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Abstract. In this paper, applying the concept of generalized A-valued norm on a right H∗-
module and also the notion of ϕ-homomorphism of Finsler modules over C∗-algebras we first
improve the definition of the Finsler module over H∗-algebra and then define ϕ-morphism
of Finsler modules over H∗-algebras. Finally we present some results concerning these new
ones.
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1. Introduction and Preliminaries

Generalized A-valued norm on a right H∗-module has been introduced by [12]Zalar
(1995), also Finsler module over a C∗-algebra has been investigated by [7] Phillips and
Weaver (1998), then many mathematicians developed these subjects in several directions.
The authors of [3] Amyari and Niknam (2003) and [11] Taghavi and Jafarzadeh (2007),
studied ϕ-homomorphisms of Finsler modules over C∗-algebras. Taking idea from these
notions we are motivated to improve the concept of Finsler module over H∗-algebra (see
[1]Ambrose (1945), [4] Balachandran and Swaminathen (1986)) and define ϕ-morphism of
Finsler modules over H∗-algebras and investigate some properties for these new ones. A
H∗-algebra, introduced by [1]Ambrose (1945) in the associative case, is a Banach algebra
A satisfying the following conditions:
(i) A is itself a Hilbert space under an inner product ⟨., .⟩;
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(ii) For each a in A there is an element a∗ in A, the so-called adjoint of a, such that we
have both ⟨ab, c⟩ = ⟨b, a∗c⟩ and ⟨ab, c⟩ = ⟨a, cb∗⟩ for all b, c ∈ A.

Example 1.1 The Hilbert space l2 = {{an}n : an ∈ C,
∑

n |an|2 < ∞} is a H∗-algebra,
where for each {an}n and {bn}n in l2, {an}n{bn}n = {anbn}n and {an}∗n = {an}n.

Example 1.2 Any Hilbert space is aH∗-algebra, where the product each pair of elements
to be zero. Of course in this case the adjoint a∗ of a need not be unique, in fact every
element, is an adjoint of every element.

Recall that A0 = {a ∈ A : aA = {0}} = {a ∈ A : Aa = {0}} is called the annihilator
ideal of A. A proper H∗-algebra is a H∗-algebra with zero annihilator ideal. [1]Ambrose
(1945), proved that a H∗-algebra is proper if and only if every element has a unique
adjoint.
The trace class τ(A) of A is defined by the set τ(A) = {ab : a, b ∈ A}. It is known
that τ(A) is an ideal of A which is a Banach ∗-algebra under a suitable norm τA(.).
The norm τA is related to the given norm ∥.∥ on A by τA(a

∗a) = ∥a∥2 (a ∈ A) and
∥a∥ ⩽ τA(a) for each a ∈ τ(A) (see [9]Saworotnow (1970)). If A is proper, then τ(A)
is dense in A ([1, Lemma 2.7]). The trace functional tr on τ(A) is defined by tr(ab) =
⟨a, b∗⟩ = ⟨b, a∗⟩ = tr(ba) for each a, b ∈ A, in particular tr(aa∗) = tr(a∗a) = ∥a∥2 for
all a ∈ A. A positive member of A is an element a ∈ A such that ⟨ax, x⟩ ⩾ 0 for each
x ∈ A. It is known in [9]Saworotnow (1970), that for each a ∈ A there exists a unique
positive member [a] of A such that [a]2 = a∗a. A nonzero element e ∈ A is called a
projection, if it is self adjoint and idempotent. Two idempotents e and e′ are doubly
orthogonal if ⟨e, e′⟩ = 0 and ee′ = e′e = 0. An idempotent is primitive if it can not be
expressed as the sum of two doubly orthogonal idempotents. Every proper H∗-algebra
contains a maximal family of doubly orthogonal primitive self adjoint idempotents ([1,
Theorem 3.3]). If {ei}i∈I is a maximal family of doubly orthogonal primitive self adjoint
idempotents in a proper H∗-algebra A, then A =

∑
i∈I eiA =

∑
i∈I Aei ([1, Theorem

4.1]) and a =
∑

i∈I eia =
∑

i∈I aei for each a ∈ A. For, if a ∈ A, then a =
∑

i∈I eibi
for some bi ∈ A and so for each j ∈ I, ejbj = e2jbj = ej

∑
i eibi = eja. The next part is

proved similarly. We recall from [9]Saworotnow (1970), that if a is a nonzero element in
A, then there exists a sequence {en}n of doubly orthogonal projections and a sequence

{λn}n of positive numbers such that a∗a =
∑

n λnen. In this case, [a] =
∑

n λ
1

2
nen and

if a is in τ(A), then τA(a) = tr([a]). Throughout this note we mean by a morphism a
∗-homomorphism of proper H∗-algebras.

