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Approximate solution of fourth order differential
equation in Neumann problem
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Abstract. Generalized solution on Neumann problem of the fourth order ordinary differential
equation in space Wf(O, b) has been discussed , we obtain the condition on B.V.P when the
solution is in classical form. Formulation of Quintic Spline Function has been derived and the
consistency relations are given.Numerical method,based on Quintic spline approximation has
been developed. Spline solution of the given problem has been considered for a certain value
of a. Error analysis of the spline method is given and it has been tested by an example.
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1. Introduction

The most important class of operator equation in the fourth order is:
Lu= (z*") + Au = f, (1)

when z € [0,b0],0 < o < 4, f € Ls((0,b),H), the operator A has a complete system of
eigenfunctions {x } ren, which form a Riesz basis in H. Degenerate equations encountered
in solving many important problems of applied character(the theory of small deformation
surfaces of rotation, the membrane theory of shells, the bending of plates of variable thick-
ness with a sharp edge). Particularly, these equations are important in the gas dynamic.
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Tricomi [19]has studied on the second-order equation with non-characteristic degenera-
tion. Keldysh [9] had played a fundamental role in the theory of degenerate equations.He
studied the first boundary value problem of the second-order equation with character-
istic degeneration.Bicadze in [2] formulated weight problems which has been created by
Fichera [5]. Generally speaking the 4th order B.V.P can not be solved analytically only
in the special case the analytic solution is available so that the numerical Approxima-
tion of the solution are interested . Numerical discussion of fourth-order boundary value
problems are given in [20], [10],[11].The Quintic spline methods for the solution of linear
fourth-order two boundary value problems are given in [10],[12],[11]. Rashidinia discussed
solving fourth-order linear boundary-value problems [12].

In this paper we emphasize on the generalized solution for the Neumann problem in
WZ(0,b). In section-2 we consider one-dimension form of equation (1) and defined spaces
W2(0,b), W2(0,b) and there norms also we defined generalized solution of the Neumann
problem.In section-3 Formulation of Quintic Spline Function has been derived and the
consistency relations are given which it is useful in approximation of the solution of
4th B.V.P.In section-4 Error Analysis of the method is given and finally in section-5
Numerical illustration has been given.

2. Neumann problem for one-dimensional case
We consider the one-dimensional of equation (1),that Au = au, a € C,a = const,
Lu= (") +au=f, 0<a<4, feL0,b). (2)

To discuss the generalized solution in Neumann problem,we need to define spaces
W2(0,b)and W2(0,b).

2.1 Space W2(0,b)and W32(0, b)

Definition 2 ‘ ‘
The weighted Sobolev space W2(0,b) is the completion of C2[0,b] with the norm

b
s = | o @)z, a0, 3)

when C2[0,b] be a set of twice continuously differentiable functions and u(z) defined on
[0, 0] and satisfying the conditions

u(0) = u'(0) = u(b) = u/(b) = 0. (4)

The elements of W2(0,b) are continuously differentiable functions on [e,b] for every
0 < & < b, whose first derivatives are absolutely continuous and u(b) = «'(b) = 0.

Proposition 3 For every u € I/Va2 (0,b) close to x = 0, we have the following estimates

(i) u(@)[? < Cra® a3 0, for o # 1.3,

(ii) lu/(z)|* < Coz'™ aHuHWZ for ae # 1. (5)

(0,b)’
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Following ( [7]) in the above solutions when o = land o = 3 the factors 23~
be replaced by 2?|Inx| and |In x| respectively.when o = 1 the factor 2!~
be replaced by |Inz|.

in (i) must
in (ii) must

It follows from relations (5) that, for « < 1 (weak degeneracy), the boundary conditions
u(0) = u/(0) = 0 are “retained”, while for 1 < o < 3 (strong degeneracy), only the
condition u(0) = 0 is "retained”, for a > 3, both u(0) and %' (0) in general may be
infinite. For example, if u(z) = z’p(z) when ¢(z) € C2?[0,b], ¢(b) = ¢'(b) = 0 and
©(0) # 0, then for a > 3 and @ < 3 < 0, the function u(x) belongs to W2(0,b), but
u(0) and %'(0) do not exist.

