

• For any vertex v1 ∈ L and v2 ∈ L
′
, the vertices of L Π L

′
are the pairs (v1, v2), i.e.,

VX(L Π L
′
) = VX(L)×VX(L

′
).

• For the projections π1 : L Π L
′ → L, π2 : L Π L

′ → L
′
, we have that σ ∈ L Π L

′
if

and only if π1(σ) ∈ L and π2(σ) ∈ L
′
.

We use the notation K×L for the categorical product of simplicial complexes throughout
the paper. Moreover, we denote, for instance, by L2 = L× L = L Π L.

Strong homotopy type and contractibility for topological spaces are transferred to sim-
plicial complexes as follows. Let L and N be two simplicial complexes. Then they have
the same strong homotopy type if and only if there exist two simplicial maps φ : L→ N
and ω : N → L with φ ◦ ω ∼ 1N and ω ◦ φ ∼ 1L [4]. Also, φ and ω are called the strong
equivalences. Let v be a vertex in a simplicial complex L. Then L is called strongly
collapsible if L and v have the same strong homotopy type.



124 M. İs and İ. Karaca / J. Linear. Topological. Algebra. 13(02) (2024) 121-135.

2.2 Simplicial fibration and discrete TC number

In [7], we have three equivalent definitions of the notion of a simplicial fibration. Since
we would like to compute the discrete topological complexity of simplicial maps (actually
surjective fibrations), it is essential to define a simplicial fibration. We prefer to use Type
III in [7] because it is almost the same as the fibrations defined with the help of homotopy
in topological spaces.

Definition 2.4 [7] Let φ : L→ L
′
be a simplicial map. Then φ is said to be a simplicial

fibration when for an inclusion map im : N × {0} → N × Im, any simplicial maps
g : N ×{0} → L and G : N × Im → L

′
with φ ◦ g = G ◦ im, there exists a simplicial map

G̃ : N × Im → L for which G̃ ◦ im = g and φ ◦ G̃ = G.

In a special case of Definition 2.4, ifN is finite, then φ is called a simplicial finite-fibration.
Simplicial fibrations have some important properties. For example, any simplicial isomor-
phism is a simplicial fibration. Moreover, each of the composition, the pullback, and the
Cartesian product of simplicial fibrations is again a simplicial fibration [7]. Another im-
portant example given by Theorem 1 is mentioned below.

Theorem 2.5 [7] For any simplicial complex L, the map π : PL → L × L, defined by
taking any simplicial path on L to the pair of initial-desired vertices of L, is a simplicial
finite-fibration.

The simplicial Schwarz genus and the contiguity distance are two different ways to state
the discrete TC of a simplicial complex when we have simplicial fibrations. Hence, we
now continue with presenting these two concepts.

Definition 2.6 [7] Let φ : L → L
′
be a simplicial map. Then the simplicial Schwarz

genus of φ is the least integer n ⩾ 0 if the following properties hold:

• L
′
can be written as the union of subcomplexes L0, L1, · · · , Ln.

• For each k ∈ {0, · · · , n}, φ admits a simplical map σk : Lk → L with the property
φ ◦ σk = 1Lk

.

The simplicial Schwarz genus of φ is denoted by Sg(φ).

Definition 2.7 [5, 14] Let φ1, φ2 : L→ L
′
be two simplicial maps. Then the contiguity

distance between φ1 and φ2 is the least integer n ⩾ 0 if the following properties hold:

• L can be written as the union of subcomplexes L0, L1, · · · , Ln.

• For all k ∈ {0, · · · , n}, φ1

∣∣
Lk

and φ2

∣∣
Lk

are in the same contiguity class.

The contiguity distance between φ1 and φ2 is denoted by SD(φ1, φ2).

We are now ready to give the discrete TC number and the simplicial Lusternik-
Schnirelmann category based on the contiguity distance as follows.

Proposition 2.8 [5] Let pi be the i−th simplicial projection map on L for every
i ∈ {1, 2}, and cv0 any simplicial constant map on L, where v0 is any vertex of L.
Assume that i1 : L → L2 and i2 : L → L2 are simplicial maps defined by i1(σ) = (σ, v0)
and i2(σ) = (v0, σ), respectively. Then
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i) TC(L) = SD(p1, p2).

ii) scat(L) = SD(1L, cv0) = SD(i1, i2).

iii) scat(φ) = SD(φ,φ ◦ cv0).