The notion of Hilbert H∗-module is introduced by [8]Saworotnow (1968) under the
name of generalized Hilbert space. It has been studied by Smith, Molnar, Cabrera, Mar-
tinez, Rodriguez and others.

Definition 1.3 Let A be a proper H∗-algebra. A Hilbert H∗-module is a left module E
over A with a mapping [·|·] : E × E → τ(A), which satisfies the following conditions:
(i) [αx|y] = α[x|y],
(ii) [x+ y|z] = [x|z] + [y|z],
(iii) [ax|y] = a[x|y],
(iv) [x|y]∗ = [y|x],
(v) For each nonzero element x in E there is a nonzero element a in A such that [x|x] =
a∗a,
(vi) E is a Hilbert space with the inner product (x, y) = tr([x|y]),
for each α ∈ C, x, y, z ∈ E, a ∈ A. For example every H∗-algebra A is a Hilbert A-
module whenever we define [x|y] = xy∗. We say Hilbert A-module E is full, if the linear



M. Khanehgir et al. / J. Linear. Topological. Algebra. 02(04) (2013) 219-227. 221

space generated the set {[x|y] : x, y ∈ E} is τA-dense in τ(A). For the basic facts about
Hilbert H∗-modules the reader is referred in [5]Bakic and Guljas (2001), [6]Cabrera,
Martinez and Rodriguez (1995), [10]Smith (1974) and references cited therein.

Finsler modules over H∗-algebras are generalization of Hilbert H∗-modules. It first
was introduced by [12]Zalar (1995) by defining a generalized A-valued norm on a right
H∗-module. It is proved in [12]Zalar (1995), that a generalized A-valued norm ρ on a H∗-
module E over a proper H∗-algebra A arises from a τ(A)-valued inner product [.|.] on E,
if and only if ρ satisfies the parallelogram low. In this paper, we improve and investigate
some facts concerned with this concept. In the sequel, we extend the definition of ϕ-
homomorphism of Finsler modules over H∗-algebras by the name of ϕ-morphisms and
describe some basic properties of such class of module maps ([11]Taghavi and Jafarzadeh
(2007)). This work is a reconstruction of some results appeared in [2]Amyari and Niknam
(2003), [3]Amyari and Niknam (2003), [11]Taghavi and Jafarzadeh (2007), to Finsler
modules over H∗-algebras and is also interesting in its own.

2. Main Results

Definition 2.1 ([12]Zalar (1995)) Let A be a proper H∗-algebra and E be a complex
linear space which is a left A-module (and λ(ax) = (λa)x = a(λx) where λ ∈ C, a ∈ A
and x ∈ E) equipped with a map ρA : E → {a∗a : a ∈ A} such that

(i) the map ∥.∥E : x 7→ tr(ρA(x))
1

2 is a norm on E;
(ii) ρA(ax) = aρA(x)a

∗ for each a ∈ A and x ∈ E.
Then E is called a pre-Finsler module over H∗-algebra A. If (E, ∥.∥E) is complete, then
E is called a Finsler module. For instance, every Hilbert H∗-module E with the map
ρA(x) = [x|x] (x ∈ E) is a Finsler module.
E is said to be a full Finsler module, if the linear subspace generated by {ρA(x) : x ∈ E}
which is denoted by ⟨ρA(E)⟩ is τA-dense in τ(A), more precisely ⟨ρA(E)⟩ τA

= τ(A).

Example 2.2 The set A = l2, is a proper H∗-algebra and τ(A) = A (since A
is unital). It is easy to verify that {ei}i∈N (ei, has 1 as i-th position and 0 else-
where) is a maximal family of doubly orthogonal projections for A. If {an}n ∈ A,
then {an}∗n{an}n = {|an|2}n =

∑
n |an|2en, [{an}n] =

∑
n |an|en and τA({an}n) =

tr([{an}n]) = tr(
∑

n |an|en) =
∑

n |an|tr(en) =
∑

n |an|. Since tr(en) = tr(e2n) = 1.
Let E = A and ρA : E → {{an}∗n{an}n : {an}n ∈ A} be defined by ρA({an}n) =
{|an|2}n. Then E is a full (Hilbert module) Finsler module over A. For fullness of E, let
ϵ > 0 be given and {an}n ∈ τ(A). Then by definition of τA, it is easy to find complex

numbers λi and ai,n (n ∈ N, i = 1, ..., k), in which τA({
k∑

i=1

λi|ai,n|2 − an}n) < ϵ. Now

surjectivity of ρA gives the desired result, i.e. ⟨ρA(E)⟩ τA
= τ(A).