Proposition 4 For every 0 < a < 4, we have a continuous embedding
W2(0,6) = La(0,b). (6)

It is compact for 0 < a < 4, and it verify that the sequence wu,(r) =
n~12271/2|Inz|~1/2=1/" is bounded in WZ(0,b), but it does not contain a subsequence
convergent in L (0,b).(proof in [6])

Remark 5 The embedding (6) for o > 4 is fail.

When a > 4, we use the function u(z) = e 2p(x) that p(z) € C?[0,b], p(b) =
¢'(b) = 0 and (0) # 0 and u € W2(0,b) but u ¢ Ly(0,b).

Corollary 6 If the function u has a bounded piecewise-continuous derivative of the second
order in [¢, b] for arbitrary 0 <& <, |Jullyj2( ) < o0, u(b) = u'(b) = 0 and near to x =0

hold the inequalities (5), then u € W2(0,b).

Definition 7 The weighted Sobolev space W2(0,b) is the completion of C?2[0,b] with the
norm

b
llify2 0. = /0 (2 [ (2)|* + Ju(z)]*) dz, o >0, (7)
with the corresponding scalar product
{u,v}o = (%", 0") + (u,v).
Proposition 8 For every u € W2(0,b) we have
(i) [u(@)? < (1 + c22” ) [[ullfya(o,p), for a # 1,3,
(ii) ' (2))? < (c3+ C4x1_°‘)Hu\|12/V2(07b), for v # 1. (8)

Following ([18]) in the above solutions when o = land a = 3 the factors 23~

be replaced by x?|Inz| and |Inz| respectively.when a = 1 the factor z'~®
be replaced by |Inz|.

in (i) must
in (ii) must

Proposition 9 The following embedding for arbitrary 0 < a < 4 is continuous and
compact.

W2(0,b) C Ly(0,b). (9)
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2.2  Generalized Solution Of The Neumann Problem

In this subsection we define that generalized solution and when it is classical get some
conditions.

Definition 10 The function u € W2(0,b) is called a generalized solution of the Neumann
problem for the equation (2) if for every v € W2(0,b) we have the equality

(z%u”,v") + a(u,v) = (f,v). (10)

If the generalized solution u € W2(0,b) for the equation (2) is classical,then we get
the following conditions ([14])

W() =" (6) =0, (2% (2))]omo = (@t (@))'] om0 = 0. (11)

Indeed, integrating the equality (10) by parts,we obtain that for every v € W2(0,b)
the equality

()" v) + alu,v) + (@ (@)0' () - (2" (@))'0(@)) 224 = (£,v),

is valid.
In the following section we discuss the numerical approximation the solution of the
Neumann problem by using Quintic spline function.

3. Quintic Spline Function

We consider a uniform mesh A, with nodal points x; on [a, b] such that

Ata=zg< 21 <...<xN =D,
(12)
r;=a+th, i=1,...,N,

We denote a function value,u(x;) byw;. Quintic spline function S;(z) interpolating to a
function u(x) on [a,b] and it is defined as follows:

1.In each subinterval[x;_1, z;],5;(x) is a polynomial of at most degree five;

2.The first,second,third and fourth derivatives of S;(z)are continuing on [x;_1,x;] C [a, ]
which are denoting the following:

(0)Si(=7) = Si(a7), (i0)S) (27 ) = S! (7).
(i) S} (27) = S (&), ()5 @) = s0@), (1)

(2 (3

More ever we denote:

(1)Si(zi-1) = ui-1, (ii) Si(wi) = us,

(i) S/ (zi_1) = M;_1, (iv) S, (z;) = M; (14)

(S (i) = Fia, (v)S{Y ()

K3 K

F;
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The spline function S;(x) for « € [z;_1,x;] is defined by:

x €Ti— Tr; — T
Si(w) = (= Jui + (Z—Juiy
h? T — Ti—1.3 T — Ti_1 Ti — T3 T;— T
+ g[(T) M; — (T)Mz + ( 3 ) M1 — ( A )M; 1]
h4 T — Ti—15 10 x — Ti—1.3 7, x— Ti—1 r — X1
F L EETE - PEEIE (I R+ (R (1)

By the continuity of the first and third derivatives and eliminatingM;’s we obtain the
following useful relation.

