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1. Introduction

The nonlinear matrix equation

X +ATX−1A = Q, (1)

where Q is a positive definite matrix and A ∈ Rn×n, has some applications in some
branches of applied mathematics, for example, in optimal control theory [4, 11, 13, 14],
dynamic programming [12], statistics [7, 10], and network analysis [8, 9, 15]. When Q is

positive definite matrix, then there exists Q− 1

2 , s.t. by multiplying on both side of (1) by

Q− 1

2 we have the simple form of this equation as follows

X +ATX−1A = I, (2)
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where I is the unite matrix. There are some necessary and sufficient conditions for the
existence of the solution of this equation in [4, 6]. When A is a normal matrix some
necessary and sufficient conditions, for existence the positive definite solution of the
matrix equation X+ATX−1A = I, also can be found in [4, 6]. In [4, 5] the iterative fixed
point method are used for solving the matrix equation (2). In this paper, we apply the

Steffensen method to solve the matrix equation (2) with initial solution X
(0)
0 , when A is

a normal matrix.
In section 2 we prove some of the results of fixed point method that are needed in this

article.
Although when A is a normal matrix, the nonlinear matrix equation (2) was studied

in [6], but in section 3 we apply the Steffensen method to solve this equation, and obtain
some remarkable results for special cases of normal matrix A.

In section 4 we present some numerical examples with comparing the fixed point
iterative method.

2. Some results of Fixed point method

Consider the nonlinear matrix equation (2). The following matrix sequence is a fixed
point iterative method with initial value X0 = I

X0 = I,
Xk+1 = I −ATX−1

k A, k = 0, 1, 2, ...
(3)

Lemma 2.1 ([4], Lemma 2) If the matrix equation (2) has positive definite solution X,
then X > AAT .

Lemma 2.2 ([4], Lemma 4) If the sequence (3) converges, then there exists a constant
α > 0 such that Xk > αI, ∀k ∈ N .

Theorem 2.3 ([4], Theorem 5) The matrix sequence (3) is decreasing matrix sequence
i.e. Xk+1 < Xk for k = 0, 1, 2, ....

Theorem 2.4 ([4], Theorem 5) The matrix sequence (3) has a positive definite solution
if and only if the matrix equation (2) has a solution.

Theorem 2.5 ([4], Theorem 11) If A is a normal matrix, then the nonlinear matrix
equation (2) has a solution if and only if ρ(A) ⩽ 1

2 , where ρ(A) is the spectral radiuse of
A.

Lemma 2.6 If A and B are nonsingular matrices, then

a) AB−1 = B−1A ⇔ AB = BA
b) A−1B = BA−1 ⇔ AB = BA
c) AB = BA ⇒ A2B−1 = B−1A2

d) AB−1 = B−1A ⇒ A2B−1 = B−1A2

e) A2B = BA2 ⇒ A2B−1 = B−1A2.

Proof. Proof is trivial. ■

Definition 2.7 Let A and B be two positive definite matrices, and let A < B, then X
belongs to [A,B] if A ⩽ X and X ⩽ B, i.e. the matrices X −A and B −X are positive
definite matrices.
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Definition 2.8 For matrix sequence {Xk}∞k=0 forward difference ∆Xk is defined as fol-
lows:

∆Xk = Xk+1 −Xk, k = 0, 1, 2, ...,

and ∆iXk is defined by

∆iXk = ∆i−1(∆Xk), i = 2, 3, 4, ....

Lemma 2.9 If A is a normal matrix, and Xs be the produced sequence from iterative
fixed point method (3), then

AXs = XsA, s = 0, 1, 2, ....

Proof. The proof is by induction on s. For s = 0, we have

AX0 = AI = IA = X0A.

If s = 1, then

AX1 = A(I −ATX−1
0 A) = A(I −ATA) = A−AATA = (I −ATA)A = X1A.

Now assume that AXk = XkA, we have (AXk)
−1 = (XkA)

−1 hence X−1
k A−1 = A−1X−1

k ,

AXk+1 = A(I −ATX−1
k A) = A−AATX−1

k A = A−ATAX−1
k A.

Thus by lemma 2.6

AXk+1 = A−ATA2X−1
k = A−ATX−1

k A2 = (I −ATX−1
k A)A = Xk+1A.

■

Lemma 2.10 If A is a normal matrix, and Xs is the produced sequence from iterative
fixed point method (3), then

ATXs = XsA
T . s = 0, 1, 2, ....