The following lemmas which are interesting, will be used frequently later.

Lemma 2.3 Let E be a Finsler module over H∗-algebra A. Then it is a Banach A-
module.

Proof. By the definition of Finsler module, E is a Banach space. It remains to show
that ∥ax∥E ⩽ ∥a∥∥x∥E for all a ∈ A and x ∈ E. For, let x ∈ E. Then ρA(x) = b∗b

for some b ∈ A and ∥x∥E = tr(ρA(x))
1

2 = tr(b∗b)
1

2 = ∥b∥. So ∥ax∥2E = tr(ρA(ax)) =
tr(aρA(x)a

∗) = tr(ab∗ba∗) = ∥ba∗∥2 ⩽ ∥b∥2∥a∥2 = ∥x∥2E∥a∥2. ■
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As a consequence of the above lemma we have ∥ax∥E ⩽ τA(a)∥x∥E for each a ∈ τ(A)
and x ∈ E.

Lemma 2.4 Let E be a full Finsler module over H∗-algebra A and a ∈ A. Then ax = 0
for all x ∈ E if and only if a = 0.

Proof. Firstly, suppose that a ∈ τ(A) and also b ∈ τ(A) is arbitrary. Since E is full,
there exists a sequence {un}n in ⟨ρA(E)⟩ such that b = lim

n→∞
τAun . Each un is of the form

un =

kn∑
i=1

λi,nρA(xi,n) in which λi,n ∈ C, xi,n ∈ E. Hence,

aba∗ = lim
n→∞

τAauna
∗ = lim

n→∞
τA(a

kn∑
i=1

λi,nρA(xi,n)a
∗) = lim

n→∞
τA

kn∑
i=1

λi,nρA(axi,n) = 0. (1)

Relation (1) holds since if x is an arbitrary element in E, then ρA(ax) = c∗c for some
c ∈ A and by assumption ∥c∥2 = tr(c∗c) = tr(ρA(ax)) = ∥ax∥2E = 0. It implies that c = 0
and so ρA(ax) = 0. Replacing b by a∗a in (1) we get tr(aba∗) = tr(aa∗aa∗) = ∥aa∗∥2 = 0.
Consequently aa∗ = 0 and by [1, Lemma 2.2], a = 0. Secondly, suppose that a ∈ A and
ax = 0 for all x ∈ E. Let b ∈ A be arbitrary, then by Lemma 2.3. bax = 0 for all x ∈ E.
By the above discussion and since ba ∈ τ(A), so ba = 0 for each b ∈ A. It implies that
Aa = 0. Hence a = 0, because A is proper. ■

Remark 1 If ϕ : A → B is an isometric morphism of H∗-algebras, then for each a ∈ A,
∥ϕ(a)∥2 = ∥a∥2 and so ⟨ϕ(a), ϕ(a)⟩ = ⟨a, a⟩. Whence tr(ϕ(aa∗)) = tr(aa∗). If in addition
ϕ is an isomorphism, then for each b ∈ B, tr(ϕ−1(bb∗)) = tr(bb∗).

Taking idea from [2]Amyari and Niknam (2003), we have two following theorems.

Theorem 2.5 Let E be a full Finsler module over H∗-algebra B, ϕ : A → B be a
morphism of H∗-algebras such that ϕ|τ(A) : τ(A) → τ(B) be a τ -continuous isomorphism
and isometric with respect to ∥.∥. Then by the module action, ax = ϕ(a)x and the map
x 7→ ρA(x) defined by ρA(x) = ϕ−1(ρB(x)), E is a full Finsler A-module.