In computations of TC and scat, we always assume that a given simplicial complex is
edge-path connected to make them considerable.

3. Schwarz genus form and higher contiguity distance

For a surjective simplicial map φ : L → L
′
between any finite simplicial complexes L

and L
′
, define a new surjective simplicial map πφ : LI → L× L

′
by

πφ(δ) = ((1L × φ) ◦ π)(δ) = (δ(0), φ(δ(1)))

for all φ ∈ LI . Assume that φ is a simplicial fibration. Then, by using Proposition 4.4
and 4.1 iii) of [7], πφ is also a simplicial fibration.

Definition 3.1 The discrete topological complexity TC(φ) of a simplicial finite-fibration
φ : L→ L

′
is Sg(πφ).

Example 3.2 i) TC(φ) generalizes TC(L). Indeed, for the particular case of φ = 1L,
we observe that TC(1L) = TC(L).

ii) The discrete topological complexity of a constant simplicial fibration is null, i.e.,
TC(φ : L → {s0}) = 0, where s0 is a 0−simplex (see Example 3.2 of [11] for a similar
construction in digital images). Note that TC(φ

′
) cannot be computed for φ

′
: L → L

′
,

defined by φ
′
(δ) = {s0} ∈ L

′
, because φ

′
is not surjective.

iii) The discrete topological complexity of a first projection map is null, that is,
TC(φpr1 : L × L

′ → L) = 0 (see [11, Example 3.3] for a similar construction in digi-
tal images).

Figure 1. A simplicial map φ : L→ L
′
.
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Example 3.3 Consider a simplicial map φ : L → L
′
defined in Figure 1. Obviously, it

is a bijective simplicial map. If one defines the inverse of φ from L
′
to L as

[w0] 7→ [v0],

[w1] 7→ [v2],

[w2] 7→ [v1],

[w3] 7→ [v3],

and

[w0, w2] 7→ [v0, v1],

[w1, w2] 7→ [v2, v1],

[w1, w3] 7→ [v2, v3],

[w2, w3] 7→ [v1, v3],

[w0, w2, w3] 7→ [v0, v1, v3],

then φ is a simplicial isomorphism. By [7, Proposition 4(i)], we conclude that φ is a sim-
plicial fibration. Define a simplicial fibration πφ : LI → L×L′

by πφ(δ) = (δ(0), φ(δ(1))).
The set L

′
can be written as the union of L0 and L1 as in Figure 2. Therefore, we get

L×L′
= (L×L0)∪(L×L1). In addition, πφ admits two simplicial maps σ1 : L×L0 → LI

and σ2 : L × L1 → LI defined by σ1([a], [b]) = α and σ2([c], [d]) = β, respectively, with
the property πφ ◦ σ1 and πφ ◦ σ2 is the inclusion map on L× Li for each i = 0, 1, where
α is a simplicial path from [a] to φ−1([b]) in L and β is a simplicial path from [c] to
φ−1([d]) in L. Consequently, we obtain TC(φ) = 1.

Figure 2. The subcomplexes L0 and L1 of L
′
.

Similar to the homotopic distance between maps, the notion of contiguity distance be-
tween simplicial complexes can be generalized as a higher contiguity distance between
simplicial complexes.

Definition 3.4 Let φ1, · · · , φm : L → L
′
be simplicial maps. Then the higher (n−th)

contiguity distance SD(φ1, · · · , φm) is the least integer n ⩾ 0 for which there is a set of
subcomplexes L0, L1, · · · , Ln that covers L with the property that φi|Lk

and φj |Lk
are

in the same contiguity class for all i, j ∈ {1, · · · ,m} and k = 0, 1, · · · , n.

We have some quick observations from Definition 3.4. First one states that the order of
simplicial maps φ1, · · · , φm does not change the result of SD(φ1, · · · , φm). More precisely,
for any permutation σ of {1, · · · ,m}, we have SD(φ1, · · · , φm) = SD(φσ(1)

, · · · , φσ(m)
).
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Second, by letting 1 < m
′
< m, we observe that SD(φ1, · · · , φm′ ) ⩽ SD(φ1, · · · , φm) for

any simplicial maps φ1, · · · , φm : L → L
′
. Moreover, we have SD(φ1, · · · , φm) = 0 iff

φi ∼ φi+1 for each i ∈ {1, · · · ,m}.

