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Abstract. In this paper, applying the concept of generalized A-valued norm on a right H*-
module and also the notion of ¢g-homomorphism of Finsler modules over C*-algebras we first
improve the definition of the Finsler module over H*-algebra and then define ¢-morphism
of Finsler modules over H™*-algebras. Finally we present some results concerning these new
ones.
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1. Introduction and Preliminaries

Generalized A-valued norm on a right H*-module has been introduced by [12]Zalar
(1995), also Finsler module over a C*-algebra has been investigated by [7] Phillips and
Weaver (1998), then many mathematicians developed these subjects in several directions.
The authors of [3] Amyari and Niknam (2003) and [11] Taghavi and Jafarzadeh (2007),
studied ¢-homomorphisms of Finsler modules over C*-algebras. Taking idea from these
notions we are motivated to improve the concept of Finsler module over H*-algebra (see
[1]Ambrose (1945), [4] Balachandran and Swaminathen (1986)) and define ¢-morphism of
Finsler modules over H*-algebras and investigate some properties for these new ones. A
H*-algebra, introduced by [1]Ambrose (1945) in the associative case, is a Banach algebra
A satisfying the following conditions:

(1) A is itself a Hilbert space under an inner product (., .);
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(7i) For each a in A there is an element a* in A, the so-called adjoint of a, such that we
have both (ab, ¢) = (b,a*c) and (ab, ¢) = (a, cb*) for all b, c € A.

Ezample 1.1 The Hilbert space I = {{an}n : an € C, 3, |an|? < co} is a H*-algebra,
where for each {a,}, and {b,}, in 12, {an }n{bn}n = {anbntn and {a,}} = {@ }n.

Example 1.2 Any Hilbert space is a H*-algebra, where the product each pair of elements
to be zero. Of course in this case the adjoint a* of a need not be unique, in fact every
element, is an adjoint of every element.

Recall that Ag ={a € A: aA={0}} ={a€ A: Aa = {0}} is called the annihilator
ideal of A. A proper H*-algebra is a H*-algebra with zero annihilator ideal. [1]Ambrose
(1945), proved that a H*-algebra is proper if and only if every element has a unique
adjoint.

The trace class 7(A) of A is defined by the set 7(4) = {ab : a,b € A}. It is known
that 7(A) is an ideal of A which is a Banach x-algebra under a suitable norm 74(.).
The norm 74 is related to the given norm ||.|| on A by 7a(a*a) = ||a||?> (a € A) and
lla]] < 7Ta(a) for each a € 7(A) (see [9]Saworotnow (1970)). If A is proper, then 7(A)
is dense in A ([1, Lemma 2.7]). The trace functional ¢r on 7(A) is defined by tr(ab) =
{a,b*) = (b,a*) = tr(ba) for each a,b € A, in particular tr(aa*) = tr(a*a) = |a||?* for
all a € A. A positive member of A is an element a € A such that (ax,z) > 0 for each
xz € A. It is known in [9]Saworotnow (1970), that for each a € A there exists a unique
positive member [a] of A such that [a]? = a*a. A nonzero element e € A is called a
projection, if it is self adjoint and idempotent. Two idempotents e and e’ are doubly
orthogonal if (e,€’) = 0 and ee’ = €¢’e = 0. An idempotent is primitive if it can not be
expressed as the sum of two doubly orthogonal idempotents. Every proper H*-algebra
contains a maximal family of doubly orthogonal primitive self adjoint idempotents ([1,
Theorem 3.3]). If {e;}iecr is a maximal family of doubly orthogonal primitive self adjoint
idempotents in a proper H*-algebra A, then A = > . ;e;A = > ,; Ae; ([1, Theorem
4.1]) and a = Y ,c;eia = Y, rae; for each a € A. For, if a € A, then a = ), ;eib;
for some b; € A and so for each j € I, e;b; = e?bj =e;y . eb; = eja. The next part is
proved similarly. We recall from [9]Saworotnow (1970), that if @ is a nonzero element in
A, then there exists a sequence {e,}, of doubly orthogonal projections and a sequence

{An}n of positive numbers such that a*a = Y, Ane,. In this case, [a] = Y, Aie, and
if @ is in 7(A), then 74(a) = tr([a]). Throughout this note we mean by a morphism a
x-homomorphism of proper H*-algebras.

