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Abstract. In this paper we develop a natural generalization of Schauder basis theory, we term
operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove
several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality.
We prove that the operators of a dual ov-basis are continuous. We also define the concepts of
Bessel, Hilbert ov-basis and obtain some characterizations of them. We study orthonormal
and Riesz ov-bases for Hilbert spaces. Finally we consider the stability of ov-bases under
small perturbations. We generalize a result of Paley-Wiener [4] to the situation of ov-basis.
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1. Introduction

Throughout this paper, H,K are separable Hilbert spaces and I,.J,.J; denote the
countable (or finite) index sets and {W,}; is a sequence of closed subspaces of K and
B(#H,W;) denote the collection of all bounded linear operators from # into W; and
Aj € B(H,Wj) for all j € J. Also Ry and Np denote the range and null spaces of an
operator T' € B(H, K) respectively. Recently, W. Sun [3] introduced a generalized frame
and a generalized Riesz basis for a Hilbert space and discussed some properties of them.
In this paper we introduce the concept of the operator-valued basis and then we redefined
the concepts of the orthonormal operator-valued basis and operator-valued Riesz basis
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for a Hilbert space. we develop the basis theory to the situation of operator-valued basis
theory in Hilbert spaces.

Definition 1.1 Let A; € B(#H,W,) be an onto operator for all j € J. Then the family
A = {A;};cs is called an operator-valued basis or simply ov-basis for H with respect to
{W;}jes, if for any f € H there exists an unique sequence {g; : g; € Wj};es such that

f=> Mg (1)

jedJ

with the convergence being in norm. If series (1) is unconditionally convergent, A is
called an unconditional ov-basis. We call this family an ov-basis for H with respect to I
if W; =K for all j € J.

Theorem 1.2 Let {A;};c; be anov-basis for H with respect to {W;},cs. Then

dim# = dim W
jedJ

Proof. Let {e;j}ics, be an orthonormal basis for W; for all j € J. We show that
{Ajeijtjeries; is a basis for H. Since {e;;}iey; is an orthonormal basis for Wj, hence
every g; € W; has a unique expansion of the form g; = >, 7, < Yj eij > e This
implies that also every f € H has a unique expansion of the form

f = Z Z < gj, €ij > A;eij.

jeJied;

This shows that dim#H =}, ; dim Wj. [

Corollary 1.3 Let {A;}jc, {I'i}icr be ov-bases for H with respect to {W;}jer, {Vitier
respectively. Then }_ ., dimW; =3, dimV;.

2. Characterizations of ov-bases

Let A = {Aj}jcs be a ov-basis for H with respect to {W;};c, then every f € H has a
unique expansion of the form f = Eje J Aj-gj. It is clear that each g; € Wj is a linear
operator of f. If we denote this linear operator by I'; : H — Wj, then g; = I'; f, and
we have f =) jes AT f. The sequence {I'j} e is called the dual ov-basis of A. In the
next theorem we show that the operators of a dual ov-basis are continuous.

Theorem 2.1 Let A = {A;};c; be a ov-basis for H with respect to {W;},cs, and let
{T';} e be the dual ov-basis of A, then I'; € B(#H, W}), for all j € J. Moreover, if I'; # 0
for some j € J, then ||T;||||A;]] > 1.

Proof. Define the space

A= {{gj}jeJ| g; € Wj, ZA;gj is convergent},
jedJ



M. S. Asgari / J. Linear. Topological. Algebra. 02(04) (2013) 201-218. 203

with the norm defined by

<|F|<oo
FCJ

H{g]}JGJH = SUP H ZA;‘gi
el
It is clear that A endowed with this norm, is a normed space with respect to the pointwise
operations. We will show that the space A is a complete. Let {u,}n,en be a Cauchy
sequence in A. If u, = {gn;}jes, then given any € > 0, there exists a number N such
that