Proof. It is clear that E is a complex linear space, and by morphism of ϕ, E is a left
A-module. Because of isometric isomorphism of ϕ|τ(A), for each x ∈ E we have ∥x∥AE =

tr(ρA(x))
1

2 = tr(ϕ−1(ρB(x)))
1

2 = tr(ρB(x))
1

2 = ∥x∥BE (2). Furthermore, ∥.∥BE is a norm
on E and so ∥.∥AE is. Let a ∈ A, x ∈ E, then ρA(ax) = ρA(ϕ(a)x) = ϕ−1(ρB(ϕ(a)x)) =
ϕ−1(ϕ(a)ρB(x)ϕ(a)

∗) = aϕ−1(ρB(x))a
∗ = aρA(x)a

∗.
Hence E is a pre-Finsler module over A. On the other hand (2) and completeness of
(E, ∥.∥BE) imply that (E, ∥.∥AE) is complete. Thus E is a Finsler module over A. We will

show that E is a full Finsler module over A, i.e. ⟨ρA(E)⟩ τA
= τ(A). Note that by the

inverse mapping theorem (ϕ|τ(A))
−1 : τ(B) → τ(A) is a (τB, τA)-continuous isomorphism
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(and also homeomorphism).

⟨ρA(E)⟩ τA
= {

kn∑
i=1

λi,nρA(xi,n) : λi,n ∈ C, xi,n ∈ E}

τA

= {
kn∑
i=1

λi,nϕ−1(ρB(xi,n)) : λi,n ∈ C, xi,n ∈ E}

τA

= ϕ−1{
kn∑
i=1

λi,nρB(xi,n) : λi,n ∈ C, xi,n ∈ E}

τA

= ϕ−1{
kn∑
i=1

λi,nρB(xi,n) : λi,n ∈ C, xi,n ∈ E}

τB

= ϕ−1( ⟨ρB(E)⟩ τB
) = ϕ−1(τ(B)) = τ(A).

■

In the following we shall establish a converse statement to the above theorem.

Theorem 2.6 Let E be a both full Finsler module over A and a full Finsler module
over B and let ϕ : A → B be a map such that ax = ϕ(a)x and ϕ(ρA(x)) = ρB(x),
where x ∈ E, a ∈ A. Then ϕ is a continuous monomorphism, ϕ|τ(A) : τ(A) → τ(B) is

a (τA, τB)-continuous and it has dense range, i.e. ϕ|τ(A)(τ(A))
τB

= τ(B). If for each
x ∈ E, tr(ρA(x)) = tr(ρB(x)), then ϕ is isometric on the set {a ∈ A : there exists x ∈
E in which a∗a = ρA(x)}.

Proof. For simplicity in writing we put ϕ1 = ϕ|τ(A). Assume that {an}n is a sequence
in τ(A) such that lim

n→∞
τAan = 0 and lim

n→∞
τBϕ1(an) = b, (b ∈ τ(B)). Let x be an arbitrary

element in E, then by the comment after Lemma 2.3. anx → 0 and ϕ1(an)x → bx. By
the definition of module action ϕ1(an)x → 0. Hence bx = 0. Applying Lemma 2.4. b = 0.
It follows from closed graph theorem that ϕ1 is (τA, τB)-continuous. A similar argument
shows that ϕ is continuous. Since (ϕ(a + b) − ϕ(a) − ϕ(b))x = (a + b)x − ax − bx = 0
for each x ∈ E and for each a, b ∈ A, so by Lemma 2.4. ϕ(a + b) = ϕ(a) + ϕ(b).
Similarly for each λ ∈ C and for each a, b ∈ A, ϕ(λa) = λϕ(a) and ϕ(ab) = ϕ(a)ϕ(b).
Now let a ∈ τ(A), then we may assume that a = lim

n→∞
τAun, each un is of the form

un =

kn∑
i=1

λi,nρA(xi,n) for some λi,n ∈ C and xi,n ∈ E. Hence ϕ1(a
∗) = lim

n→∞
τBϕ1(u

∗
n) =

lim
n→∞

τB(ϕ1(

kn∑
i=1

λi,nρA(xi,n))) = lim
n→∞

τB

kn∑
i=1

λi,nϕ1(ρA(xi,n)) = lim
n→∞

τB

kn∑
i=1

λi,nρB(xi,n) =

( lim
n→∞

τB

kn∑
i=1

λi,nρB(xi,n))
∗ = ( lim

n→∞
τB

kn∑
i=1

λi,nϕ1(ρA(xi,n)))
∗ =

(ϕ1( lim
n→∞

τA

kn∑
i=1

λi,nρA(xi,n)))
∗ = ϕ1(a)

∗. Therefore ϕ1 is a morphism. Let a ∈ A, then

there exists a sequence {an}n ⊆ τ(A) such that a = lim
n→∞

an. By morphism of ϕ1 and
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continuity of ϕ we can write ϕ(a∗) = ϕ( lim
n→∞

a∗n) = lim
n→∞

ϕ(an)
∗ = ( lim

n→∞
ϕ(an))

∗ = (ϕ(a))∗.