The notion of Hilbert H*-module is introduced by [8]Saworotnow (1968) under the
name of generalized Hilbert space. It has been studied by Smith, Molnar, Cabrera, Mar-
tinez, Rodriguez and others.

Definition 1.3 Let A be a proper H*-algebra. A Hilbert H*-module is a left module F
over A with a mapping [-|-] : E x E' — 7(A), which satisfies the following conditions:

(1) [owly] = alzly],

(i) [+ yl2] = [o]2] + (o],

(122) [az|y] = alz|y],

(iv) [ely]* = [ylo),

(v) For each nonzero element = in E there is a nonzero element a in A such that [z|z] =
a*a

(vi) E is a Hilbert space with the inner product (z,y) = tr([z|y]),

for each a € C, z,y,2z € F, a € A. For example every H*-algebra A is a Hilbert A-
module whenever we define [z|y] = zy*. We say Hilbert A-module E is full, if the linear

)
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space generated the set {[z|y] : z,y € E} is 74-dense in 7(A). For the basic facts about
Hilbert H*-modules the reader is referred in [5|Bakic and Guljas (2001), [6]Cabrera,
Martinez and Rodriguez (1995), [10]Smith (1974) and references cited therein.

Finsler modules over H*-algebras are generalization of Hilbert H*-modules. It first
was introduced by [12]Zalar (1995) by defining a generalized A-valued norm on a right
H*-module. It is proved in [12]Zalar (1995), that a generalized A-valued norm p on a H*-
module E over a proper H*-algebra A arises from a 7(A)-valued inner product [.|.] on E,
if and only if p satisfies the parallelogram low. In this paper, we improve and investigate
some facts concerned with this concept. In the sequel, we extend the definition of ¢-
homomorphism of Finsler modules over H*-algebras by the name of ¢-morphisms and
describe some basic properties of such class of module maps ([11]Taghavi and Jafarzadeh
(2007)). This work is a reconstruction of some results appeared in [2]Amyari and Niknam
(2003), [3]Amyari and Niknam (2003), [11]Taghavi and Jafarzadeh (2007), to Finsler
modules over H*-algebras and is also interesting in its own.

2. Main Results

Definition 2.1 ([12]Zalar (1995)) Let A be a proper H*-algebra and E be a complex
linear space which is a left A-module (and A(az) = (Aa)z = a(Az) where A € C,a € A
and = € F) equipped with a map p4 : E — {a*a: a € A} such that

(i) the map ||| : 2 — tr(pa(x))? is a norm on E;

(i1) pa(ax) = apa(x)a* for each a € A and x € E.

Then FE is called a pre-Finsler module over H*-algebra A. If (E, ||.||g) is complete, then
FE is called a Finsler module. For instance, every Hilbert H*-module E with the map
pa(z) = [z|z] (z € E) is a Finsler module.

E is said to be a full Finsler module, if the linear subspace generated by {pa(z) : x € E}
which is denoted by (pa(E)) is Ta-dense in 7(A), more precisely (pa(E)) " = 7(A).

Example 2.2 The set A = [2, is a proper H*-algebra and 7(A) = A (since A
is unital). It is easy to verify that {e;}ien (e;, has 1 as i-th position and 0 else-
where) is a maximal family of doubly orthogonal projections for A. If {a,}, € A,
then {a,}r{an}n = {lan’}n = X2, lan’en, [{an}n] = 32, lanlen and Ta({an}n) =
tr([{an}n]) = tr(3°,, lanlen) = >, lanltr(en) = >, |an|. Since tr(e,) = tr(e?) = 1.

Let £ = A and pa : E — {{an}i{an}n : {an}n € A} be defined by pa({an}tn) =
{lan|?}n. Then E is a full (Hilbert module) Finsler module over A. For fullness of E, let
e > 0 be given and {an}, € 7(A). Then by definition of 74, it is easy to find complex

k

numbers \; and a;, (n € N, i = 1,..., k), in which TA({ZAZ"GZ‘,”‘Z — aptn) < €. Now
i=1

surjectivity of p4 gives the desired result, i.e. (pa(E)) * = 7(A).

The following lemmas which are interesting, will be used frequently later.

Lemma 2.3 Let E be a Finsler module over H*-algebra A. Then it is a Banach A-
module.

