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Abstract. Let R be a commutative ring with identity, M a multiplication R-module, and
T (M)⋆ the set of non-zero torsion elements of M . We consider two graphs, the torsion graph
and the annihilator graph of M that have T (M)⋆ as their set of vertices, and investigate the
cases when these graphs are stars. The graph theoretic properties are reflected in the ring
theoretic properties and vice versa. If a ring is considered as a module on itself, then the
module is a multiplication module. Hence, our results directly generalize results about rings.
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1. Introduction

For a commutative ring with identity R, and an R-module M , we define two related
graphs. The torsion graph Γ(M) was introduced by Ghalandarzadeh and Malakooti Rad
[10], and the annihilator graph AG(M) was introduced by Abdollah et al. [1]. For both
graphs, the set of vertices is the set T (M)⋆—consisting of non-zero torsion elements ofM .
(An element x of M is a torsion element if there exists a non-zero r ∈ R with rx = 0M .)
Two vertices x and y are adjacent in Γ(M) if and only if [Rx : M ][Ry : M ]M = {0M}.
In contrast, two vertices x and y are adjacent in AG(M) if and only if

AnnR([Rx : M ]y) ̸= AnnR(x) ∪AnnR(y), or AnnR([Ry : M ]x) ̸= AnnR(x) ∪AnnR(y).

∗Corresponding author.
E-mail address: Zahra.Abdollah22@gmail.com (Z. Abdollah); pmalakoti@gmail.com (P. Malakooti Rad); ghalan-
darzadeh@kntu.ac.ir (Sh. Ghalandarzadeh); sshahriari@pomona.edu (Sh. Shahriari).

Print ISSN: 2252-0201 © 2024 IAUCTB.
Online ISSN: 2345-5934 http://jlta.ctb.iau.ir

https://doi.org/10.71483/jlta.2024.1115528


102 Z. Abdollah et al. / J. Linear. Topological. Algebra. 13(02) (2024) 101-112.

(For N a submodule of M , [N : M ] = {r ∈ R | rM ⊆ N}, and AnnR(N) = [{0M} :
N ].) It can be shown ([1, Proposition 3]) that Γ(M) is a subgraph of AG(M) (but not
necessarily vice versa). In the special case when M = R is considered as an R-module,
then the vertices of the graphs are the non-zero zero-divisors of R. Two vertices x and
y are adjacent in Γ(R) if xy = 0, while they are adjacent in AG(R) if AnnR(xy) ̸=
AnnR(x)∪AnnR(y). These special cases were first introduced by Beck [7] and Anderson
and Livingston [4] for Γ(R) and by Badawi [5] for AG(R). The zero-divisor graph of a
ring and its generalizations and variants have been the object of intense recent study.
For a survey, we refer the reader to Anderson et al. [3], or the recent monograph by
Anderson, Asir, Badawi, and Chelvam [2]. For the more general torsion and annihilator
graphs of a module over a commutative ring, see Abdollah et al.’s paper [1].

An R-module M is called a multiplication module, first introduced by Mehdi [14] but
also see Barnard [6] and El Bast and Smith [9], if N = [N : M ]M for all submodules N of
M . Every cyclic R-module is a multiplication module, and so, if R, a commutative ring
with identity, is considered as a module over itself, then it is a multiplication module.
Hence, results on multiplication modules directly generalize the corresponding results on
rings.

We are interested in understanding multiplication R-modules M for which Γ(M) or
AG(M) are a star. Recall that a star is a graph where one vertex, called the central
vertex, is adjacent to all the other vertices, and all the other vertices have degree 1.

Recall that T (M) is the set of torsion elements of an R-module M , and T (M)⋆ =
T (M)\{0M}. A proper submodule P of M is called a prime submodule (see Lu [13]) if
whenever ax ∈ P , for some a ∈ R, x ∈ M , then either x ∈ P or a ∈ [P : M ]. Establishing
a connection between ring theoretic properties and graph theoretic properties, we prove
Theorem A. (Theorem 3.6) Let M be a multiplication R-module. Assume Γ(M) is a
star with x as its central vertex. Then T (M) = Rx ∪AnnR(x)M , AnnR(x)M is a prime
submodule of M , AnnR(x) is a prime ideal of R, and exactly one of the following must
be true:

a T (M) = Rx = AnnR(x)M = {0M , x, 2x}, and Γ(M) has two vertices and a
single edge.

b Rx = {0M , x}, x ∈ AnnR(x)M , and T (M) = AnnR(x)M .
c Rx = {0M , x}, AnnR(x)M = {0M}, M = T (M) = Rx, and Γ(M) is a single
vertex.

d Rx = {0M , x}, x /∈ AnnR(x)M , M = Rx ⊕ AnnR(x)M , and T (M) is not a
submodule of M .

In Theorem 3.2, we extend parts of the above to the case when Γ(M) is not necessarily
a star, but continues to have a vertex x adjacent to all other vertices. Turning to sufficient
conditions for Γ(M) being a star, we show that it is uncommon for Γ(M) to be a tree
and yet not a star. In particular, we prove
Theorem B. (Theorem 4.2) Let M be a multiplication R-module. Assume Γ(M) has
no isolated vertices, and no cycles, and yet has a path of length 3. Then there ex-
ists x ∈ T (M)⋆ such that Rx = {0M , x}, and M = Rx ⊕ AnnR(x)M . Furthermore,
AnnR(x)M\{0M} ⊆ T (M)⋆, and the subgraph of Γ(M) induced by these vertices has no
edges.