The following properties of the higher contiguity distance are generalizations of the prop-
erties in [5] and, in parallel, proofs can be obtained using the same methods in [5].

Proposition 3.5 i) Let φi, φ
′

i : L → L
′
be simplicial maps for all i = 1, · · · ,m. If

φi ∼ φ
′

i for each i, then SD(φ1, · · · , φm) = SD(φ
′

1, · · · , φ
′

m).

ii) Let φi : L → L
′
be any simplicial maps for all i = 1, · · · ,m. If L or L

′
is strongly

collapsible, then SD(φ1, · · · , φm) = 0.

Lemma 3.6 Let ψi ∼ ψi+1 for any i = 1, · · · ,m. Assume that ψi admits a simplicial
map µi such that µi ◦ ψi ∼ 1 (or ψi ◦ µi ∼ 1) for each i = 1, · · · ,m+ 1. Then µi ∼ µi+1

for all i = 1, · · · ,m.

Proof. Suppose that µi ≁ µi+1 for all i = 1, · · · ,m. Then µi ◦ ψi+1 ≁ µi+1 ◦ ψi+1.
Since ψi ∼ ψi+1 for any i = 1, · · · ,m, we get 1 ∼ µi ◦ ψi ≁ µi+1 ◦ ψi+1 ∼ 1. This is a
contradiction. ■

Proposition 3.7 i) Let φi : L → L
′
and ψi : L

′ → L
′′
be any simplicial maps for all

i = 1, · · · ,m. If ψi ∼ ψi+1 for all i = 1, · · · ,m− 1, then

SD(ψ1 ◦ φ1, · · · , ψm ◦ φm) ⩽ SD(φ1, · · · , φm).

Moreover, the equality holds provided that, for all i = 1, · · · ,m, ψi admits a simplicial
map µi : L

′′ → L
′
satisfying µi ◦ ψi ∼ 1L′ , and ψi ◦ φi ∼ ψj ◦ φj for any distinct i,

j = 1, · · · ,m.

ii) Let φi : L → L
′
and ψi : L

′′ → L be any simplicial maps for all i = 1, · · · ,m. If
ψi ∼ ψi+1 for all i = 1, · · · ,m− 1, then

SD(φ1 ◦ ψ1, · · · , φm ◦ ψm) ⩽ SD(φ1, · · · , φm).

Moreover, the equality holds provided that, for all i = 1, · · · ,m, ψi admits a simplicial
map µi : L → L

′′
satisfying ψi ◦ µi ∼ 1L, and φi ◦ ψi ∼ φj ◦ ψj for any distinct i,

j = 1, · · · ,m.

Proof. Let SD(φ1, · · · , φm) = n. Then there is a set of subcomplexes L0, L1, · · · , Ln
that covers L with the property that φi|Lk

and φj |Lk
are in the same contiguity class for

all i, j ∈ {1, · · · ,m} and k = 0, 1, · · · , n, i.e., φ1|Lk
∼ · · · ∼ φm|Lk

.

i) We get
(
ψs ◦ φs

)
|Lk

= ψs ◦ φs
∣∣
Lk

∼ ψt ◦ φt
∣∣
Lk

=
(
ψt ◦ φt

)
|Lk

for any s, t = 1, · · · ,m
with s 6= t. This shows that SD(ψ1 ◦ φ1, · · · , ψm ◦ φm) ⩽ n. In addition, by assuming
that there exists a simplicial map µi : L

′′ → L
′
with µi ◦ ψi ∼ 1L′ , and ψi ◦ φi ∼ ψj ◦ φj

for any distinct i, j = 1, · · · ,m, we get

SD(φ1, · · · , φm) = SD(µ1 ◦ ψ1 ◦ φ1, · · · , µm ◦ ψm ◦ φm)

⩽ SD(ψ1 ◦ φ1, · · · , ψm ◦ φm)

⩽ SD(φ1, · · · , φm)

from Lemma 3.6.
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ii) For any Lk ⊆ L with k = 0, 1, · · · , n, we consider L
′′

k = ψ−1
i (Lk) ⊆ L

′′
. Then

L
′′

0 , L
′′

1 , · · · , L
′′

n are subcomplexes that cover L
′′
. Moreover, by assuming that the map

ωk,i : L
′′

k → Lk is the restriction of ψi, we get(
φs ◦ ψs

)
|L′′

k
= φs

∣∣
L

′′
k

◦ ωk,s ∼ φt
∣∣
L

′′
k

◦ ωk,t = φt ◦ inclLk
◦ ωk,t = φt ◦ ψt

∣∣
L

′′
k

=
(
ψt ◦ φt

)
|L′′

k

for any s, t = 1, · · · ,m with s 6= t and the inclusion map inclLk
: Lk → L. This shows

that SD(ψ1◦φ1, · · · , ψm◦φm) ⩽ n. In addition, by assuming that there exists a simplicial
map µi : L→ L