If ϕ(a) = 0, then ax = ϕ(a)x = 0, for all x ∈ E. Hence a = 0, by Lemma 2.4. Therefore ϕ
is a monomorphism. Given ϵ > 0 and let b ∈ τ(B) be arbitrary. Since E is a full Finsler

module over B, so τB(b −
kn∑
i=1

λi,nρB(xi,n)) < ϵ, for some λi,n ∈ C and xi,n ∈ E. Hence

τB(b−ϕ1(

kn∑
i=1

λi,nρA(xi,n))) < ϵ. Therefore ϕ1 has dense range in τ(B). Now suppose that

for each x in E, tr(ρA(x)) = tr(ρB(x)). Also assume that a ∈ A and a∗a = ρA(x) for some
x ∈ E, then ∥a∥2 = tr(a∗a) = tr(ρA(x)) = tr(ρB(x)) = tr(ϕ(ρA(x))) = tr(ϕ(a∗a)) =
∥ϕ(a)∥2.
■

We could not drop the condition of fullness. For instance, let B = l2 and A = E =
{{an}n ∈ B : a1 = 0}. Then E is a full Finsler module over A, when ρA({an}n) =
{|an|2}n and E is a Finsler module over B when ρB({an}n) = {|an|2}n. E is not full
over B, because let {bncn} ∈ τ(B) (= B) with b1c1 be nonzero. If on the contrary

⟨ρB(E)⟩τB = τ(B), then there exist λi ∈ C and {ai,n}n ∈ E (i = 1, ..., k) in which

τB(

k∑
i=1

λi{|ai,n|2}n − {bncn}n) < ϵ (3). Put {dn}n =

k∑
i=1

λi{|ai,n|2}n − {bncn}n. As we see

in Example 2.2. the left side of (3) is equal to

∞∑
n=1

|dn|. Hence |b1c1| = |d1| ⩽
∞∑
n=1

|dn| < ϵ by

(3) and since ϵ > 0 is arbitrary, so b1c1 = 0, which is a contradiction. Now let ϕ : A → B
be the inclusion map, obviously ϕ satisfies in the conditions of Theorem 2.7. i.e, for each
x ∈ E and for each a ∈ A, ax = ϕ(a)x and ϕ(ρA(x)) = ρB(x). On the other hand

ϕ(τ(A))
τB ̸= τ(B). Indeed, by a similar argument as above if {bncn}n ∈ τ(B)(= B) and

b1c1 ̸= 0, then it is not in ϕ(τ(A))
τB
(= A). Thus ϕ|τ(A) does not have dense range in

τ(B).
The following theorem is a version of [3, Lemma 2.2] in the framework of Finsler modules
over H∗-algebras.

Theorem 2.7 Let E be a Finsler module over H∗-algebra A, I be a closed two sided
ideal of A and x be in E such that ρA(x) ∈ I. Then x =

∑
λ∈Λ eλx, where {eλ}λ∈Λ is a

maximal family of doubly orthogonal primitive self adjoint idempotents for I.

Proof. Let Λ0 be a finite subset of Λ. We claim that

ρA
(
x−

∑
λ∈Λ0

eλx
)
= ρA(x)−

∑
λ∈Λ0

eλρA(x)−
∑
λ∈Λ0

ρA(x)eλ

+
∑
λ∈Λ0

eλ[d]
∑
γ∈Λ0

[d]eγ (4)

where ρA(x) = d∗d = [d]2 for some d ∈ A ([9, Lemma 2]). If b is the left side and c is the
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right side of (4), then obviously b and c are self adjoint and for each a ∈ A, we have

aca∗ = aρA(x)a
∗ − a

∑
λ∈Λ0

eλρA(x)a
∗ − a

∑
λ∈Λ0

ρA(x)eλa
∗ + a

∑
λ∈Λ0

eλ[d]
∑
γ∈Λ0

[d]eγa
∗

=
(
a−

∑
λ∈Λ0

aeλ

)
ρA(x)

(
a−

∑
γ∈Λ0

aeγ

)∗
= ρA

((
a−

∑
λ∈Λ0

aeλ
)
x
)

= ρA

(
a
(
x−

∑
λ∈Λ0

eλx
))

= aρA

(
x−

∑
λ∈Λ0

eλx
)
a∗ = aba∗.