Finally, we turn to the graph AG(M), and show that, most often, if either Γ(M) or
AG(M) is a star, then the two graphs are identical. We prove
Theorem C. (Theorem 5.1) Let M be a multiplication R-module.

a If AG(M) is a star, then Γ(M) = AG(M) is a star as well. In particular, the
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conclusions of Theorem A remain valid.
b If Γ(M) is a star, then, except for Case (b) of Theorem A, AG(M) = Γ(M) is a

star as well.

For the particular case of rings (equivalent to considering a ring as a module over itself),
star torsion and annihilator graphs were already studied, respectively, by Anderson and
Livingston [4] and Badawi [5]. As explained in what follows, some of our results can be
seen as partial generalizations of their results to the more general setting of modules.

2. Preliminaries

For convenience, we state a few oft used implications for multiplication modules.

Lemma 2.1 Let M be a multiplication R-module. Then

a if N and L are submodules of M , then [N : M ]L = [L : M ]N ,
b if x, y ∈ M , then [Rx : M ]y = [Ry : M ]x,
c if x ∈ M\{0M}, then [Rx : M ]M = Rx and [Rx : M ] ̸= {0R},
d if x ∈ M\{0M}, then AnnR(x)M is a proper submodule of M ,
e if x ∈ M , then AnnR(x)M = {y ∈ M | [Rx : M ]y = {0M}},
f if x ∈ T (M)⋆, then AnnR(x)M\{0M , x} is exactly the set of neighbors of x in
Γ(M),

g in Γ(M), if x ∈ T (M)⋆, and if y is a neighbor of x, then every element of
Ry\{0M} is adjacent to every element of Rx\{0M},

h if x, y ∈ T (M)⋆, then x and y are adjacent vertices of AG(M) if and only if
AnnR(x) ∪AnnR(y) is a proper subset of AnnR([Rx : M ]y).

Proof. Some of this is adapted from Lemmas 5 & 6 of Abdollah et al. [1]. We include
the proofs for completeness.

a By definition of a multiplication module, we have [N : M ]L = [N : M ][L :
M ]M = [L : M ]N .

b A special case of Part (a), since [Rx : M ]y = [Rx : M ]Ry.
c By definition of a multiplication module, Rx = [Rx : M ]M , and so since 0M ̸=
x ∈ Rx, [Rx : M ] ̸= {0R}.

d AnnR(x) is an ideal of R and so AnnR(x)M is a submodule of M , and we have
{0M} ̸= Rx = [Rx : M ]M . However, if AnnR(x)M = M , then [Rx : M ]M =
AnnR(x)[Rx : M ]M ⊆ AnnR(x)Rx = {0M}. The contradiction implies that
AnnR(x)M is a proper submodule of M .

e If y ∈ AnnR(x)M , then [Rx : M ]y ⊆ [Rx : M ] AnnR(x)M ⊆ RxAnnR(x) =
{0M}. For the reverse inclusion, if y ∈ M and [Rx : M ]y = {0M}, then, by part
(b), [Ry : M ]x = [Rx : M ]y = {0M} and [Ry : M ] ⊆ AnnR(x). Hence, by part
(c), Ry = [Ry : M ]M ⊆ AnnR(x)M .

f If y is adjacent to x in Γ(M), then y is non-zero and not equal to x. Moreover,
by part (c) and definition of adjacency in Γ(M), we have [Rx : M ]y = [Rx :
M ][Ry : M ]M = {0M}, and so y ∈ AnnR(x)M by part (e). Conversely, if y ∈
AnnR(x)M\{0M , x}, then, by part (e), [Rx : M ]y = {0M}. So, using Part (c),
{0R} ̸= [Rx : M ] ⊆ AnnR(y), and y is a non-zero torsion element of M . In
addition, [Rx : M ][Ry : M ]M = [Rx : M ]y = {0M}, and so y and x are adjacent
vertices in Γ(M).

g This follows from parts (e) and (f) directly. If y is adjacent to x in Γ(M), then
[Ry : M ]Rx = {0M}, which in turn implies that every element of Ry\{0M} is
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adjacent to every element of Ry\{0M}.
h Follows from the definition of AG(M), since, AnnR(y) ⊆ AnnR([Rx : M ]y]),

AnnR(x) ⊆ AnnR([Ry : M ]x]), and by Part (a), [Ry : M ]Rx = [Rx : M ]Ry.

■

The following is immediate (also see El Bast and Smith [9, Corollary 2.11]):

Lemma 2.2 Let M be an R-module, and P a prime submodule of M . Then [P : M ] is
a prime ideal of R.

Proof. Since P < M , [P : M ] is a proper ideal of R. By way of contradiction, assume
that there exists a, b ∈ R, with ab ∈ [P : M ], and neither a nor b in [P : M ]. Since
P < M , there exists m0 ∈ M\P . Now, since ab ∈ [P : M ], a(bm0) = (ab)m0 ∈ P . Since
P is a prime submodule and a ̸∈ [P : M ], we must have bm0 ∈ P . The latter implies
that either m0 ∈ P or b ∈ [P : M ], and both possibilities contradict our assumptions. ■

In [1], Abdollah et al. investigated the relationship between the two graphs Γ(M) and
AG(M). We will need a few of those results, and restate them here for the record.