Ui—g — du; 1 + 6u; — duip1 + uipo

1
— mh4(Fi_2 + 26F;_1 +66F; +26F;+1 + Fi_;,_g) +717 =0, 1=3,.., N — 3,

and from equation (2) we obtain:
u(2) = 27 f(2) — au(z) — 2.2 V" (2) — a.(a — 1) " (z 17
(x) (f(x) (x) () — o= 1) (), (A7)

by substituting Equation (17) into (16) we obtain the main relation of the method.To
obtain the unique solution we need to associated four more equations with (16) .Since

we have v (x) and v/ (z) in (17) we have to approximate them.We use Taylor series and
method of undetermined coefficients that:

h4
uy — 2ug + uz — h2My — 2h3Ty — EO(321F1 —T2F + F3) — 1R, = 0,
= — 2uy + dug — 4dusg + ug + h2M0 + h3T0

r* 379 581 %)
(R R R F) -1 =0
120( 3 1+ 3 1273 3+ Fy) — 7R, =0,
=uj—o —4u;—1 + 6u; — duipq + Uiso

4

— ﬁo(Fifz +26F;,_1 +66F; +26F; 11 + Fiyo) — 71, =0, i= 3(1)N -3
= —2un_1 +Oun_o —4dun_3+un_4+ thN + hSTN
h* 379 581 55
— —(——Fn_ —Fn_9— —FnN_ Fyn_4)— =0
120(3N1+3N2 3N3+N4) TFn_2 )
=SUN_1 — 2UN_2 + UN_3 — thN — 2h3TN
h4

— 50(321FN*1 —T2FN_o+ Fn_3) —TFy_, = 0. (18)
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Now for approximation «”(x) by same manner so that the following system :

h2
Ul—2U2+U3_?0(M1+9M2+M3)_TM1 =0,

2

h
— 2u1 + dug — 4ug + uy — % (—4M1 — 101My + 46 M3 + M4) — 7, =0,

2

h
—(Mi—g +26M;_1 + 66M; + 26 M1 + Mit2) — T, =0,

Ui—2 + 2u;—1 — 6u; + 2ui01 + Ujp2 — 20

2

h
—2un_1+5uny_2 —4un_3+un_4 — %(_4MN—1 —101MN_2 + 46 MN_3 + Mn_4)

— TMy_2 = 07
2

h
UN—1 — 2un—9 + UN_3 — 20 (My—1+9My_o+ My_3) — Tary_, = 0. (19)

And the approximation of u"'(x):

43h3 h3 49
up — 2U2 + uz — h2M0 — WTO — @(73171 + ?T2 + TS) — T, = 07
59 h3 —159 145
— 2uy + Bug — dug + ug + h* Mo + @h% — @( 51+ 14T + —=T + Ty) — 77, = 0,

— Uj—2 + 2Ui—1 — 2Ujp1 + Uiq2
3

— @(Tiq + 2671 + 667; + 261511 + Ti42) — 71, =0, ¢ =3(1)N —3
59h3 h3 159

—2un_1 +5uy_9 —dun 3+ un g+ A My + Ty — ——(——Tn_1 + 14TN o
180 60 2

145
+ ?TN—S +TN_4) — 71y, =0,
9 43h3 h3 49
un—1 —2un—_2 +us — h*"My — WTN - %(73TN—1 + ?TN—2 +Tn-3) — 71y, = 0.

(20)

The above system of (17), (18),(19),(20) can be dented in the Matrix form as follows:

F=2"%G—aU — 2az*"'T — a(a — 1)z*2M), (21)
h4
AU — W2W MG — W3V Ty — @ch — Rp =0, (22)
h?