Proof. The proof is similar to the proof of Lemma 2.9. ■

Lemma 2.11 If A is a normal matrix, and Xs is the produced sequence from iterative
fixed point method (3), then

XsXs+1 = Xs+1Xs, s = 0, 1, 2, ....

Proof. The proof is by induction on s. If s = 0, then

X0X1 = X0(I −ATX−1
0 A) = I −ATA = (I −ATX−1

0 A)X0 = X1X0.
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For s = 1

X1X2 = (I −ATX−1
0 A)(I −ATX−1

1 A)

= I −ATX−1
1 −ATX−1

0 A+ATX−1
0 AATX−1

1 A,
(4)

and

X2X1 = (I −ATX−1
1 A)(I −ATX−1

0 A)

= I −ATX−1
1 −ATX−1

0 A+ATX−1
1 AATX−1

0 A.
(5)

To prove (4) and (5) it suffices to prove

ATX−1
0 AATX−1

1 A = ATX−1
1 AATX−1

0 A.

Since A is a normal matrix, ATA = AAT and so, ATAAAT = AATATA, therefore

AAT −ATAAAT = AAT −AATATA

⇒ (I −ATA)AAT = AAT (I −ATA)X1AAT = AATX1

⇒ AATX−1
1 = X−1

1 AAT ⇒ X−1
0 AATX−1

1 = X−1
1 AATX−1

0

⇒ ATX−1
0 AATX−1

1 A = ATX−1
1 AATX−1

0 A,

and consequently X0X1 = X1X0. Now assume that Xk−1Xk = XkXk−1, we prove that
XkXk+1 = Xk+1Xk. By Lemma 2.9 we have AXk = XkA, multiplying it by AT on the
right, we have AXkA

T = XkAA
T . By Lemma 2.10 we have AATXk = XkAAT , if we

multiply it from left and right by X−1
k , then X−1

k AAT = AATX−1
k . Again we multiply

this latter equation from the right by X−1
k−1 to get

X−1
k AATX−1

k−1 = AATX−1
k X−1

k−1 = AATX−1
k−1X

−1
k = X−1

k−1AATX−1
k .

Finally, by multiplying the last equations from the right by A and from the left by AT ,
we have

ATX−1
k AATX−1

k−1A = ATX−1
k−1AATX−1

k A.

Thus

I−ATX−1
k A−ATX−1

k−1A+ATX−1
k AATX−1

k−1A

= I −ATX−1
k A−ATX−1

k−1A+ATX−1
k−1AA

TX−1
k A

⇒
(
I −ATX−1

k A
) (

I −ATX−1
k−1A

)
=

(
I −ATX−1

k−1A
) (

I −ATX−1
k A

)
⇒ Xk+1Xk = XkXk+1.

■
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Lemma 2.12 If A is a normal matrix, and Xs is the produced sequence from iterative
fixed point method (3), then

XsXs+2 = Xs+2Xs, s = 0, 1, 2, ....

Proof. The proof is by induction on s. If s = 0, then

X0X2 = IX2 = X2I = X2X0.

for s = 1

X1X3 = (I −ATX−1
0 A)(I −ATX−1

2 A)

= I −ATX−1
2 −ATX−1

0 A+ATX−1
0 AATX−1

2 A,
(6)

and

X3X1 = (I −ATX−1
2 A)(I −ATX−1

0 A)

= I −ATX−1
2 −ATX−1

0 A+ATX−1
2 AATX−1

0 A.
(7)

To show (6) and (7) it is sufficent to prove ATX−1
0 AATX−1

2 A = ATX−1
2 AATX−1

0 A.
By Lemma 2.9 we have AX0 = X0A ⇒ AX0A

T = X0AAT , now by Lemma 2.10,
AATX0A

T = X0AA
T , if we multiply it from right and left by X−1

0 and by multiply-
ing its result from the right by X−1

2 , so by Lemmas 2.6, 2.9, 2.10 we have

X−1
0 AATX−1

2 = X−1
2 AATX−1

0 ,

therefore ATX−1
0 AATX−1

2 A = ATX−1
2 AATX−1

0 A, and consequently X1X3 = X3X1.
Now assume that Xk−1Xk+1 = Xk+1Xk−1, we prove that XkXk+2 = Xk+2Xk.

By Lemma 2.9 we have AXk−1 = Xk−1A, multiplying from the right by AT we have
AXk−1A

T = Xk−1AA
T , then by Lemma 2.10, AATXk−1 = Xk−1AAT . We multiply this

equation from right and left by X−1
k−1 to get X−1

k−1AAT = AATX−1
k−1. Multiplying from

the right by X−1
k+1 then by hypothesis of induction and Lemmas 2.6, 2.9, 2.10, we have

X−1
k−1AA

TX−1
k+1 = X−1

k+1AATX−1
k−1

⇒ ATX−1
k−1AA

TX−1
k+1A = ATX−1

k+1AATX−1
k−1A.