′′
with ψi ◦µi ∼ 1L, and φi ◦ψi ∼ φj ◦ψj for any distinct i, j = 1, · · · ,m

we get

SD(φ1, · · · , φm) = SD(φ1 ◦ ψ1 ◦ µ1, · · · , φm ◦ ψm ◦ µm)

⩽ SD(φ1 ◦ ψ1, · · · , φm ◦ ψm)

⩽ SD(φ1, · · · , φm)

from Lemma 3.6. ■

Corollary 3.8 Let φ1, · · · , φm : L → L
′
and ψ1, · · · , ψm : N → N

′
be simplicial maps.

Assume that β : N → L and α : L
′ → N

′
have the same strong homotopy type and the

diagram

L
φ1,··· ,φm

// L
′

α
��

N
ψ1,··· ,ψm

//

β

OO

N
′

commutes with respect to the contiguity (in other words, α ◦ φi ◦ β ∼ ψi for every
i = 1, · · · ,m). Then SD(φ1, · · · , φm) = SD(ψ1, · · · , ψm).

Proof. By using Proposition 3.5 i), and Proposition 3.7 i) and ii), respectively, we find
SD(ψ1, · · · , ψm) = SD(α ◦ φ1 ◦ β, · · · , α ◦ φm ◦ β) = SD(φ1, · · · , φm). ■

4. Contiguity distance form

We know that the discrete topological complexity TC(L) can be expressed by the
contiguity distance of two projection maps, i.e., TC(L) = SD(p1, p2), where pi : L

n → L
is a projection map with each i = 1, 2 (see Theorem 2.24 of [5]). Thus, by using the higher
contiguity distance, we have the alternative definition of the higher discrete topological
complexity as follows:

Theorem 4.1 The higher (n−th) discrete topological complexity TCn(L) of a simplicial
complex L is SD(p1, p2, · · · , pn).

The proof of Theorem 4.1 is given in Theorem 2.1 of [3]. When n = 2, TC2(L) corresponds
to TC(L). Moreover, by considering the quick higher SD-observation, we easily have
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TCn(L) ⩽ TCn+1(L). Note that this result is first proved in [3] (see Theorem 2.1 for the
details of proof).

Theorem 4.2 TCn(L) = TCn(N) if L ∼ N (see also Theorem 2.3 of [3]).

Proof. Let α : L → N and β : N → L be simplicial maps such that α ◦ β ∼ 1N and
β ◦α ∼ 1L. Then we have that βn ◦αn = 1Nn and αn ◦βn ∼ 1Ln , i.e., Ln ∼ Nn. Consider
the following diagram with respect to the contiguity:

Ln
p1,··· ,pn

// L

α
��

Nn

p
′
1,··· ,p

′
n

//

βn

OO

N.

This means that α ◦ pi ◦ βn ∼ p
′

i. Thus, by Corollary 3.8, we obtain

SD(p1, · · · , pn) = SD(p
′

1, · · · , p
′

n),

which shows that TCn(L) = TCn(N). ■

Figure 3. A simplicial complex L with the vertices v0, v1, and v2.

Example 4.3 Consider a simplicial complex L = {[v0, v1, v2]} as in Figure 3. L is clearly
strongly collapsible (one can construct a homotopy with 1 step between L and v0 in the
simplicial sense). Therefore, we obtain TCn(L) = TCn([v0]) = 0 for any positive integer
n by Theorem 4.2.

We now want to define TC(φ) in terms of the contiguity distance.

Theorem 4.4 Let φ : L→ L
′
be a surjective simplicial finite-fibration. Then

TC(φ) = SD(φ ◦ π1, π2)

for the projection maps π1 : L× L
′ → L and π2 : L× L

′ → L
′
.