Proposition 2.3 Let M be an R-module. Then

a (Proposition 3 of [1]) Γ(M) is a subgraph of AG(M).
b (Theorem 25 of [1]) If M is a multiplication module (or a reduced module or if

Nil(M) = {0M}) Then
i) A non-zero torsion element is an isolated vertex of Γ(M) if and only if it is

an isolated vertex of AG(M), and
ii) AG(M) consists of a number (possibly zero) of isolated vertices and at most

one connected component of diameter at most 2.
c (Corollary 22 of [1]) Assume that Γ(M) has no isolated vertices. Then AG(M)
is connected, and has diameter at most 2.

3. Necessary condition for Γ(M) to be a star

Our first result already connects graph theoretic properties with ring theoretic proper-
ties. In Theorem 3.2, we show that, for a multiplication R-moduleM , if Γ(M) has a vertex
x adjacent to all other vertices (something that happens in a star), then AnnR(x)M is
a prime submodule of M , and AnnR(x) is a prime ideal of R. This result, and the more
detailed description of Theorem 3.6, for the more special case when Γ(M) is a star, give
partial generalizations, to multiplication modules, of the result of Anderson and Liv-
ingston [4, Theorem 2.5] that states that for a commutative ring R, Γ(R) is a star if and
only if either R = Z/2Z⊕D where D is an integral domain or the set of zero divisors of
R is an annihilator ideal (and hence a prime ideal) of R. Our Theorems 3.2 and 3.6 also
refine a result of Ghalandarzadeh and Malakooti Rad [11, Theorem 2.9]. They prove, for
a multiplication R-module M , that Γ(M) has a vertex x adjacent to all other vertices
if and only if one of two possibilities occurs. Either M = Rx ⊕ AnnR(x)M is a faithful
module, |Rx| = 2, AnnR(x)M is finitely generated, and T (M) = Rx ∪ AnnR(x)M , or
T (M) = AnnR(x)M .

Lemma 3.1 Assume that M is a multiplication R-module, and that Γ(M) has a vertex
x adjacent to every other vertex. Further assume that [Rx : M ]x = {0M}, and α ∈ R
with αx ̸= 0M . Then AnnR(αx)M = AnnR(x)M .

Proof. Clearly AnnR(x)M ⊆ AnnR(αx)M . To show the reverse inclusion, let y ∈
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AnnR(αx)M . To show that y ∈ AnnR(x)M , we can assume y ̸= 0M . Since x ∈ T (M)⋆,
and αx ̸= 0M , we have αx ∈ T (M)⋆. By Lemma 2.1(f), y = αx or y is a neighbor of
αx. In either case, y ∈ T (M)⋆. Since x is adjacent to every vertex, either y = x or y
is adjacent to x. In the former case, we are done by Lemma 2.1(e). In the latter case,
y ∈ AnnR(x)\{0M , x} by Lemma 2.1(f). ■

Theorem 3.2 Assume thatM is a multiplication R-module, and that Γ(M) has a vertex
x adjacent to every other vertex. Then T (M) = Rx∪AnnR(x)M , AnnR(x)M is a prime
submodule of M , and AnnR(x) is a prime ideal of R.

Proof. By assumption, all elements of T (M)\{0M , x} are adjacent to x in Γ(M). Hence,
by Lemma 2.1(f), T (M) = Rx∪AnnR(x). To prove that AnnR(x)M is a prime submodule,
first note that by Lemma 2.1(d), AnnR(x)M is proper submodule of M . Now, let α ∈ R
and y ∈ M be arbitrary, and assume that αy ∈ AnnR(x)M . By definition, AnnR(x)M is
a prime submodule of M , if we show that either α ∈ [AnnR(x)M : M ] or y ∈ AnnR(x)M .
If αx = 0M , then α ∈ AnnR(x) ⊆ [AnnR(x)M : M ], and we would be done. Assuming
αx ̸= 0M , if αy = 0M , then either y = 0M ∈ AnnR(x)M or y ∈ T (M)⋆\{x} is adjacent
to x. The latter would mean, by Lemma 2.1(f), that y ∈ AnnR(x)M as desired. So wlog
assume αx ̸= 0 and αy ̸= 0M .

We claim that [Rαy : M ][Rx : M ]M = {0M}. Since αy ∈ AnnR(x)M\{0M}, either
αy = x or, by Lemma 2.1(f), αy is adjacent to x in Γ(M). In the latter case, the claim
follows from the definition of adjacency in Γ(M). In the former case, x = αy ∈ AnnR(x)M
and so, by Lemma 2.1(e), [Rx : M ]x = {0M}. As a result, [Rαy : M ][Rx : M ]M = [Rx :
M ]Rx = {0M}, and the claim is proved.

In a multiplication module, since [Rαy : M ]M = Rαy, we have {0M} = [Rαy : M ][Rx :
M ]M = α[Rx : M ]y = α[Ry : M ]x. Hence, [Ry : M ] ⊆ AnnR(αx). Now, applying
Lemma 3.1, we have Ry = [Ry : M ]M ⊆ AnnR(αx)M = AnnR(x)M completing the
proof that AnnR(x)M is a prime submodule of M .