Therefore

I −ATX−1
k−1A−ATX−1

k+1A+ATX−1
k−1AA

TX−1
k+1A

= I −ATX−1
k−1A−ATX−1

k+1A+ATX−1
k+1AATX−1

k−1A

⇒
(
I −ATX−1

k−1A
) (

I −ATX−1
k+1A

)
=

(
I −ATX−1

k+1A
) (

I −ATX−1
k−1A

)
⇒ XkXk+2 = Xk+2Xk

■
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Lemma 2.13 ([17]) If A and B are two symmetric positive definite of same order, and

AB = BA then (AB)
1

2 < A+B
2 .

Theorem 2.14 ([16]) If A and B are two symmetric semi-positive definite of same order,
then AB ⩾ 0 if and only if AB = BA.

Theorem 2.15 If σmax is the greatest singular value of normal matrix A, and 0 ⩽
σmax ⩽ 1

2 and {Xk}∞k=0 be the matrix sequence (2), then Xk > 1
2I ∀k ∈ N .

Proof. We have 0 ⩽ σmax =
√

λmax(ATA) ⩽ 1
2 , so 0 ⩽ λ(ATA) ⩽ 1

4 and consequently

AAT ⩽ 1
4I, now by induction on k, we show that Xk > 1

2I.

For k = 0, we have X0 = I > 1
2I. Let Xk > 1

2I, then

Xk+1 = I −ATX−1
k A = [I +AT (Xk −AAT )−1A]−1.

Recall that for two invertible matrices A and B we have

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1.

On the other hand ATA ⩽ 1
4I ⇒ 1

4I +ATA ⩽ 1
2I < Xk. Now we can write

Xk+1 = [I +AT (Xk −AAT )−1]−1

> I +AT ((
1

4
I +ATA−AAT )−1A)−1

= (I + 4ATA)−1 ⩾ 1

2
I,

where the last inequality is obtained from I + 4ATA ⩽ 2I. ■

Corollary 2.16 If A is a normal matrix, then the matrix sequence which obtained from
(2) is a decreasing positive definite sequence with lower bound 1

2I. Therefore, if the

equation (2) has a solution, then this solution lies in interval the [12I, I].

3. Steffensen method

In this section we use the iterative Steffensen method for solving the nonlinear matrix
equation X + ATX−1A = I, where A is a normal matrix. The Steffensen method for
solving nonlinear equation is explained in [2]. Assume the sequence of fixed point iterative
for solving nonlinear matrix equation X +ATX−1A = I is as follows

X0 = I,
Xk+1 = I −ATX−1

k A, k = 0, 1, 2, ....

The ∆2-Aietken sequence is defined by

X̂k = Xk − (∆Xk)
2 (∆2Xk

)−1
,
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where ∆Xk = Xk+1 − Xk and ∆2Xk = ∆(∆Xk). By applying the ∆2-Aietken in fixed
point iterative method we obtain the Steffensen method:

X
(0)
0 = I

X
(k)
1 = I −AT

(
X

(k)
0

)−1
A

X
(k)
2 = I −AT

(
X

(k)
1

)−1
A

X
(k+1)
0 = X

(k)
0 −

(
∆X

(k)
0

)2 (
∆2X

(k)
0

)−1

= X
(k)
0 −

(
X

(k)
1 −X

(k)
0

)2 (
X

(k)
2 − 2X

(k)
1 +X

(k)
0

)−1
, k = 0, 1, 2, ....

(8)

We begin this iterative method by initial approximation solution X0 = I. In this
section we show that the Steffensen method generates a decreasing sequence of positive
definite matrices. Consequently this sequence of positive definite matrices is convergent.