AsU = 55CaM — Ry =0, (23)
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h3
AU — W2 W3 Mg — h3VaT§ — 50 CsT — Br =0, (24)
When:
1 21 0
-2 5 —4 1
1 -4 6 —41
A=
1-46 —4 1
1 —45 =2
0 1 21
121 0
—2 5 —41
1 2 621
Ay =
12-6 2 1
1-4 5 =2
0 -2 1
1 21 0
-2 5 —4 1
12 0 —21
Az =
-120 -2 1
1-45 =2

0 1 =21
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321 72 1
879 581 _55 |

3 3 3

1 26 66 261

Cy =
126 66 26 1
_ 55 581 _ 379
3 3 3
0 1 —72 321
1 9 1 0
—4-10146 1
1 26 66261
Cy =
12666 26 1
1 46 —101 —4
0 1 9 1
73 49 0
159 4
—139 14 185 1
1 26 66 261
Cy =
126 66 26 1
1 13514 159
6 2
0 1 £ 73

2
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G = (fi,s fn-2, fn-1)7,

U = (u1, us, ...,UN_Q,UN_I)T,

F=@ul a0 )T = (F, Ry, ., Fy_o, Fyo1)7,

M= w? W, uld WP )T = My, M, . My_y, My_1)7,
T =@ ul, P Y )T = (T, T,y s Ty, Ton),
M = (uf,u,0,....0,u%, ux)T = (Mo, My, ., ., ., Mn, Mn)T,

Te = (uf ud,0, ..., 0,05, ui) T = (To, To,s -,y o Tiv, T

Wi =(1,-1,0,...,0,—1,1)T,

W3 =(1,-1,0,...,0,—1,1)T,

Vi=(2-1,0,..0,—1,2)T,

43 59 99 43 p
3 = (ma_mvoa“'aoa_@?ﬁ)

)
— T
RT - (TTI’TT27 “'?TTN—Q?TTN—I) ’
T

Rar = (TMy s TMy s ) TMiy—o> TMy_, )

)

_ T
RF - (TFlaTFga"'7TFN,277—FN,1) )

By substituting Equations (21),(23),(24) into (22) the main method has the following
Matrix form:

AU — B — Tgyror = 0, (25)
Where:
h2aC} haCh h*aCy
A=A —(a—1)A A
1 Garg, (@ T VA e At ops
h4C1 h3aC’1 2 h4aC’1 3
B = M T
120xaG+(ng W3 + h*Wh) 0+(x ; Vs + bWV T},
hOéCl h2a01

TError = (TCg)RT + m(a — )Ry + Rr. (26)
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4. FError Analysis

The Local Truncation error of the given method can be obtained as:

p .
™, = —g5h’ u® (er) t=1
T™, = @%h?-u(?) (€2) =2,
= g, = S u®) () i=3,..,N—3, (27)
Py = T (ens) = N -2,
[P s = —pighS @ (e 1) = N1,
(TTl _ 17 h6 u(ﬁ (81) 1=1,
T, = gghG u(® (e2) i =2,
T = \NTT, = 1%0 7)(5Z) = 35 ey N — 3’ <28)
TIy-2 = %ggh(j u®(ey—g) i=N-2,
Ty = 3167()h6 ul®(en_1) i=N-1,
TR, = %hG.u(6)(€1) i =1,
TR, = %hG.’UJ(ES)(EQ) 1= 27
o =4 5, = — LSO (e,) i=3,..,N—3, (29)
TFy_2 = 17i23h6u(6) (‘C:N—Q) i=N - 2’
v, = g5h®u®(ey 1) i=N-1,
Where:
To < €1 <1,
l’l < 52 < 1’27
Ti—1 < g; < Xy,
IN-—2 <EN-1 < IN-T1,
IN—1 <EN<ZIN-. (30)

5. Numerical Illustration

In order to test the utility of the proposed method we have solved the following example.
The exact solution is known and the maximum absolute error in the solution is tabulated.

Example :
Consider the linear boundary value problem :

(" ()" — u(w) = 2° — 2,

// 14
=0, u, =0,
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With the Exact solution

u(z) = —2° + 22 +

(=2 —6e" +6e™ ™ + 2 "e" + 3e " + 67 + 3me™) cos(x)
(I+e™)(1+e ™)

(—2€™ 4 3me™ + 27" —3e "m — 6+ 6e"e™) sin(x) n (—=8+3me ™ (44 3m)e”

(1+e™)(1+e ™) l4+e ™ 1+4em

)

(31)

This problem has been solved using the Quintic spline with different values of N the
maximum absolute errors in the solution are computed and tabulated in the table.

Table 1. The maximum absolute errors in the solution of Example

N step lengths Absolu Error in solution
50 20 3.01(-2)
75 TE 1.66(-3)
100 Ui 7.8(-4)
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