To show that AnnR(x) is a prime ideal of R, by Lemma 2.2, it is enough to show that
AnnR(x) = [AnnR(x)M : M ]. It is clear that AnnR(x) ⊆ [AnnR(x)M : M ]. To show
the converse, note that, by Lemma 2.1(e), [Rx : M ] AnnR(x)M = {0M}, and so, using
Lemma 2.1(c),

[AnnR(x)M : M ]Rx = [AnnR(x)M : M ][Rx : M ]M ⊆ AnnR(x)M [Rx : M ] = {0M}.

Hence, [AnnR(x)M : M ] ⊆ AnnR(x) as desired. ■

If the ring Z/16Z is considered as a module over itself, then, in Γ(M), the vertex 8 is
adjacent to all other vertices, and the vertices 4, 8, and 12 form a triangle. (See Figure 1).
If we require that Γ(M) be a star (and so have no cycles), then we get more restrictions
on the module M .

8 12

42

6

10 14

Figure 1. Γ(M) for M = R = Z/16Z
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Lemma 3.3 Assume M is a multiplication R-module, and Γ(M) is a star with x as its
central vertex. Then |Rx| = 2 or 3.

Proof. Since x ̸= 0M , |Rx| > 1. Now, if |Rx| > 3, then Rx = {0M , x, αx, βx} for some
α, β ∈ R. Since x is the central vertex of a star, x is adjacent to αx and βx. But by
Lemma 2.1(g), αx is also adjacent to βx, and we have a cycle contrary to assumption. ■

If Γ(M) is a star with x as its central vertex, Theorem 3.2 applies and we know that,
for multiplication modules, AnnR(x) is a prime ideal of R and AnnR(x)M is a prime
submodule of M . However, in the particular case of a star, because of Lemmas 3.3 and
2.1(d), we can give a more direct proof.

Lemma 3.4 Let M be an R-module, x ∈ M , and p ∈ Z an ordinary prime integer.
Assume |Rx| = p. Then

a Rx = {0M , x, 2x, . . . , (p− 1)x} with px = 0M .
b AnnR(x) is a prime ideal.
c AnnR(x)M is a prime submodule of M as long as it is a proper submodule.

Proof.

a Rx is a submodule of M and (Rx,+) is an abelian group of order p. As a re-
sult, since p is a prime, the additive order of all non-zero elements of (Rx,+)
is p. So px = 0M . Now, if m and n are non-negative integers, m > n, and
mx = nx, then (m − n)x = 0M . This implies that p | m − n. So, the set
{0M , x, 2x, . . . , (p − 1)x} consists of p distinct elements of Rx and so we must
have Rx = {0M , x, 2x, . . . , (p− 1)x} with px = 0M .

b AnnR(x) is a proper ideal since otherwise Rx = {0M}. If a, b ∈ R\AnnR(x),
then ax ∈ Rx\{0M} and so ax = mx for some integer m with 1 ⩽ m ⩽ p − 1.
Likewise, bx = nx for some integer n with 1 ⩽ n ⩽ p − 1. But then (ab)x =
a(bx) = a(nx) = mnx. Since p does not divide mn, (ab)x ̸= 0M . We conclude
that AnnR(x) is a prime ideal of R.

c El Bast and Smith [9, Corollary 2.11] proves that a proper submodule N of an
R-mdoule M is a prime submodule, if N = PM for some prime ideal P of R with
AnnR(M) ⊆ P . Our assertion follows by replacing P with AnnR(x) and using
the previous part.

■

Lemma 3.5 Let M be a multiplication R-module. Assume Γ(M) is a star with x as its
central vertex, and with |Rx| = 3. Then T (M) = Rx = AnnR(x)M = {0M , x, 2x} is a
submodule, and Γ(M) has two vertices and a single edge.

Proof. If |Rx| = 3, then Rx = {0M , x, 2x} (by Lemma 3.4(a)). Since x is the central
vertex and 2x ∈ T (M)⋆, x is adjacent to 2x. If y ∈ T (M)\Rx, then x, as the central
vertex, would be adjacent to y. By Lemma 2.1(g), 2x would also be adjacent to y,
creating a triangle. The contradiction proves that T (M) = Rx, and that Γ(M) is a single
edge (with vertices x and 2x). Now, by Lemma 2.1(f), AnnR(x)M\{0M , x} = 2x. Since
AnnR(x)M is a submodule, it must include 2(2x) = x, and so AnnR(x)M = {0M , x, 2x}.
■

For N a submodule of an R-module M , we define D(N), a submodule of N , by
D(N) = {n ∈ N | ∃ 0M ̸= n′ ∈ N with [Rn : M ][Rn′ : M ]M = {0M}}. Putting together
what we have, we now state our main result on modules M for which Γ(M) is star.