Remark 1 Recall that X
(k)
0 is positve definte for k = 1, 2, ..., whenever ∆2X

(k)
0 is positve

definite. We know that the matrix ∆X
(k)
0 is Hermition, so by lemma (2.17) the matrix

(∆X
(k)
0 )2 is a positive definite, furthermore by Lemma 2.14 it is necessary that the two

matrices (∆2X
(k)
0 )−1 and (∆X

(k)
0 )2 have comutative property in ordinary product of two

matrices. It is clear that the comutative property holds, since it is sufficient that ∆X
(k)
0

and ∆2X
(k)
0 have comutative property in ordinary product and this is true by Lemmas

2.9, 2.10, 2.11, 2.12 for example, for k = 0 we can write

(
∆X

(0)
0

)(
∆2X

(0)
0

)
=

(
X

(0)
1 −X

(0)
0

)(
X

(0)
2 − 2X

(0)
1 +X

(0)
0

)
= X

(0)
1 X

(0)
2 − 2X

(0)
1 X

(0)
1 +X

(0)
1 X

(0)
0 −X

(0)
0 X

(0)
2

+ 2X
(0)
0 X

(0)
1 −X

(0)
0 X

(0)
0 .

(9)

By Lemmas 2.11 and 2.12 comutativity in product holds, thus

= X
(0)
2 X

(0)
1 − 2X

(0)
1 X

(0)
1 +X

(0)
0 X

(0)
1 −X

(0)
2 X

(0)
0 + 2X

(0)
1 X

(0)
0 −X

(0)
0 X

(0)
0

=
(
X

(0)
2 − 2X

(0)
1 +X

(0)
0

)
X

(0)
1 −

(
X

(0)
2 − 2X

(0)
1 +X

(0)
0

)
X

(0)
0

=
(
∆2X

(0)
0

)(
∆X

(0)
0

)
In orther to we can show for, k = 1, 2, ....

Theorem 3.1 Let Xk is the sequence of positve definte matrix that converg to X.

Then the matrix sequence X̂k = Xk − (∆xk)
2 (∆2xk

)−1
faster than Xk coverge to X, if

Xk+1 −X = (H + Tk) (Xk −X) wher H is matrix with ∥H∥ ≤ 1 and Tk is sequence of
matrices that lim

k→∞
Tk = 0.
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Proof. Since Ek = Xk −X, then

Xk+2 − 2Xk+1 +Xk = Ek+2 − 2Ek+1 + Ek

= (H + Tk+1) (Xk+1 −X)− 2 (H + Tk) (Xk −X) + Ek

= (H + Tk+1) (H + Tk) (Ek)− 2 (H + Tk)Ek + Ek

= ((H + Tk+1) (H + Tk)− 2 (H + Tk))Ek + Ek

= ((H + Tk+1) (H + Tk)− 2 (H + Tk) + I)Ek

=
(
H2 +HTk +HTk + TkTk+1 − 2H − 2Tk + I

)
Ek

=
(
(H − I)2 +H (Tk+1 + Tk)− 2Tk

)
Ek

=
(
(H − I)2 + Sk

)
Ek.

Where Sk = H (Tk+1 + Tk)− 2Tk, and lim
k→∞

Sk = 0. On the other hand we have,

Xk+1 −Xk = Ek+1 − Ek

= (H + Tk)Ek − Ek

= (H + Tk − I)Ek

= ((H − I) + Tk)Ek.

Therefore for the matrix sequence X̂k,

X̂k −X = Xk −X − ((H − I + Tk)Ek)
2
((

(H − I)2 + Sk

)
Ek

)−1
.

We know that Ek = Xk −X and Ek is a nonsingular matrix and by Lemma 2.11, and
Lemma 2.12 we have,

X̂k −X = Ek − (H − I + Tk)
2E2

kE
−1
k

(
(H − I)2 + Sk

)−1

=
(
I − (H − I + Tk)

2((H − I)2 + Sk)
−1

)
Ek.

Consequently

(X̂k −X)(Xk −X)−1 = (X̂k −X)E−1
k

= I − (H − I + Tk)
2
(
(H − I)2 + Sk

)−1
,

and

lim
k→∞

(
X̂k −X

)
(Xk −X)−1 = lim

k→∞

[
I − (H − I + Tk)

2
(
(H − I)2 + Sk

)−1
]
= 0.

■

Theorem 3.2 If A is a normal matrix and (X
(k)
1 )2 < X

(k)
0 X

(k)
2 for k = 1, 2, ... we have

then the matrices X
(k)
i that are produced by Steffensen method (8) is positive definite
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for k = 0, 1, 2, ..., and i = 0, 1, 2.