Proof. By the definition of Finsler module, £ is a Banach space. It remains to show
that |ax||g < |la||||lz]|g for all @ € A and z € E. For, let z € E. Then pa(x) = b*b
for some b € A and ||z]|g = tr(pa(z))z = tr(b*b)z = [|b]. So |laz|% = tr(pa(az)) =
tr(apa(w)a*) = tr(ab*ba*) = ||ba*||* < [|b]*[lall® = [[z]|%]all* u
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As a consequence of the above lemma we have |lax| g < 7a(a)||z| g for each a € T(A)
and z € E.

Lemma 2.4 Let E be a full Finsler module over H*-algebra A and a € A. Then axz =0
for all x € F if and only if a = 0.

Proof. Firstly, suppose that a € 7(A) and also b € 7(A) is arbitrary. Since E is full,
there exists a sequence {uy, }, in (pa(E)) such that b = lim "u,, . Each w, is of the form

n—oo
kn
Uy, = Z)\i7npA(:Ei7n) in which \; , € C, z;,, € E. Hence,
i=1
' k., k.
aba® = lim ™aupa® = lim ™ (GZ/\i,npA(xi,n)a*) = lim TAZ)\i,npA(awi,n) =0. (1)
i=1 i=1

Relation (1) holds since if z is an arbitrary element in E, then pa(az) = c*c for some
¢ € A and by assumption ||c||? = tr(c*c) = tr(pa(az)) = ||az||% = 0. It implies that ¢ = 0
and so pa(ax) = 0. Replacing b by a*a in (1) we get tr(aba*) = tr(aa*aa*) = ||aa*|* = 0.
Consequently aa* = 0 and by [1, Lemma 2.2], a = 0. Secondly, suppose that a € A and
axr =0 for all x € E. Let b € A be arbitrary, then by Lemma 2.3. bax = 0 for all z € E.
By the above discussion and since ba € 7(A), so ba = 0 for each b € A. It implies that
Aa = 0. Hence a = 0, because A is proper. [ |

Remark 1 If ¢ : A — B is an isometric morphism of H*-algebras, then for each a € A,
l#(a)||? = ||al|? and so (¢(a), p(a)) = (a,a). Whence tr(p(aa*)) = tr(aa*). If in addition
¢ is an isomorphism, then for each b € B, tr(¢~1(bb*)) = tr(bb*).

Taking idea from [2]Amyari and Niknam (2003), we have two following theorems.

Theorem 2.5 Let E be a full Finsler module over H*-algebra B, ¢ : A — B be a
morphism of H*-algebras such that ¢[.(4) : T(A) — 7(B) be a T-continuous isomorphism
and isometric with respect to |.||. Then by the module action, az = ¢(a)x and the map
x> pa(x) defined by pa(z) = ¢~ (pp(z)), E is a full Finsler A-module.

Proof. It is clear that E is a complex linear space, and by morphism of ¢, E is a left
A-module. Because of isometric isomorphism of d)\T( 4), for each z € E we have Ha:||/]'5l =
tr(pa(z))z = tr(p~ (pp(x)))2 = tr(pp(z))z = ||z|B (2). Furthermore, |.|2 is a norm
on E and so |.||4 is. Let a € A, x € E, then pa(az) = pa(¢(a)r) = ¢~ Hpp(d(a)z)) =
¢~ ((a)pp(z)p(a)*) = ap™ ! (pp(w))a” = apa(z)a*.

Hence F is a pre-Finsler module over A. On the other hand (2) and completeness of
(E,||.|I2) imply that (E, ||.|4) is complete. Thus E is a Finsler module over A. We will
show that E is a full Finsler module over A, i.c. (pa(E)) " = 7(A). Note that by the
inverse mapping theorem (¢|,(a)) ™" : 7(B) — 7(A) is a (7, 74)-continuous isomorphism
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(and also homeomorphism).

TA

<pA(E)> = {Z Ai,npA(xi,n) : )‘i,n eC, Tin € E}

TA

= {Z Ai n¢ pB Xq n)) : )\i,n S (C7 Tin € E}

TA

= ¢_1{Z XinpB(Tin) : Nin €C, z;n € E}

TB

kn
= ¢_1{Z XinpB(Zin) : Ain €C, z;, € E}

=7 ((pp(E) ") =07 (r(B)) = 7(A).

In the following we shall establish a converse statement to the above theorem.

