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Some algebraic properties of Lambert Multipliers on L? spaces
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Abstract. In this paper, we determine the structure of the space of multipliers of the range
of a composition operator C,, that induces by the conditional expectation between two LP(X)
spaces.
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1. Introduction and Preliminaries

Let L(X, X, 1) be a o-finite measure space. For any complete o-finite sub-algebra A C X
with 1 < p < oo, the LP-space LP(X, A, u|A) is abberivated by LP(A), and its norm is
denoted by |.||,. We understand LP(A) as a Banach sub-space of LP(X). The support
of a measurable function f is defined by o(f) = {x € X : f(z) # 0}. All comparisons
between two functions or two sets are to be interpreted as holding up to a p-null set.

To examine the weighted composition operators efficiently, Lambert in [5] associated
with each transformation 7', the so-called conditional expectation operator E(-|.4) = E(-)
is defined for each non-negative measurable function f or for each f € LP(X), and is
uniquely determined by the conditions:

(i) E(f) is A-measurable and
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(ii) If A is any A-measurable set for which [, fdu converges we have

Afdu=AE(f)du-

This operator will play a major role in our work, and we list here some of its useful
properties:
e If g is A-measurable then FE(fg) = E(f)g.
BN < B(f1P).
12Dl < 1
If f>0then E(f) > 0;if f > 0 then E(f) > 0.
E(|f|?) = |E(f)|? if and only if f € LP(A).

As an operator on LP(X), E(-) is the contractive idempotent and E(LP(X)) = LP(A).
The real-valued >-measurable function f is said to be conditionable with respect to A
if u{z € X : E(f*)(z) = E(f7)(x) = o0}) = 0. In this case E(f) := E(f*) — E(f7).
If f is complex-valued, then f is conditionable if the real and imaginary parts of f are
conditionable and their respective expectations are not both infinite on the same set of
positive measure. In this case, E(f) := E(Ref)+iE(Imf) (see [3]). We denote the linear
space of all conditionable ¥-measurable functions on X by L(X). For f and g in L(%),
we define fxg = fE(g) + gE(f) — E(f)E(g). Let 1 < p, ¢ < 0o. A measurable function
u € LO(X) for which u* f € L4(X) for each f € LP(X), is called Lambert multiplier (see
[6]). In other words, u € L°(X) is Lambert multiplier if and only if the corresponding
*x-multiplication operator T, : LP(X) — L%(X) defined as T, f = u * f is bounded.

In the next section, Lambert multipliers acting between two different LP(X) spaces are
characterized by using some properties of conditional expectation operator. In section 3,
Fredholmness of corresponding x-multiplication operators will be investigated.

2. New results of Lambert multipliers on L? spaces

In this paper we will assume p(X) < oo.

Definition 2.1 For f and g in LY(X), we define

fxg=fE(9)+9E(f) — E(f)E(9)-
Definition 2.2 A measurable function v € L%(X) for which T,(f) = u x f for each
f € L?(%), is called Lambert operator.

Definition 2.3 A measurable function v € L°(X) for which u x f € L%*(X) for each
f € L*(Y), is called Lambert multiplier.

In other words, v € L°(X) is Lambert multiplier if and only if the corresponding
x-multiplication operator T, : L?(X) — L?(X) defined as T,,f = u* f is bounded.

Theorem 2.4 Suppose u € LY(X). Then u € K3 if and only if E(Jul?) € L®(A).
Proof. See [4]. |
Definition 2.5 Define K3, the set of all Lambert multiplier from L?(X) into L?(X), as
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follows:
Ky ={ue LX) :uxL*(X) C L*(¥)}.

Note K3 is a vector subspace of L(X).

Definition 2.6 Suppose u € L°(%). Then we define

R={N+T,:u€c Kjand ) € C}.

Hereafter we shall denote AI + T, (I is identity operator) simply as A + T,.

Proposition 2.7 Show R is closed under addition and Ty,+, = T,, + T, for every u,v €

Proof. Let A + T, and v + T}, be in R. Then, for any f € L?(X),

(A+T) + (v +T)lf = A+ Tu)f + (v +To)f
:(Af+Tuf)+(’Yf+va)

=\ + <uE(f) + fE(u) - E(u)E(f)>

+ 9/ + (vE() + TE@) - EW)E())
=A+f+w+v)E(f)+ fE(u+v) — E(u+v)E(f)
= (>‘ + f)/)f + Tu-‘rvf‘

Then (A +7)f + Tutof = (0 + Ty) f where 6 = X+ and y = u + v. Since |u + v|*> <
2(|u\2 + |v|2> and F is a linear operator, thus E<|u + v|2> < 2<E(|u|2) + E(|v|2)> It
follows that y € K3. Therefore, R is closed under addition and T4, = Ty, + 7). [ ]

Proposition 2.8 a. Show R is closed under multipliers and Ty, = AT, for any f € Lz(E)
and A € C.
b. R is commutative under composition operators.