Proof. We persent proof by induction on k. For k = 0 we have

X
(0)
0 = I > 0

X
(0)
1 = I −AT

(
X

(0)
0

)−1
A = I −ATA.

On the other hand

0 < ATA ≤ 1

4
I ⇒ −1

4
I ≤ −ATA < 0

⇒ 3

4
I ≤ I −ATA < I

⇒ X
(0)
1 > 0.

For i = 2, X
(0)
2 = I − AT

(
X

(0)
1

)−1
A. By Theorem 2.15 it is clear that 1

2I < X
(0)
1 < I

and so I < (X
(0)
1 )−1 < 2I. By multiplying the above inequality by ATA we have

ATA < AT
(
X

(0)
1

)−1
A < 2ATA

⇒ 0 < AT
(
X

(0)
1

)−1
A <

1

2
I

⇒ 1

2
I < I −AT

(
X

(0)
1

)−1
A < I,

i.e. X
(0)
2 > 0. In what follows we prove that X

(1)
0 is also positive definite. By Steffensen

method we have

X
(1)
0 = X

(0)
0 −

(
X

(0)
1 −X

(0)
0

)2 (
X

(0)
2 − 2X

(0)
1 +X

(0)
0

)−1
.

We show that ∆2X
(0)
0 > 0, we have

∆2X
(0)
0 = X

(0)
2 − 2X

(0)
1 +X

(0)
0

= I −AT
(
X

(0)
1

)−1
A− 2I + 2AT

(
X

(0)
0

)−1
A+ I

= AT

(
2I −

(
X

(0)
1

)−1
)
A.
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Then by Theorem 2.15 we have 1
2I < X

(0)
1 < I, so 2I >

(
X

(0)
1

)−1
and hence

2I −
(
X

(0)
1

)−1
> 0

⇒ AT

(
2I −

(
X

(0)
1

)−1
)
A > 0

⇒ ∆2X
(0)
0 > 0.

Now we can write

ATA ≤ 1

4
I ⇒

(
ATA

)2 ≤ 1

4
ATA (10)

−ATA ≥ −1

4
I ⇒ I −ATA ≥ 3

4
I

⇒
(
I −ATA

)−1 ≤ 4

3
I

⇒ AT
(
I −ATA

)−1
A ≤ 4

3
ATA ≤ 1

3
I

⇒
(
A2

)T (
I −ATA

)−1
A2 ≤ 1

3
ATA.

(11)

Therefor by (10) and (11)

(
ATA

)2
+
(
A2

)T (
I −ATA

)−1
A2 ≤ 7

12
ATA < ATA.

0 ≤ I − 2ATA+
(
ATA

)2
< I −ATA−

(
A2

)T (
I −ATA

)−1
A2

= I −AT
[
I +AT

(
I −ATA

)−1
A
]
A

= I −AT
[
I +

(
A−1

(
I −ATA

)
A−T

)−1
]
A

= I −AT
[
I +

(
A−1A−T − I

)−1
]
A

= I −AT
[
I −ATA

]
A.

Thus

0 ≤
(
I −ATA

)2
< I −AT (X

(0)
1 )−1A

⇒ 0 ≤
(
X

(0)
1

)2
< X

(0)
2
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⇒ 0 ≤
(
X

(0)
1

)2
− 2X

(0)
1 + I < X

(0)
2 − 2X

(0)
1 + I

⇒ 0 ≤
(
X

(0)
1 − I

)2
< ∆2X

(0)
0

⇒ 0 ≤
(
∆X

(0)
0

)2
< ∆2X

(0)
0

⇒
(
∆X

(0)
0

)2 (
∆2X

(0)
0

)−1
< I

⇒ I −
(
∆X

(0)
0

)2 (
∆2X

(0)
0

)−1
> 0

⇒ X
(1)
0 > 0.