Theorem 2.6 Let E be a both full Finsler module over A and a full Finsler module
over B and let ¢ : A — B be a map such that az = ¢(a)z and ¢(pa(z)) = pp(x),
where © € E,a € A. Then ¢ is a continuous monomorphism, ¢|,(4) : 7(A) = 7(B) is

a (74, 7p)-continuous and it has dense range, i.e. ¢|-(4)(7(A)) " = 7(B). If for each
x € E, tr(pa(z)) = tr(pp(x)), then ¢ is isometric on the set {a € A : there exists z €
E in which a*a = pa(x)}.

Proof. For simplicity in writing we put ¢; = ¢[.(4). Assume that {a,}, is a sequence
in 7(A) such that lim a, = 0 and lim "¢;(a,) = b, (b € 7(B)). Let « be an arbitrary
n—oo n—oo

element in F, then by the comment after Lemma 2.3. a,z — 0 and ¢1(a,)z — bz. By
the definition of module action ¢1(a,)x — 0. Hence bx = 0. Applying Lemma 2.4. b = 0.
It follows from closed graph theorem that ¢; is (74, 7p)-continuous. A similar argument
shows that ¢ is continuous. Since (¢(a + b) — ¢(a) — ¢(b))z = (a +b)z —ax —bxr =0
for each x € E and for each a,b € A, so by Lemma 2.4. ¢(a +b) = ¢(a) + ¢(b).
Similarly for each A € C and for each a,b € A, ¢(Aa) = Ap(a) and ¢(ab) = ¢(a)p(b).

Now let @ € 7(A), then we may assume that ¢ = lim "u,, each u, is of the form
n—oo
k’!l

Uy = Z)\anA(xi,n) for some \;,, € C and x;,, € E. Hence ¢1(a*) = lim ™ ¢ (uy) =

n—o00
=1

kn
nh_EI;o ¢1 Z Ai npA X n))) = nli_{EOTB Z Ai,n¢1(ﬂA($z n)) = nh—>nolo Z i an X n =

(lim ™ Z Ai an x; n ( lim 7 Z Ain®1 pA(xl )" =

n—>c>o TL%OO

(1 ( hm A z/\Z nPA(Tin)))" = ¢1(a)”. Therefore ¢; is a morphism. Let a € A, then

there ex1sts a sequence {an}n € 7(A) such that a = lim a,. By morphism of ¢; and
n—oo
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continuity of ¢ we can write ¢(a*) = ¢( le ay) = ILm d(an)* = ( ILm d(an))* = (¢(a))*.
If ¢(a) =0, then ax = ¢(a)xr = 0, for all z € E. Hence a = 0, by Lemma 2.4. Therefore ¢

is & monomorphism. Given € > 0 and let b € 7(B) be arbitrary. Since E is a full Finsler
kn

module over B, so 7p(b — Z)\i,an(fEi,n)) < ¢, for some \;,, € C and z;, € E. Hence
i=1

— 1 Z)\z nPA(Zin))) < €. Therefore ¢ has dense range in 7(B). Now suppose that

for each x ;nlE, tr(pA( ) =tr(p (33)) Also assume that a € A and a*a = pa(z) for some
v € E, then [|a||* = tr(a*a) = tr(pa(z)) = tr(pp(z)) = tr(d(pa(z))) = tr(d(a*a)) =

¢ (a)ll”.
n

We could not drop the condition of fullness. For instance, let B = [? and A = F =
{{an}n € B : a; = 0}. Then FE is a full Finsler module over A, when ps({an}n) =
{lan|?}» and E is a Finsler module over B when pg({an}n) = {\an\ }n. E is not full
over B, because let {b,c,} € 7(B) (= B) with bic; be nonzero. If on the contrary

(pB(E)> " = 7(B), then there exist \; € C and {am}n € E (i =1,..,k) in which

— {bncnltn) < € (3). Put {dp}, = ZAi{\am\ bn = {bncntn. As we see
=1 =1

in Example 2.2. the left side of (3) is equal to Z|dn| Hence |bic1| = |di| < Z|dn\ < eby

(3) and since € > 0 is arbitrary, so bjc; = 0, vT\L/hich is a contradiction. Now let ¢ : A — B
be the inclusion map, obviously ¢ satisfies in the conditions of Theorem 2.7. i.e, for each
x € E and for each a € A, ax = ¢(a)r and ¢(pa(x)) = pp(x). On the other hand
o(1(A)) " # 7(B). Indeed, by a similar argument as above if {b,c,}n € 7(B)(= B) and
biey # 0, then it is not in ¢(7(A)) (= A). Thus ¢|-(4) does not have dense range in
T(B).