Theorem 3.6 Let M be a multiplication R-module. Assume Γ(M) is a star with x as
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its central vertex. Then T (M) = Rx ∪ AnnR(x)M , AnnR(x)M is a prime submodule of
M , AnnR(x) is a prime ideal of R, and exactly one of the following must be true:

a T (M) = Rx = AnnR(x)M = {0M , x, 2x}, and Γ(M) has two vertices and a
single edge.

b Rx = {0M , x}, x ∈ AnnR(x)M , and T (M) = AnnR(x)M .
c Rx = {0M , x}, AnnR(x)M = {0M}, M = T (M) = Rx, and Γ(M) is a single
vertex.

d Rx = {0M , x}, x /∈ AnnR(x)M ,M = Rx⊕AnnR(x)M , T (M) is not a submodule
of M , and D(AnnR(x)M) = {0M}.

Proof. We already proved in Theorem 3.2 that T (M) = Rx ∪ AnnR(x)M , and
AnnR(x)M is a prime submodule. By Lemma 3.3, |Rx| = 2 or 3. In the latter case, by
Lemma 3.5, we are exactly in the case described by option (a). So assume Rx = {0M , x}.
If x ∈ AnnR(x)M , then T (M) = AnnR(x)M , and we are in the case described by (b).

Hence, we can assume Rx = {0, x}, x /∈ AnnR(x)M , and, by Lemma 2.1(c), [Rx :
M ]x ̸= {0M}. Let α ∈ [Rx : M ] with αx ̸= 0M . Since Rx = {0M , x}, we have αx = x and
so 1−α ∈ AnnR(x). Thus 1 ∈ AnnR(x) + [Rx : M ], and M ⊆ AnnR(x)M + [Rx : M ]M︸ ︷︷ ︸

Rx

.

Now since x /∈ AnnR(x)M , AnnR(x)M ∩Rx = {0M}, and M = Rx⊕AnnR(x)M .
If AnnR(x)M = {0M}, then M = Rx = T (M) and we are in case (c). So it only

remains to show that if |Rx| = 2, AnnR(x)M ̸= {0M} and x ̸∈ AnnR(x)M , then T (M)
is not a submodule of M and D(AnnR(x)M) = {0M}, and hence we are in case (d).

Now T (M) = Rx ∪ AnnR(x)M , and Rx and AnnR(x)M are both additive subgroups
of M . The union of two subgroups is a subgroup if and only if one is contained in the
other. But this cannot happen if x ̸∈ AnnR(x)M , and AnnR(x)M ̸= {0M}.

Finally, by way of contradiction, assume 0M ̸= n ∈ D(AnnR(x)M). Then, by definition,
there exists a non-zero element n′ ∈ AnnR(x)M with [Rn : M ][Rn′ : M ]M = {0M}. Since
x ̸∈ AnnR(x)M , by Lemma 2.1(f), non-zero elements of AnnR(x)M are vertices of Γ(M)
adjacent to x. Therefore both n and n′ are adjacent to x in Γ(M). But since, by Lemma
2.1(c), [Rn′ : M ]M = Rn′, we have [Rn : M ]n′ = [Rn : M ][Rn′ : M ]M = {0M}. We
conclude that n = n′, since otherwise, by Lemma 2.1(e) and 2.1(f), n and n′ would be
adjacent in Γ(M), and x−n−n′−x would be a triangle. Thus n ∈ AnnR(x)M\{0M , x} ⊆
T (M)⋆, [Rn : M ]n = {0M}, and, since x and n are adjacent, [Rn : M ]x = {0M}. But
this means that [Rn : M ](x+ n) = [Rn : M ]x+ [Rn : M ]n = {0M}, and so, by Lemma
2.1(e), x+n ∈ AnnR(x)M . But AnnR(x)M is a submodule, and if both n and x+n are
in this submodule, then so is x, which is a contradiction. The proof is now complete. ■

Example 3.7 Four examples show that each of the cases of Theorem 3.6 are possible.
Also, see Figure 2.

Let M = R = Z/9Z, and x = 3. Then T (M) = Rx = {0, 3, 6}, and Γ(M) is a single
edge.

Let M = R = Z/8Z, and x = 4. Then Rx = {0, 4}, T (M) = AnnR(x)M = {0, 2, 4, 6},
and Γ(M) is a path of length 2.

Let R = Z, M = Z/2Z, and x = 1. Then Rx = {0, 1} = M = T (M), AnnR(x)M =
{0M}, and Γ(M) is a single vertex.

If M = R = Z/2Z⊕D where D is a non-trivial integral domain (finite or infinite), and
x = (1, 0), then M = Rx ⊕ AnnR(x)M , and Γ(M) is a star with x as its central vertex
and all elements of the form (0, y) with 0 ̸= y ∈ D as vertices of degree 1.

Remark 1 In Theorem 3.6, note that T (M) is not a submodule of M only for case (d).
Also, by Lemma 2.1(e), [Rx : M ]x = {0M} only for cases (a) and (b).



108 Z. Abdollah et al. / J. Linear. Topological. Algebra. 13(02) (2024) 101-112.

3 6 2 4 6 2

4

5

6

8

Figure 2. Γ(M) for M = R = Z/9Z (left), M = R = Z/8Z (middle), and M = R = Z/10Z ∼= Z/2Z⊕Z/5Z (right).

An R-module M is called reduced (Lee and Zhou [12]) if, for all α ∈ R and x ∈ M ,
we have Rx ∩ αM = {0M} whenever αx = 0.