Let X
(k)
0 , X

(k)
1 and X

(k)
2 be is positive definite matrices, we show that X

(k+1)
0 is a

positive definite matrix. By hypothesis we have (X
(k)
1 )2 < X

(k)
0 X

(k)
2 and by Lemma 2.13

the geometric mean of two matrices is less than or equal the arithmetic mean of the same

matrices, therefore X
(k)
1 < X

(k)
0 +X

(k)
2

2 . So ∆2X
(k)
0 = X

(k)
2 −2X

(k)
1 +X

(k)
0 > 0, on the other

hand we have (X
(k)
1 )2 < X

(k)
0 X

(k)
2 , therefor

(X
(k)
1 )2 − 2X

(k)
0 X

(k)
1 + (X

(k)
0 )2 < X

(k)
0 X

(k)
2 − 2X

(k)
0 X

(k)
1 + (X

(k)
0 )2

⇒ (X
(k)
1 −X

(k)
0 )2 < X

(k)
0 (X

(k)
2 − 2X

(k)
1 +X

(k)
0 ) = X

(k)
0 (∆2X

(k)
0 ).

We also have ∆2X
(k)
0 > 0, so

(∆X
(k)
0 )2(∆2X

(k)
0 )−1 < X

(k)
0

⇒ X
(k)
0 − (∆X

(k)
0 )2(∆2X

(k)
0 )−1 > 0

⇒ X
(k+1)
0 > 0.

■

Theorem 3.3 If A is a normal matrix and X
(k)
1 < X

(k)
0 +X

(k)
2

2 , for k = 1, 2, ... then
the matrix sequence produced by Steffensen method is a decroasing matrix sequence.i.e.

X
(k+1)
0 < X

(k)
0 k = 0, 1, 2, ....

Proof. We present proof by induction on k. For k = 0, we have

X
(0)
0 −X

(1)
0 = (∆X

(0)
0 )2(∆2X

(0)
0 )−1.

So, it suffices to show that ∆2X
(0)
0 > 0.

∆2X
(0)
0 = X

(2)
0 − 2X

(1)
0 +X

(0)
0

= I −AT (X
(1)
0 )−1A− 2I + 2AT (X

(0)
0 )−1A+ I

= 2ATA−AT (X
(1)
0 )−1A = AT (2I −X

(1)
0 )−1A,
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Now, by Theorem 3.3 we see that 1
2I < X1

0 < I, then 2I −X
(1)
0 > 0 and so

AT (2I −X
(1)
0 )−1A > 0.

Finnally ∆2X
(0)
0 > 0. Since ∆X

(0)
0 is Hermition matrix, then (∆X

(0)
0 )2 is a postive

definte matrix and since ∆2X
(0)
0 and (∆X

(0)
0 )2 have comutative property in product of

two matrices, thus the matrices (∆2X
(0)
0 )−1 and (∆X

(0)
0 )2 have this property and so the

product of these matrices is also postive definte, consequently

X
(0)
0 −X

(1)
0 > 0 ⇒ X

(1)
0 < X

(0)
0 ,

Now, assume that X
(m+1)
0 < X

(m)
0 , we show

X
(m+2)
0 < X

(m+1)
0 , (12)

and

X
(m+1)
0 −X

(m+2)
0 = (∆X

(m+1)
0 )2(∆2X

(m+1)
0 )−1.

By hypothesise we have X
(m+1)
1 < X

(m+1)
0 +X

(m+1)
2

2 , so ∆2X
(m+1)
0 is postive definte matrix

and (∆X
(m+1)
0 )2 and comutative property of product of X

(m+1)
0 and X

(m+2)
0 we have

X
(m+1)
0 −X

(m+2)
0 > 0 then (12) holds. ■

Remark 2 We show that when A is a normal matrix, the iterative sequence produced
by fixed point iterative method is placed in the interval [12I, I], and we will expect that by
applying the Steffensen method, the matrix sequence of this method is also placed in the
interval [12I, I]. Then we prove this property for a special case of A. Let A be a normal
matrix and Ai denotes the i−th row of A, which satisfies

AiA
T
j = 0 i < j, (13)

The set of all normal matrices which satisfy (13) is denoted by Ω. If A ∈ Ω, then ATA
is the following diagonal matrix,

ATA = diag

 n∑
j=1

(a1j)
2 ,

n∑
j=1

(a2j)
2 ,...,

n∑
j=1

(anj)
2

 .

For i = 1, 2, ..., n, we have by 0 ⩽ ATA ⩽ 1
4I that 0 ⩽

n∑
j=1

(aij)
2 ⩽ 1

4 and so X
(0)
1 is

a diagonal matrix. Also the matrices X
(0)
2 , X

(1)
0 and ... are diagonal matrices by (8).