Proof. Since TC(φ) = Sg(πφ), we shall show that SD(φ◦π1, π2) = Sg(πφ). First, assume
that Sg(πφ) = s. Then L×L′

can be written as the union of subcomplexes L0, L1, · · · , Ls
for which πφ admits a simplicial map σk for each k = 0, · · · , s with πφ◦σk = 1Lk

. For each
k, we define a simplicial mapHk : Lk×Im → L

′
byHk([x], [y], t) = φ(σk([x], [y])(t)). Then
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(φ◦π1)
∣∣
Lk

and π2
∣∣
Lk

are in the same contiguity class, which shows that SD(φ◦π1, π2) ⩽ s.

Conversely, assume that SD(φ ◦ π1, π2) = s. Then (φ ◦ π1)
∣∣
Lk

and π2
∣∣
Lk

are in the
same contiguity class for each k = 0, · · · , s, namely that, there is a simplicial map
Hk : Lk × Im → L

′
between φ ◦ π1 and π2 for each k. Since φ is a simplicial fibration,

the commutative diagram

Lk
π1

//

incl
��

L

φ
��

Lk × Im
H

// L
′

admits a simplicial map H̃k : Lk×Im → L such that φ◦H̃k = Hk and H̃k ◦ incl = π1. For
each k, define a simplicial map σk : Lk → LI by σk([x], [y])(t) = H̃k([x], [y], [t]). Thus,
we get πφ ◦ σk = 1Lk

, which shows that Sg(πφ) ⩽ s. ■

5. Higher discrete TC of a simplicial fibration

In [12] (see also [2]), the higher topological complexity of a surjective fibration is
expressed in terms of the higher homotopic distance. Similarly, we can define the higher
discrete topological complexity of a surjective simplicial fibration by using the higher
contiguity distance as follows.

Definition 5.1 Given a surjective simplicial finite-fibration φ : L → L
′
, the higher

(n−th) discrete topological complexity of φ is TCn(φ) = SD(φ ◦ p1, · · · , φ ◦ pn) for the
projection pi : L

n → L with each i = 1, · · · , n.

For any surjective simplicial finite-fibration φ : L → L
′
, we have that TC2(φ) in Defini-

tion 5.1, coincides with TC(φ) in Theorem 4.4. Indeed, by Corollary 3.8 with considering
the following commutative diagram, we find that SD(φ ◦ p1, φ ◦ p2) = SD(φ ◦ π1, π2) for
the projection maps pi : L

2 → L with each i = 1, 2, π1 : L×L
′ → L, and π2 : L×L

′ → L
′
.

L× L
′
φ◦π1

π2

// L
′

α=1
L
′

��

L2
φ◦p1

φ◦p2
//

β=1L×φ

OO

L
′
.

Note that α is clearly a strong equivalence, so it is enough to say that β is also a strong
equivalence. Since φ is surjective, there is an element [x

′
] ∈ L

′
such that φ([x

′
]) = [y].

For a simplicial map ω : L×L′ → L×L with ω([x], [y]) = ([x], [x
′
]), we get β ◦ω ∼ 1L×L′

and ω ◦β ∼ 1L2 . This shows that β is a strong equivalence. Finally, we have the equality
TC2(φ) = TC(φ).

Proposition 5.2 Let φ : L→ L
′
be a surjective finite-fibration. Then

i) TCn(φ) ⩽ TCn+1(φ).
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ii) TCn(φ) = TCn(L) when φ = 1L : L→ L.

iii) TCn(φ) ⩽ TCn(L).

iv) TC(φ) ⩽ TCn(L).

v) TCn(φ) = 0 provided that L or L
′
is strongly collapsible.

Proof. i) It is clear from Definition 3.4.

ii) It follows from the fact that SD(1L ◦ p1, · · · , 1L ◦ pn) = SD(p1, · · · , pn).

iii) The fact is a result of Proposition 3.7 i).

iv) By Proposition 3.7 i), we get SD(φ ◦ p1, φ ◦ p2) ⩽ SD(p1, p2) ⩽ SD(p1, · · · , pn).

v) If L is strongly collapsible, then we get 1L ∼ cL. By using Proposition 3.7 and
Proposition 3.5 i), we get

SD(φ ◦ p1, · · · , φ ◦ pn) = SD(φ ◦ 1L ◦ p1, · · · , φ ◦ 1L ◦ pn)

= SD(φ ◦ cL ◦ p1, · · · , φ ◦ cL ◦ pn)

= SD(c
′

L ◦ p1, · · · , c
′

L ◦ pn),

where c
′

L = φ◦cL is a constant simplicial map. Since c
′

L◦pi ∼ c
′

L◦pj for any i, j = 1, · · · , n,
we conclude that SD(c

′

L ◦ p1, · · · , c
′

L ◦ pn) = 0. Also, if L
′
is strongly collapsible, then we

follow the same method starting with

SD(φ ◦ p1, · · · , φ ◦ pn) = SD(1L′ ◦ φ ◦ p1, · · · , 1L′ ◦ φ ◦ pn)

by Proposition 3.7 again. ■

Theorem 5.3 For a simplicial finite-fibration φ : L→ N , we have that

TCn(φ) ⩽ min{TCn(L),TCn(N)}.