Thus for each a ∈ A, a(c−b)a∗ = 0, specially for a = c−b. Hence (c−b)3 = 0 and so c = b

by [1, Lemma 2.3]. Consequently ρA(x−
∑

λ∈Λ eλx) = 0 and so tr(ρA(x−
∑

λ∈Λ eλx))
1

2 =
∥x−

∑
λ∈Λ eλx∥E = 0 which implies that, x =

∑
λ∈Λ eλx. ■

Definition 2.8 Let E and F be Finsler modules over proper H∗-algebras A and B
respectively and ϕ : A → B be a morphism of H∗-algebras. A linear operator Φ : E → F
is said to be a ϕ-morphism of Finsler modules if the following conditions are satisfied:
(i) Φ(ax) = ϕ(a)Φ(x),
(ii) ρB(Φ(x)) = ϕ(ρA(x)),
where x ∈ E and a ∈ A.
Φ is called a module map if it satisfies in the condition (i). If E,F and G are Finsler
modules over proper H∗-algebras A,B and C respectively, ϕ1 : A → B and ϕ2 : B → C
are morphisms of H∗-algebras, and Φ1 : E → F and Φ2 : F → G are ϕ1-morphism
and ϕ2-morphism of Finsler modules respectively, then it is straightforward to show that
Φ2Φ1 : E → G is a ϕ2ϕ1-morphism of Finsler modules.

In the following we state some results appeared in [11]Taghavi and Jafarzadeh (2007)
to Finsler modules over H∗-algebras.

Theorem 2.9 Let E and F be Finsler modules over H∗-algebras A and B respectively,
ϕ : A → B be a morphism in which ϕ|τ(A) : τ(A) → τ(B) be a (τA, τB)-continuous
injective morphism and ϕ(τ(A)) be τB-closed in τ(B). Also let Φ : E → F be a ϕ-
morphism. If Im(Φ) is a full Finsler module over Im(ϕ), then E is a full Finsler module
over A.

Proof. Applying inverse mapping theorem, (ϕ|τ(A))
−1 : ϕ(τ(A)) → τ(A) is a (τB, τA)-

continuous morphism. We will show that E is full. Let a ∈ τ(A) be arbitrary, then
a = a1a2 for some a1, a2 ∈ A. Therefore ϕ(a) = ϕ(a1)ϕ(a2) ∈ τ(Im(ϕ)). Since Im(Φ) is
a full Finsler Im(ϕ)-module, thus we have

ϕ(a) =
τB

lim
n→∞

kn∑
i=1

λi,nρB(Φ(xi,n))

=
τB

lim
n→∞

kn∑
i=1

λi,nϕ(ρA(xi,n)) (5)

for some λi,n ∈ C, xi,n ∈ E. Effecting (τB, τA)-continuous morphism (ϕ|τ(A))
−1 to

both sides of (5), we obtain that a = lim
n→∞

τA

kn∑
i=1

λi,nρA(xi,n) by injectivity of the
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morphism ϕ|τ(A). Thus a ∈ ⟨ρA(E)⟩τA and therefore τ(A) ⊆ ⟨ρA(E)⟩τA ⊆ τ(A). So

τ(A) = ⟨ρA(E)⟩τA . Note that ϕ cannot come out in (5). ■

The following lemma is proved in the framework of Finsler modules over C∗-algebras
([11, Lemma 3.1]). It is easy to show this lemma in the Finsler modules over H∗-algebras.

Lemma 2.10 Let E and F be Finsler and full Finsler module over H∗-algebras A and
B respectively, ϕi (i = 1, 2) be maps from A to B and Φ : E → F be a surjective map
satisfies Φ(ax) = ϕi(a)Φ(x) (i = 1, 2) for all x ∈ E and a ∈ A. Then ϕ1 = ϕ2.

Theorem 2.11 Let E and F be full Finsler modules over H∗-algebras A and B re-
spectively and Φ : E → F be a continuous isomorphism satisfies Φ(ax) = ϕ(a)Φ(x) and
ρB(Φ(x)) = ϕ(ρA(x)), for all x ∈ E and a ∈ A, where ϕ : A → B be a map. Then ϕ is
a continuous monomorphism, ϕ|τ(A) is (τA, τB)-continuous and has dense range in τ(B).
Moreover, ϕ with these conditions is unique.