The next Theorem shows that X
(k)
i belong to the interval [12I, I] for k = 0, 1, 2, ... and

i = 0, 1, 2.

Theorem 3.4 If A ∈ Ω then the matrix sequence X
(k)
i to the interval [12I, I] for k =

0, 1, 2, ... and i = 0, 1, 2.
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Proof. For k = 0 we have (x
(0)
0 )ii = 1 for i = 1, 2, ..., n, and(
x
(0)
1

)
ii
= 1− ai(

x
(0)
0

)
ii

= 1− ai,

where ai =
n∑

j=1
(aij)

2. Whereas 1 ⩽ ai ⩽ 1
4 , then

3
4 ⩽ (x

(0)
1 )ii ⩽ 1 and so X

(0)
1 ∈ [12I, I],

Also,
(
x
(0)
2

)
ii
= 1 − ai

(x(0)
1 )

ii

and by (10) we have 1
2 ⩽ (x

(0)
1 )ii ⩽ 1. Thus, 1 ⩽ 1

(x
(0)
1 )ii

⩽ 2

and

ai ⩽
ai

(x
(0)
1 )ii

⩽ 2ai ⇒ 0 ≤ ai(
x
(0)
1

)
ii

≤ 1

2

⇒ 1

2
≤ 1− ai(

x
(0)
1

)
ii

≤ 1

⇒ 1

2
≤

(
x
(0)
2

)
ii
≤ 1.

Consequently, X
(0)
2 ∈ [12I, I]. Now assume that for k ⩾ 1, the matrices X

(k)
0 , X

(k)
1 , X

(k)
2

belong to the interval [12I, I]. We show that X
(k+1)
0 is also belong to the interval [12I, I].

We know that (
x
(k+1)
0

)
ii
=

(
x
(k)
0

)
ii
− ((x(k)

1 )
ii
−(x(k)

0 )
ii
)
2

(x(k)
2 )

ii
−2(x(k)

1 )
ii
+(x(k)

0 )
ii

=
(
x
(k)
0

)
ii
−

(
1− ai

(x(k)
0 )

ii

−(x(k)
0 )

ii

)2

1− ai

1− ai

(x(k)
0 )

ii

−2

(
1− ai

(x(k)
0 )

ii

)
+(x(k)

0 )
ii

.

Then, since 1
2 ≤

(
x
(k)
0

)
ii

≤ 1 and 0 ⩽ ai ⩽ 1
4 , then we can find the maximum and

minimum value of (x
(k+1)
0 )ii. If we consider (x

(k+1)
0 )ii as a function of two variable (x

(k)
0 )ii

and ai, then by a simple calculation we have (x
(k+1)
0 )ii ∈ [12 , 1], so X

(k+1)
0 ∈ [12I, I], and

similarly we can show that X
(k+1)
1 and X

(k+1)
2 ∈ [12I, I]. ■

4. Numerical example

Here, we present some examples and we will apply fixed point and Steffensen methods
for them, and compare the number of iterations for those methods. Note that we have
computed the numerical results by Maple software.

Example 4.1 Consider the matrix equation (2) with the normal matrix A = 1
2In×n.By

[6] the exact solution is X = 1
2I. We know that ρ(A) = 0.5, so the nonlinear matrix

equation (2) has a solution. Comparison among fixed point method(FPM) and Steffensen
method(SM) for n = 2, 5, 10, 15, 20 also iteration numbers(IN) and error(ERR) where
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ERR = ∥Xk − X∥2 and X is the exact solution of the nonlinear matrix equation (2),
with A = 1

2In×n are showed in Table 1.

Numerical results for example 4.1
Method n=2 n=5 n=10 n=15 n=20
FPM ERR: 0.01 0.01 0.01 0.01 0.01

IN: 51 51 51 51 51
ERR: 0.001 0.001 0.001 0.001 0.001
IN: 501 501 501 & 501 501
ERR: 0.0001 0.0001 0.0001 0.0001 0.0001
IN: 5000 5000 5000 5000 5000

SM
ERR: 0.01 0.01 0.01 0.01 0.01
IN: 5 5 5 5 5
ERR: 0.001 0.001 0.001 0.001 0.001
IN: 8 8 8 8 8
ERR: 0.0001 0.0001 0.0001 0.0001 0.0001
IN: 11 11 11 11 11

Example 4.2 Consider the matrix equation (2) with the normal matrix


0 0 · · · 0 0.5
0 · · · 0 0.5 0
... 0 . .