T(he)following theorem is a version of [3, Lemma 2.2] in the framework of Finsler modules
over H*-algebras.

Theorem 2.7 Let F be a Finsler module over H*-algebra A, I be a closed two sided
ideal of A and = be in E such that ps(z) € I. Then z = ), _, exx, where {ex}ren is a
maximal family of doubly orthogonal primitive self adjoint idempotents for I.

Proof. Let Ag be a finite subset of A. We claim that

palz— Y ext) =pal@) = > expa(z) = > palx

AEA, AEA, AEAy
+ > eald ) [dley (4)
AEA, YEAo

where pa(z) = d*d = [d]? for some d € A ([9, Lemma 2]). If b is the left side and c is the
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right side of (4), then obviously b and c are self adjoint and for each a € A, we have

aca® = apa(r)a* —a Z expa(x)a” —a Z pa(z)exa™ +a Z exld] Z [d]ea™

AEA, A€, AEA, YEA,
= (a — Z ae)\>p,4(x) (a — Z a67>* = pA<(a - Z aeA):c)
A€, YEAQ AEAo
= pA(a(x — Z emc)) = apA<x — Z e;g:)a* = aba”.
A€A, AEAo

Thus for each a € A, a(c—b)a* = 0, specially for a = ¢—b. Hence (c—b)3 = 0 and so ¢ = b

W |-

by [1, Lemma 2.3]. Consequently pa(z— \cp exz) = 0 and so tr(pa(z—> \cperx))z =
|z — > sca exz|lz = 0 which implies that, x = ), ., exz. [ |

Definition 2.8 Let F and F be Finsler modules over proper H*-algebras A and B
respectively and ¢ : A — B be a morphism of H*-algebras. A linear operator ® : £ — F
is said to be a ¢-morphism of Finsler modules if the following conditions are satisfied:
(i) ®(az) = ¢(a) ().

(ii) pu(®(x)) = d(pa(r)),

where z € E and a € A.

® is called a module map if it satisfies in the condition (7). If E, F and G are Finsler
modules over proper H*-algebras A, B and C respectively, ¢; : A — B and ¢9 : B = C
are morphisms of H*-algebras, and ®; : £ — F and ®3 : ' — G are ¢i;-morphism
and ¢o-morphism of Finsler modules respectively, then it is straightforward to show that
Dy®; : F — G is a ¢o¢p1-morphism of Finsler modules.

In the following we state some results appeared in [11]Taghavi and Jafarzadeh (2007)
to Finsler modules over H*-algebras.

Theorem 2.9 Let F and F be Finsler modules over H*-algebras A and B respectively,
¢ : A — B be a morphism in which ¢|;4) : 7(A) = 7(B) be a (74, Tp)-continuous
injective morphism and ¢(7(A)) be 7p-closed in 7(B). Also let ® : E — F be a ¢-
morphism. If Im(®) is a full Finsler module over I'm(¢), then E is a full Finsler module
over A.

Proof. Applying inverse mapping theorem, (¢[,(4))~! : ¢(7(A4)) = 7(A) is a (7B, 7a)-
continuous morphism. We will show that E is full Let a € 7(A) be arbitrary, then
a = ayay for some ay,as € A. Therefore ¢(a) = ¢(a1)p(az) € T(Im(¢)). Since Im(P) is
a full Finsler I'm(¢)-module, thus we have

kn
¢(a) = Jim le\i,an(q’(ﬂfi,n))
TB k’”.
= nh_}n;o z;/\i,n(b(pA(l'i,n)) (5)

for some X\;, € C, z;, € E. Effecting (7p,7a)-continuous morphism (¢|T(A))_1 to
kTL
both sides of (5), we obtain that a = lim TAZ)\i,npA(xi,n) by injectivity of the
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TA

morphism ¢|.(4). Thus a € (pa(F)) "~ and therefore 7(A4) C (pa(E)) Y C 7(A). So
7(A) = (pa(E)) . Note that ¢ cannot come out in (5). [ |

The following lemma is proved in the framework of Finsler modules over C*-algebras
([11, Lemma 3.1]). It is easy to show this lemma in the Finsler modules over H*-algebras.