Proof. Applying a similar argument in the proof of Theorem 2.6. one can see that, ϕ is a
continuous monomorphism and ϕ|τ(A) is (τA, τB)-continuous. We will show that ϕ is one
to one. Let ϕ(a) = 0 for some a ∈ A, so ϕ(a)Φ(x) = 0 for each x ∈ E. Hence Φ(ax) = 0
and by injectivity of Φ, ax = 0 for each x ∈ E. Then a = 0 by fullness of E. So ϕ is
a monomorphism. In addition, τ(B) = ⟨ρB(F )⟩τB = ⟨ρB(Φ(E))⟩τB = ⟨ϕ(ρA(E))⟩τB ⊆
⟨ϕ(τ(A))⟩τB = ϕ(⟨τ(A)⟩)τB = ϕ(τ(A))

τB ⊆ τ(B). Therefore ϕ(τ(A))
τB

= τ(B) and so
ϕ|τ(A) has dense range. Uniqueness of ϕ obtains from Lemma 2.10. ■

Remark 2 Fullness condition can not be dropped in the above theorem. For example let
B = l2, A = E = {{an}n ∈ B : a1 = 0} and F = {{an}n ∈ B : a1 = a2 = 0}. Then E is
a full Finsler module over A, when ρA({an}n) = {|an|2}n and F is a Finsler module over
B, when ρB({an}n) = {|an|2}n. As we mentioned before F is not full Finsler module
over B. Let Φ : E → F defined by Φ({an}n) = {bn}n, where b1 = 0 and for n = 2, ...,
bn = an−1 and ϕ : A → B defined by ϕ({an}n) = Φ({an}n). Clearly Φ is a continuous
isomorphism, Φ({an}n{bn}n) = ϕ({an}n)Φ({bn}n) and ρB(Φ({an}n)) = ϕ(ρA({an}n))
for all {an}n ∈ A and {bn}n ∈ E. On the other hand ϕ(τ(A)) (= ϕ(A)) dose not have
dense range in τ(B) (= B).

In the following we state [3, Theorem 3.4], in the framework of Finsler modules over
the H∗-algebras.

Theorem 2.12 Let E and F be Finsler modules over H∗-algebras A and B respectively,
ϕ : A → B be an isometric morphism and Φ : E → F be a ϕ-morphism of Finsler mod-
ules. Then
(i) Im(Φ) is a closed subspace of F .
(ii) Im(Φ) is a Finsler module over H∗-algebra Im(ϕ), such that ρImϕ(Φ(E)) =
ϕ(ρA(E)).
(iii) If E is a full Finsler module and ϕ |τ(A): τ(A) → ϕ(τ(A)) is (τA, τB)-continuous,
then Im(Φ) is a full Finsler module over the H∗-algebra Im(ϕ).
(iv) If Φ is surjective, F is full Finsler module over B and ϕ(τ(A)) is τB-closed, then
ϕ|τ(A) is surjective.

Proof. (i) We will show that Φ is isometry and so it has closed range. Let x be an
arbitrary element in E. Then ρA(x) = a∗a for some a ∈ A, and since ϕ is isometric so

∥Φ(x)∥F = tr(ρB(Φ(x)))
1

2 = tr(ϕ(ρA(x)))
1

2 = tr(ϕ(a∗a))
1

2 = tr(a∗a)
1

2 = tr(ρA(x))
1

2 =
∥x∥E .
(ii) Straightforward.
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(iii) We will show that Im(Φ) is a full Finsler module over the H∗-algebra Im(ϕ)

i.e. ⟨ρB(ImΦ)⟩τB = τ(Imϕ). For this, let b ∈ τ(Imϕ), then b = ϕ(a1a2) for some
a1, a2 ∈ A. By fullness of E and (τA, τB)-continuity of ϕ|τ(A) we have b = ϕ(a1a2) =

ϕ( lim
n→∞

τA

kn∑
i=1

λi,nρA(xi,n)) = lim
n→∞

τB

kn∑
i=1

λi,nϕ(ρA(xi,n)) = lim
n→∞

τB

kn∑
i=1

λi,nρB(Φ(xi,n)) for

some λi,n ∈ C and xi,n ∈ E. It gives the desired result.
(iv) It follows by the argument applied in the proof of Theorem 2.11. ■
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