Proposition 3.8 Let M be a reduced multiplication R-module, and assume Γ(M) is
a star with central vertex x. Then [Rx : M ]x ̸= {0M}, and only cases (c) and (d) of
Theorem 3.6 are possible.

Proof. Assume [Rx : M ]x = {0M}. By the definition of a reduced module, Rx ∩ [Rx :
M ]M = {0M}. But since M is a multiplication module [Rx : M ]M = Rx and Rx ∩ Rx
is not {0M}. The contradiction proves that [Rx : M ]x ̸= {0M}, and the rest follows from
Remark 1. ■

4. Sufficient conditions for Γ(M) to be a star

If R is a commutative ring with identity, and M is a faithful R-module, then Gha-
landarzadeh and Malekooti Rad [11, Theorem 2.6] showed that the torsion graph Γ(M)
is connected and its diameter is at most 3. Let R = Z/2Z ⊕ Z/4Z, and let M = R
considered as an R-module. Then M is a faithful multiplication module, and Γ(M) has
no cycles with diameter equal to 3 (See Figure 3). So, in this case, Γ(M) is a tree and yet
not a star. In this section, we characterize faithful multiplication modules M for which
Γ(M) has no cycles, and yet is not a star. As an aside, we note that Abdollah et al.
[1, Theorem 28(a)] showed that if a torsion graph (for any module—not necessarily a
multiplication module or faithful—over a commutative ring with identity) has a cycle,
then its girth is either 3 or 4.

(1, 0) (1, 2)(0, 1) (0, 2)

(0, 3)

Figure 3. Let R = Z/2Z⊕Z/4Z, and consider M = R as an R-module. The torsion graph Γ(M) is a tree but not
a star.

Our main theorem of this section shows that the example of the multiplication module
R = Z/2Z⊕Z/4Z (as an R-module) of a torsion graph that is a tree but not a star (see
Figure 3) is quite unusual.

Lemma 4.1 Let M be a multiplication R-module, and assume that Γ(M) contains a
path a− x− b of length 2 and no cycles. Then {0M , x} = AnnR(b)M ∩ AnnR(a)M is a
submodule of M .

Proof. Since x is assumed to be distinct from and adjacent to both a and b in Γ(M),
by Lemma 2.1f, we have x ∈ AnnR(a)M ∩AnnR(b)M . Conversely, let z ∈ AnnR(a)M ∩
AnnR(b)M , and, by way of contradiction assume z ̸∈ {0M , x}. Again by Lemma 2.1f,
either z = a or z is a vertex of Γ(M) adjacent to a. Likewise, either z = b or z ∈ T (M)⋆

is adjacent to b. Hence, the vertex z is either the same as one of a or b (and adjacent to
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the other one), or distinct from both. In the former case, a− x− b is a triangle, and in
the latter case, a − x − b − z − a is a four cycle. Both cases contradict the assumption
that Γ(M) has no cycles, completing the proof. ■

In the case of a commutative ring R, DeMeyer and Schneider [8, Theorem 1.6] showed
that if Γ(R) is not the empty graph, has no cycles, and yet is not a star, then R ∼= Z/2Z⊕
Z/4Z or R ∼= Z/2Z⊕Z/2Z[t]/⟨t2⟩. This section’s main theorem, Theorem 4.2, is a partial
generalization to the more general case of multiplication modules over commutative rings.
Recall that for N a submodule of an R-module M , we have defined a submodule of N ,
denoted D(N), by D(N) = {n ∈ N | ∃ 0M ̸= n′ ∈ N with [Rn : M ][Rn′ : M ]M =
{0M}}.

Theorem 4.2 Let M be a multiplication R-module. Assume Γ(M) has no isolated ver-
tices, and no cycles, and yet has a path of length 3. Then there exists x ∈ T (M)⋆ such that
Rx = {0M , x}, andM = Rx⊕AnnR(x)M . Furthermore, AnnR(x)M\{0M} ⊆ T (M)⋆, the
subgraph of Γ(M) induced by these vertices has no edges, and yet |D(AnnR(x)M)| = 2.

Proof. By hypothesis, we have a path a − x − z − b in Γ(M) of length 3. By Lemma
2.1(e) and 2.1(f), [Ra : M ]x = [Rx : M ]a = [Rz : M ]b = [Rb : M ]z = {0M}, and, by
Lemma 4.1, both {0M , x} and {0M , z} are submodules of M .
Claim: It is not possible for both [Rx : M ]x and [Rz : M ]z to be equal to {0M}.
Proof of Claim: By way of contradiction, assume [Rx : M ]x = [Rz : M ]z = {0M}.
Consider the element x+ z. Since x and z are non-zero, x+ z is distinct from x and z. If
x+z = 0M , then z = −x ∈ Rx, and, in Γ(M), by Lemma 2.1f, z is adjacent to all vertices
that x is adjacent to. As a result, a−x− z−a would be a cycle of length 3 contradicting
one of the assumptions. Hence, x + z ̸= 0M . Since x and z are adjacent in Γ(M), by
Lemma 2.1(e) and 2.1(f), [Rx : M ]z = {0M}, and we are assuming [Rx : M ]x = {0M}.
So 0 ̸= [Rx : M ] ⊆ AnnR(x+ z) since [Rx : M ](x+ z) = [Rx : M ]x+[Rx : M ]z = {0M}.
Hence, x + z is a vertex in Γ(M) adjacent to x. Likewise, x + z is adjacent to z. This
means that x − (x + z) − z − x is a cycle of length 3 which contradicts our hypothesis.
The contradiction completes the proof of the claim.