Lemma 2.10 Let E and F be Finsler and full Finsler module over H*-algebras A and
B respectively, ¢; (i = 1,2) be maps from A to B and ® : F — F be a surjective map
satisfies ®(azx) = ¢;(a)®(z) (i =1,2) for all z € E and a € A. Then ¢; = ¢2.

Theorem 2.11 Let E and F be full Finsler modules over H*-algebras A and B re-
spectively and ® : E — F be a continuous isomorphism satisfies ®(ax) = ¢(a)®(x) and
pB(®(x)) = ¢(pa(z)), for all z € E and a € A, where ¢ : A — B be a map. Then ¢ is
a continuous monomorphism, ¢|(4) is (7a, 7p)-continuous and has dense range in 7(B).
Moreover, ¢ with these conditions is unique.

Proof. Applying a similar argument in the proof of Theorem 2.6. one can see that, ¢ is a
continuous monomorphism and @|,(4) is (74, 7p)-continuous. We will show that ¢ is one
to one. Let ¢(a) = 0 for some a € A, so ¢(a)P(zx) = 0 for each = € E. Hence ®(ax) =0
and by injectivity of ®, ax = 0 for each x € E. Then a = 0 by fullness of E. So ¢ is
a monomorphism. In addition, 7(B) = (pp(F)) ° = (pg(®(E))) " = (¢(pa(E))) = C
@A) = B(r(A))™ = (r(A)” C 7(B). Therefore g(r(A))” = 7(B) and so

®|7(4) has dense range. Uniqueness of ¢ obtains from Lemma 2.10. |

Remark 2 Fullness condition can not be dropped in the above theorem. For example let
B=P A=E={{an}n €B:a1 =0} and F = {{an}n € B: a1 = az = 0}. Then E is
a full Finsler module over A, when pa({an}n) = {|an|?}n and F is a Finsler module over
B, when pg({an}n) = {|an|*}n. As we mentioned before F is not full Finsler module
over B. Let ® : E — F defined by ®({an}n) = {bn}n, where by = 0 and for n = 2, ...,
bp = an—1 and ¢ : A — B defined by ¢({an}tn) = ®({an}tn). Clearly ® is a continuous
isomorphism, ®({an}n{bn}n) = ¢({an}n)2({bn}n) and pp(®({antn)) = ¢(pa{anin))
for all {an}n € A and {by}n € E. On the other hand ¢(1(A)) (= ¢(A)) dose not have
dense range in 7(B) (= B).

In the following we state [3, Theorem 3.4], in the framework of Finsler modules over
the H*-algebras.

Theorem 2.12 Let F and F be Finsler modules over H*-algebras A and B respectively,
¢ : A — B be an isometric morphism and ® : & — F' be a ¢-morphism of Finsler mod-
ules. Then

(1) Im(®) is a closed subspace of F.

(i4) Im(®) is a Finsler module over H*-algebra Im(¢), such that pr,g(®(E)) =
d(pa(E)).

(iii) If £ is a full Finsler module and ¢ |;4): 7(A) — ¢(7(A)) is (7a, Tp)-continuous,
then I'm(®) is a full Finsler module over the H*-algebra Im(¢).

(iv) If @ is surjective, F is full Finsler module over B and ¢(7(A)) is 7p-closed, then
}l7(a) s surjective.

Proof. (i) We will show that ® is isometry and so it has closed range. Let = be an
arbitrary element in E. Then p4(xz) = a*a for some a € A, and since ¢ is isometric so
H‘?H(:E)IIF = tr(pp(®(2))): = tr(d(pa(®)))> = tr(d(a*a))z = tr(a*a): = tr(pa(z)): =
T|IE-

(73) Straightforward.
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(731) We will show that Im(®) is a full Finsler module over the H*-algebra Im(¢)
ie. (pp(Im®))” = 7(Img). For this, let b € 7(Im¢), then b = $(ajaz) for some
ay,ag € A By fullness of E and (TA,TB)—continuity of ¢|(a) we have b = ¢(arag) =

(lim “ZAMM £ia)) = lim TBZAmqb pa(@in)) = Tim TBZAmPB (i) for

n—>oo

some A; E (C and z; , € F. It gives the desired result.
(iv) Tt follows by the argument applied in the proof of Theorem 2.11. [ ]
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