.
0

...
0 0.5 0 · · · 0
0.5 0 · · · 0 0


n×n

.

We know that ρ(A) = 0.5, so the nonlinear matrix equation (2)has a solution. By the
ref. [6] the exact solution is X = 1

2In. Comparison among fixed point method(FPM) and
Steffensen method(SM) for n = 2, 5, 10, 15, 20 also iteration numbers(IN) and error(ERR)
where ERR = ∥Xk − X∥2 and X is the exact solution of the nonlinear matrix equation
(2), with A are showed in Table 2.

Numerical results for example 4.2
Method n=2 n=5 n=10 n=15 n=20
FPM ERR: 0.01 0.01 0.01 0.01 0.01

IN: 51 51 51 51 51
ERR: 0.001 0.001 0.001 0.001 0.001
IN: 501 501 501 & 501 501
ERR: 0.0001 0.0001 0.0001 0.0001 0.0001
IN: 5000 5000 5000 5000 5000

SM
ERR: 0.01 0.01 0.01 0.01 0.01
IN: 5 5 5 5 5
ERR: 0.001 0.001 0.001 0.001 0.001
IN: 8 8 8 8 8
ERR: 0.0001 0.0001 0.0001 0.0001 0.0001
IN: 11 11 11 11 11
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Example 4.3 Consider the matrix equation (2) with the normal matrix

A =


0.4 0 0 −0.25
0 0.33 −0.2 0
0 −0.2 −0.33 0

−0.25 0 0 −0.4

 .

We know that ρ(A) = 0.4717, so the nonlinear matrix equation (2)has a solution. By the
ref. [6] the exact solution is,

X =


0.6658341 0 0 0

0 0.8144782 0 0
0 0 0.8144782 0
0 0 0 0.6658341

 .

The fixed point method needs 22 iterations to find the approximation solution with
accuracy 0.000001 and the Steffensen method needs 4 iterations. Applying these iterative
methods, yields

X =


0.665834 0 0 0

0 0.814478 0 0
0 0 0.814478 0
0 0 0 0.665834

 .

Example 4.4 Consider the matrix equation (2) with the normal matrix

A =


0.25 0 0.1 0
0 0.2 0 0
0.1 0 0.1 0.2
0 0 0.2 0.25

 .

We know that ρ(A) = 0.4108, so the nonlinear matrix equation (2)has a solution. By the
ref. [6] the exact solution is,

X =


0.9178145 0 −0.0448002 −0.0303964

0 0.9582574 0 0
−0.0448002 0 0.9242223 −0.0896007
−0.0303964 0 −0.0896007 0.87222026

 .

The fixed point method needs 11 iterations to find the approximation solution with
accuracy 0.000001 and the Steffensen method needs 3 iterations. Applying these iterative
methods, yields

X =


0.917814 0 −0.044800 −0.030396

0 0.958257 0 0
−0.044800 0 0.924222 −0.089600
−0.030396 0 −0.089600 0.8722202

 .
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Example 4.5 Consider the matrix equation (2) with the normal matrix

A =

(
−1

7
2
7

2
7

1
7

)
.

We know that ρ(A) = 0.3194, so the nonlinear matrix equation (2)has a solution. By the
ref. [6] the exact solution is, X = 0.8846458I. The fixed point method needs 9 iterations
to find the approximation solution with accuracy 0.000001 and the Steffensen method
needs 3 iterations. Applying these iterative methods, yields X = 0.884645I.

Example 4.6 Consider the matrix equation (2) with the normal matrix

A =


0 0 0 0 1

5
0 0 0 3

7 0
0 0 −2

5 0 0
0 3

7 0 0 0
1
5 0 0 0 0

 .

We know that ρ(A) = 0.4286, so the nonlinear matrix equation (2)has a solution. By the
ref. [6] the exact solution is,

X =


0.9582575 0 0 0 0

0 0.7575451 0 0 0
0 0 0.8000005 0 0
0 0 0 0.7575451 0
0 0 0 0 0.9582575

 .

The fixed point method needs 17 iterations to find the approximation solution with
accuracy 0.000001 and the Steffensen method needs 4 iterations. Applying these iterative
methods, yields

X =


0.958257 0 0 0 0

0 0.757545 0 0 0
0 0 0.800000 0 0
0 0 0 0.757545 0
0 0 0 0 0.958257

 .
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