Because of the claim, and without loss of generality, assume that [Rx : M ]x ̸= {0M}—
in fact, we will prove below that, given this assumption, [Rz : M ]z will have to be equal
to {0M}. Now, let α ∈ [Rx : M ] with αx ̸= 0M . By Lemma 4.1, Rx = {0M , x}, and so
αx = x. In addition, α ̸= 1, since otherwise M = Rx = {0M , x} will not have enough
elements for a path of length 3 in Γ(M). From αx = x, we get that 1 − α ∈ AnnR(x).
Thus 1 ∈ AnnR(x) + [Rx : M ], and as a result, M ⊆ AnnR(x)M + [Rx : M ]M︸ ︷︷ ︸

Rx

⊆ M .

Hence, M = Rx+AnnR(x)M .
Since Rx = {0M , x}, to show that Rx ∩ AnnR(x)M = {0M}, we need to show that x

is not an element of AnnR(x)M . If it were, and recalling that x = αx with α ∈ [Rx : M ],
we would have x = αx ∈ [Rx : M ] AnnR(x)M ⊆ AnnR(x)Rx = {0M}, a contradiction.
Thus, M = Rx⊕AnnR(x)M .

By Lemma 2.1f, every non-zero element of AnnR(x)M is a vertex of Γ(M) and adjacent
to x. There cannot be two distinct elements in AnnR(x)M that are adjacent in Γ(M)
since otherwise those two elements and x would make a cycle of length 3 contrary to
assumption. We conclude that the subgraph of Γ(M) induced by the vertices T (M)⋆ ∩
AnnR(x)M has no edges.

It remains to show that, even though the graph induced by the vertices T (M)⋆ ∩
AnnR(x)M has no edges, |D(AnnR(x)M)| = 2. By assumption, a − x − z − b is a path
of length 3 in Γ(M). By Lemma 2.1f, a and z are both elements of T (M)⋆ ∩AnnR(x)M .
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One consequence is that 0M ∈ D(AnnR(x)M) since [{0M} : M ][Rz : M ]M = {0M}.
Let 0M ̸= y ∈ AnnR(x)M . Then, since no two non-zero torsion elements of AnnR(x)M

are adjacent in Γ(M), y ∈ D(AnnR(x)M) if and only if [Ry : M ]y = [Ry : M ][Ry :
M ]M = {0M}.

We claim that z is the unique non-zero element of D(AnnR(x)M). Vertex b (from the
path a−x−z−b) is adjacent to z, and is not equal to x. As a result, b ̸∈ Rx∪AnnR(x)M ,
and, since M = Rx⊕AnnR(x)M , we have b = x+ y for some y ∈ AnnR(x)M . Invoking
Lemma 2.1f, {0M} = [Rz : M ]b = [Rz : M ]x︸ ︷︷ ︸

{0M}

+[Rz : M ]y = [Rz : M ]y. This implies

that either y = z or y and z are adjacent in Γ(M). However, both y and z are elements
of AnnR(x)M and no two elements of AnnR(x)M can be adjacent. We conclude that
y = z, b = x + z, and [Rz : M ]z = {0M}. The latter means that z ∈ D(AnnR(x)M).
To complete the proof that D(AnnR(x)M) = {0M , z}, assume y is yet another element
of D(AnnR(x)M). This means that [Ry : M ]y = {0M}. Since y and z are not adjacent
vertices, we have [Ry : M ]z ̸= {0M}, and so there exists β ∈ [Ry : M ] with βz ̸= 0M .
By definition of β, we have βz ∈ Ry, and so β[Ry : M ]z ⊆ R[Ry : M ]y = {0M}.
Since βz and y are not adjacent, this means that y = βz, but that would imply that
[Rz : M ]y = [Rz : M ]βz = {0M} contradicting the fact that y and z are not adjacent. ■

Example 4.3 Let R = Z/2Z⊕Z/4Z, and let M = R considered as an R-module. Then
M is a faithful multiplication module, and Γ(M) has no isolated vertices, no cycles,
and yet has a path of length 3 (See Figure 3). As a result,Theorem 4.2 and its proof
apply. Since (0, 1) − (1, 0) − (0, 2) − (1, 2) is the only path of length 3, the candidates
for x and z (from the proof of Theorem 4.2) are (1, 0) and (0, 2). Indeed, x = (1, 0)
and [Rx : M ]x = {(0, 0), (1, 0)}, while z = (0, 2) and [Rz : M ]z = {(0, 0)}. In this
example, AnnR(x)M = {(0, 0), (0, 1), (0, 2), (0, 3)}, M = Rx ⊕ AnnR(x)M , there are no
edges among the nonzero elements of AnnR(x)M , and D(AnnR(x)M) = {(0, 0), z}, as
predicted by the Theorem.

As pointed out earlier in the case of faithful multiplication modules, Ghalandarzadeh
and Malakooti Rad [11, Theorem 2.6] showed that the torsion graph Γ(M) is connected.
Therefore in this case, Theorem 4.2 can be restated to say that if Γ(M) has no cycles,
then it is either a star or M ∼= M1 ⊕M2 with |M1| = |D(M2)| = 2.