Proof. It is enough to show that TCn(φ) ⩽ TCn(N) from Proposition 5.2 iii). Assume
that pi : L

n → L and qi : N
n → N are projection maps for each i = 1, · · · , n. Then

φ ◦ pi = qi ◦ φn. Indeed,

φ ◦ pi([x1], · · · , [xn]) = φ([xi]) = [x
′

i] = qi([x
′

1], · · · , [x
′

n]) = qi ◦ φn([x1], · · · , [xn])

for any [x1], · · · , [xn] ∈ L and [x
′

1], · · · , [x
′

n] ∈ N . This concludes that

SD(φ ◦ p1, · · · , φ ◦ pn) = SD(q1 ◦ φn, · · · , qn ◦ φn) ⩽ SD(q1, · · · , qn).

■

Theorem 5.4 For any surjective simplicial finite-fibrations φ : L→ N and ψ : N → K,
we have that TCn(ψ ◦ φ) ⩽ min{TCn(φ),TCn(ψ)}.
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Proof. Let pi : L
n → L and qi : N

n → N be the projection maps with each i = 1, · · · , n.
Then φ ◦ pi = qi ◦ (φ, · · · , φ). Indeed,

φ ◦ pi([x1], · · · , [xn]) = φ([xi])

= qi([φ(x1)], · · · , [φ(xn)])

= qi ◦ (φ, · · · , φ)([x1], · · · , [xn])

for any [x1], · · · , [xn] ∈ L and [x
′

1], · · · , [x
′

n] ∈ N . It follows that

SD(ψ ◦ φ ◦ p1, · · · , ψ ◦ φ ◦ pn) ⩽ SD(φ ◦ p1, · · · , φ ◦ pn),

and

SD(ψ ◦ φ ◦ p1, · · · , ψ ◦ φ ◦ pn) = SD(ψ ◦ q1 ◦ (φ, · · · , φ), · · · , ψ ◦ qn ◦ (φ, · · · , φ))

⩽ SD(ψ ◦ q1, · · · , ψ ◦ qn),

which conclude that TCn(ψ ◦ φ) ⩽ TCn(φ) and TCn(ψ ◦ φ) ⩽ TCn(ψ), respectively. ■

Corollary 5.5 Given any surjective simplicial finite-fibration φ : L→ L
′
,

i) TCn(φ) = TCn(L
′
) when φ admits a right strong equivalence.

ii) TCn(φ) = TCn(L) when φ admits a left strong equivalence.

iii) TCn(φ) = TCn(L) = TCn(L
′
) when φ admits a strong equivalence.

Proof. i) Let ω : L
′ → L be the right strong equivalence of φ, i.e., φ ◦ ω ∼ 1L′ . Then

we find TCn(L
′
) = TCn(1L′ ) = TCn(φ ◦ ω) ⩽ TCn(φ) ⩽ TCn(L

′
).

ii) Let γ : L
′ → L be the left strong equivalence of φ, i.e., γ ◦ φ ∼ 1L. Then we find

TCn(L) = TCn(1L) = TCn(γ ◦ φ) ⩽ TCn(φ) ⩽ TCn(L).

iii) The result is the direct consequence of the first two parts. ■

Figure 4. Two simplicial complexes L and L
′
with their vertices vi and wj for i ∈ {0, · · · , 5} and j ∈ {0, · · · , 2},

respectively.

Example 5.6 Assume that L and L
′
are two simplicial complexes as in Figure 4. Then

a map φ : L→ L
′
defined by φ(vi) = wi for i ∈ {0, 1} and φ(vj) = w2 for j ∈ {2, 3, 4, 5}

is a strong equivalence (the map φ
′
: L

′ → L defined by φ
′
(wk) = vk for any k ∈ {0, 1, 2}
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is the strong homotopy inverse of φ). By Corollary 5.5, we conclude that TC2(φ) =
TC2(L) = TC2(L

′
) = 1.