Proof. a. Suppose f € L?(X) and A € C, thus we have

(M) f = ATuf
= E(u)+ fE(u) — E(u)E(f)
= (A)E(f) + FE(Au) — E(Au)E(f)
= Thuf,

it follows \T,, = T’,. Otherwise since

B(Ixu?) = B(ARlul) = IAPE(luP),
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this equality shows that if E(|u2) € L®(A), then E(|Au\2>. Thus if T, € R, then

Ty = AT}, for any A € C.
b. We show R is commutative. Suppose T;, and T}, be in R. Thus

T.T.f = Tu(vE(f) + FE@) — E@)E(f))
— vE(u)E(f) + fE(vE(u)> - E(vE(u))E( )+ uB)E(f) — E(uE(v))E( ).

similarly we have

T,T.f = T, (uB(f) + fE(u) - E@)E(f))
— vE(u)E(f) + fE(vE(u)> - E(vE(u))E( )+ uB@)E(f) — E(uE(v))E( ).

The above equality shows that T, T, = T, T,,. Therefor, R is commutative.
Now, we show T, T, € R. Note that

T.I,f = T(uEv—i—UEu)f —Tpveuf = T(uEv—i—vEu)f - TE(uEv)f

also
E (juEv + vEu|?) < 2 (E|uEv|* + E|lvEul?)
<2 (E\u|2E|v|2 + E|v|2E|u\2)
— 4E[o2Elul?,
and

E|EvEu|® = E (|[Ev]*|Eu®) < E (E[v|*Eu?) = E[v|*E|ul?,

which implies T, T}, be in R, since by E|u|? and E|v|? are bounded operators. In general,
for every v, A € C we have

AN+Ty)(v+Ty) = Ay + \Ty, + T, + T, Ty,

Thus by the above equalities (b) hold.

Theorem 2.9 R is a commutative operator algebra.
Proof. By Propositions [2.7] and [2.8], it is trivial. |

If ${ is an algebra of bounded operators, then its commutant " is the set of all bounded
operators that commute with every element in  (see [1, 2]). In symbols and in the context
of Lambert multipliers:
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R'={A€B(L*X)): AT =TA for any T € R}.

Theorem 2.10 Suppose M), is multiplication operator. Set

LX(A) = {Mh che LOO(A)},

then £°(A) C R".
Proof. Let f € L?(X). Then for any h € L>(A), we have

TuMpf =Ty(hf) =uE(hf) +hfE(u) — E(u)E(hf)
- h(uEf + fEu— uEf) — WT,f = MyT,f.

Therefor £L2(A) C R". [

3. Some results of Lambert multipliers on L? spaces

In this section we bring some facts and definitions, which will be used later.

Definition 3.1 Let T, : L?(X) — L?(X). Define
W={ue L) : T, is bounded on LQ(Z)} .

We already know one important property of function in W, namely, E(|u|?) is bounded.
However, Since

|E(u)|* < Elul?,

we see that uw € W implies that E(u) is bounded. Therefore, if a function is both
A—measurable and in W, then it must be bounded. Our next Lemma states that the
converse also holds.

Lemma 3.2 W LY(A) = L>®(A).

Proof. Let s € L>(A). Since s is A—measurable, then Tyf = sf for f € L?(X). Also,
we know L2(A) C L?(X), thus we get

1Tt 113 = / (T 2y = / s fPdu < 5|2 / 2 = |82 | £
X X X

so that Tsf € L?(o) for all f. Hence, W [ L°(A). The converse we proved in the remarks
leading up to the Lemma. [ |

Theorem 3.3 T, is normal if and only if u € L*°(A).
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Proof. Assume T, is normal. Then, for any f € L*(X),

T.T,f=T,T,f.

Now, we have
T.T.f = E(u)E(uf) (1)

and
T3Tuf = E(f)E(jul®) + E(u)E(af) — E(w)E(u)B(f). (2)

Therefore we conclude from [1] and [2]

E(u)E(jul®) = E(f)|E(u)[*.

The last equation holds for every L? function, so in particular it must hold for any
strictly positive A— measurable L? function s:

E(s)E(jul) = E(s)| E(u)]?,

then by letting F(s) = s we have

sB(|uf*) = s|E(u).

Since s > 0, this gives

|E(u)|* = BE(jul?).

However, we saw that this is equivalent to v being A— measurable. By [3.2], u € L*(A).
Conversely, now suppose, that u € L*(A). Then, for f € L*(%), T,f = uf and
Ty f =uf. Therefore,

T.T,f = Tu(uf) = u(af) = Jul*f

and
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TiTuf = Ty (uf) = a(uf) = u*f.

Hence, T,,7;; = T,;/T,. Thus, T;, is normal.

Theorem 3.4 T, is self-adjoint if and only if u € L>°(A) is real-valued.

Proof. Assume T, is self-adjoint. Then, T}, is normal and by Theorem [3.3] u € L*°(A).
Therefore, we must only show that u is real-valued. Let f € L?(X). Then, T f = T, f
can be written as

E(uf) + E(u) (f - E(f)) = wE(f) + fE(u) - E(u)E(f).

Since u is A— measurable, o f = uf which implies (u — u)f = 0. This last equality holds
for any L? function. In particular, it holds for strictly positive s € L?(A). Therefore,
U= 1u.

Conversely, suppose u € L®(A) is real-valued. For f € L*(%),

Tif = uf = Tof.

Hence, Ty, is self-adjoint. [ |
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