5. Stars and the Annihilator graph AG(M)

We now turn to the annihilator graph AG(M). Recall that T (M)⋆—the set of non-zero
torsion elements of the R-module M—continues to be the set of vertices, and, by Lemma
2.1(h), in the case of multiplication modules, two vertices x and y are adjacent in AG(M)
if and only if

AnnR([Rx : M ]y) ̸= AnnR(x) ∪AnnR(y).

Consider Z/8Z, the integers modulo 8, as a modulo over itself. Then this is a multi-
plication module, where Γ(M) is a star (see Example 3.7 and Figure 4) while AG(M)
is a triangle and not equal to Γ(M). As the next Proposition shows, for multiplication
modules—and this includes the case of any ring considered as a module over itself—this
is an anomaly, and, most often, if one of the graphs is a star, then the two graphs are
the same.
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Figure 4. If M = Z/8Z is considered as a module over itself, then Γ(M), on the left, is a star, while AG(M), on
the right, is a triangle.

Theorem 5.1 Let M be a multiplication R-module.

a If AG(M) is a star, then Γ(M) = AG(M) is a star as well. In particular, the
conclusions of Theorem 3.6 remain valid.

b If Γ(M) is a star, then, except for Case (b) of Theorem 3.6, AG(M) = Γ(M) is
a star as well.

Proof.

a By Proposition 2.3(a), Γ(M) is a subgraph of AG(M), and, for multiplication
modules, by Proposition 2.3(b) a vertex is an isolated vertex of one if and only
if it is an isolated vertex of the other.

b If Γ(M) is a star, then Theorem 3.6 applies, and M is in one of the four cases of
that theorem. Moreover, by Proposition 2.3(a), Γ(M) is a subgraph of AG(M),
and so we just have to show that AG(M) does not have any extra edges. In Cases
(a) and (c), Γ(M) is the complete graph on respectively 2 and 1 vertices, and
hence AG(M) = Γ(M) is a star as well. It remains to show that in Case (d),
other than the edges from the central vertex x to all other vertices, there are no
other adjacencies in AG(M).

Hence, we can assume that M is a multiplication module, Γ(M) is a star with
x ∈ M\AnnR(x)M as its central vertex, Rx = {0, x}, T (M) = Rx∪AnnR(x)M ,
and M = Rx⊕AnnR(x)M . Let y and z be non-zero elements of AnnR(x)M . The
proof will be complete when we show that y and z, which are not adjacent in
Γ(M), are also not adjacent in AG(M). By way of contradiction, assume they are.
By Lemma 2.1(h), AnnR(y) ∪ AnnR(z) is a proper subset of AnnR([Ry : M ]z).
Let α ∈ AnnR([Ry : M ]z)\AnnR(y)∪AnnR(z). Hence, α[Ry : M ]z = {0M}, and,
by Lemma 2.1(e), [Ry : M ]x = {0M}. Note that since y and z are not adjacent
in Γ(M), [Ry : M ] ̸= {0R} (Lemma 2.1(e) and 2.1(f)), and [Ry : M ](x + αz) =
[Ry : M ]x + α[Ry : M ]z = {0M}. Hence, x + αz ∈ T (M), and, if x + αz ̸= 0M ,
then, in Γ(M), y is adjacent to x + αz. But in Γ(M), y is adjacent only to x.
However, since α ̸∈ AnnR(z), x + αz ̸= x. We conclude that x + αz = 0M . But
this means that x = −αz ∈ AnnR(x)M contradicting one of the assumptions.

■

Corollary 5.2 Let M be a multiplication R-module, and assume Γ(M) is a star. If M
is a reduced R-module, or alternatively, T (M) is not a submodule of M , then AG(M) =
Γ(M) is a star as well.

Proof. Follows immediately from Remark 1, Proposition 3.8, and Theorem 5.1. ■

We note that in the special case when a commutative ring R is considered as a module
over itself, then Badawi [5, Theorem 3.17] has characterized the rings where AG(R) ̸=
Γ(R) and yet Γ(R) is a star. In such a case, Γ(R) must be a path of length 2, and
AG(R) a triangle. In addition, Badawi [5, Theorem 3.18] gives various characterizations
of non-reduced rings R with at least two non-zero zero divisors where AG(R) is a star.

In Section 4, we saw that, while rare, it is possible for Γ(M) to be a tree without being
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a star. A straightforward consequence of our results in Abdollah et al. [1] for AG(M)
shows that, even without assuming that M is a multiplication module, this does not
happen for AG(M).

Proposition 5.3 Let M be an R-module. If AG(M) has no isolated vertices and no
cycles, then AG(M) is a star graph.

Proof. By Proposition 2.3(c), if AG(M) has no isolated vertices, then AG(M) is con-
nected and has diameter at most 2. If the diameter is 1, then the graph must be complete,
but since we are assuming no cycles, then AG(M) has two vertices and a single edge and
is a star graph. If the diameter is 2, then the graph has a path y−x−z of length 2. Since
the graph has no cycles, all the other vertices must be adjacent to x. Hence, AG(M) is
a star with x as its central vertex. ■
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