6. Scat-related results

In this section, we have some results between scat and TC of a surjective simplicial
fibration φ1 : L→ L

′
.

Proposition 6.1 For a given surjective simplicial finite-fibration φ : L→ L
′
,

scat(φ) ⩽ TC(φ).

Proof. Let cv0 be the constant simplicial map on L at the point v0, pi the projection
simplicial map on L with each i = 1, 2, and i1 : L → L2 a simplicial map defined by
i1(σ) = (σ, v0). Then we have that

TC(φ) = SD(φ ◦ p1, φ ◦ p2) ⩾ SD(φ ◦ p1 ◦ i1, φ ◦ p2 ◦ i1)

= SD(φ ◦ 1L, φ ◦ cv0) = SD(φ,φ ◦ cv0)

= scat(φ).

■

Proposition 6.2 For a given bijective simplicial finite-fibration φ : L→ L
′
,

scat(L) ⩽ TC(φ).

Proof. Let cv0 be the constant simplicial map on L at the point v0, pi the projection
simplicial map on L with each i = 1, 2, i1 : L → L2 a simplicial map defined by i1(σ) =
(σ, v0), and i2 : L → L2 a simplicial map defined by i1(σ) = (v0, σ). Then we have that
p2 ◦ i1 = cv0 = p1 ◦ i2. Since φ is injective, there exists a simplicial map ω : L

′ → L with
ω ◦ φ = 1L. Moreover, we get

TC(φ) = SD(φ ◦ p1, φ ◦ p2) ⩾ SD((ω ◦ φ) ◦ (p1 ◦ i1), (ω ◦ φ) ◦ (p2 ◦ i1))

= SD(1L ◦ 1L, 1L ◦ cv0)

= SD(1L, cv0) = scat(L).

■

Proposition 6.3 scat(φ) ⩽ scat(L) for a simplicial finite-fibration φ : L→ L
′
.

Proof. Let cv0 be the constant simplicial map on L at the point v0, pi be the projection
simplicial map on L with each i = 1, 2, i1 : L → L2 be a simplicial map defined by
i1(σ) = (σ, v0) and i2 : L → L2 be a simplicial map defined by i1(σ) = (v0, σ). Then we
find

scat(φ) = SD(φ ◦ 1L, φ ◦ cv0) = SD(φ ◦ p1 ◦ i1, φ ◦ p1 ◦ i2) ⩽ SD(i1, i2) = scat(L).
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■

Theorem 6.4 Given a bijective simplicial finite-fibration φ : L→ L
′
, we have

scat(φ) ⩽ scat(L) ⩽ TC(φ) ⩽ min{TC(L),TCn(φ)} ⩽ TCn(L).

Proof. The result comes from Proposition 6.3, Proposition 6.2, and Proposition 5.2 iv),
respectively. ■

Combining with Corollary 2.27 of [5], Theorem 6.4 concludes the following result:

Corollary 6.5 Given a bijective simplicial finite-fibration φ : L→ L
′
, we have

scat(φ) ⩽ scat(L) ⩽ TC(φ) ⩽ TC(L) ⩽ scat(L2).

7. Conclusion

We make significant strides in understanding the discrete topological complexity (TC)
of surjective fibrations, as well as exploring related concepts such as the higher contigu-
ity distance between simplicial maps and the higher discrete TC number. By rigorously
computing the TC number of surjective fibrations and investigating their relationship
with other topological measures such as scat, we uncover valuable insights into the com-
putational and structural properties of these mappings. Our findings not only contribute
to the theoretical understanding of topological complexity but also have practical impli-
cations in fields such as robotics, computational biology, and geometric modeling. The
insights gained from our study can inform the design of efficient algorithms for motion
planning, aid in the analysis of complex biological systems, and enhance computational
representations of geometric structures.

Various versions of TC numbers exist in topological spaces, as in the case of higher topo-
logical complexity TCn. Some of these are monoidal topological complexity, symmetric
topological complexity, parametrized topological complexity, mixed topological complex-
ity, and relative topological complexity. The computation of each of the versions of such
numbers on the simplicial complexes can be considered an open problem. In addition,
concepts such as barycentric subdivision, which belong to the simplicial complex theory,
can also be examined in the continuation of this study.
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