sup || D7 (A7 g = Afgns) @)
el

0<|F|<o0
FCJ

for all m,n > N. Now for all j € J and m,n > N we have

0<|F|<oo
FCJ

183905 = Agmsll < sup | SO (A7gni — Afgmi)
cF
This shows that {A}‘gnj }nen is a Cauchy sequence in H. Since A; is onto hence by The-
orem 4.13 of [2] the sequence {gn;}nen is a Cauchy sequence in W; and thus convergent.
Let g; € W; such that g; = lim, o gnj and v = {g;};cs. From (2), by letting m — oo,
we obtain

| <e (3)
0<|F|<oo
FCJ

sup HZ(Afgm — g
e F

for all n > N. Since for all finite non-empty subset F' C J we have

| 5 siaf<| 3 iow—io] +] 3 tom
i€J—F

i€J—F eJ-F
< sup H§:(A:gm—Az‘gi>\+ sup [ S Avgws
0<|F|<oo 0<|F| <o .
FCJ 7 FCJ F

thus u € A. Moreover (3) implies that the sequence {uy,}nen is convergent to u in \A.
Therefore A is a Banach space. Define the mapping

T:A—H with T({gj}jes) = Alg;.
jeJ

Since A is a g-basis for H with respect to {W;};ecs hence T is linear, one-to-one and
onto. On the other hand, since

ITgsbienl = | DA < sup || 32 Asa]| = Hgi}sesl
jeJ o= Vier

Thus T is continuous and the open mapping theorem then guarantees that 7! is also
continuous. This shows that A and H are Banach spaces isomorphic. Now suppose that
f= ZjeJ AZgj is a fixed, arbitrary element of H and let j € J. Since A; is onto thus by
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Theorem 4.13 of [2] there is a m; > 0 such that m;l|g|| < [[A}g]| for all g € W;. Moreover,
we have

*
[A*g,||  SuPo<iri<e | Y icr Algill ollT-1 o1
Hrjf” — ng” < Jj7J < FCJ _ H f” < H H”f” ]
my; my; mj m;
This shows that each I'; is continuous and ||I';|| < AT For the remaining inequality

m;

assume that 0 # g; = I'; f for some f € H, then we have

g5l = IT5A595 1 < 1751111 A5 1l g; 1l

which implies that || ||||A;]] > 1. ]

Let {A;}jes be a ov-basis for H with respect to {W;},cs and let {I';};c; be the dual
ov-basis of {A;};cs. Then F-partial sum operator of {A;};c; defined by

Sp:H—H with Spf=Y ATf,

jeF
for all finite subset F' C J. By Theorem 2.1, S is a bounded operator and

1< sup [|SF| < oc. (4)

0<|F|<oo
FCJ

A family of operators {A; € B(H,W;) : j € J} is called a complete sequence for H
with respect to {W;}jes, if H =3span{A;(W;)}jes. It is easy to check that {A;}jes is a
complete sequence for H with respect to {W;} ey, if and only if {f: A;f =0,j € J} =

{0}

Theorem 2.2 Let {A;},cs be a complete sequence for H with respect to {W;},cs. Then
{A;}jer is a ov-basis for H with respect to {W;}cs if and only if there exists a constant
M such that

H ZAZ%
i€l

<MY A (5)
ieG

for all finite subsets /' C G' C J and arbitrary vectors g; € Wj;,j € G.

Proof. First suppose that {A;};cs is a ov-basis for H with respect to {W;};c; and

let M = supo<iri<es ||SF||, then for all finite subsets F' C G C J and arbitrary vectors
FCJ

g; € W; we have

12_ A5sll = [l5e (2 Aja) | < M 3 Ajai
Jjer jeG jeG

To prove the opposite implication take f € H. By hypothesis, there exist finite sub-
sets F, C F,y1 C J and vectors g,; € Wj for all n € N,j € F, such that
f=lm, 00 jeF, A;-‘gnj. For notational convenience, put g,; = 0 for j ¢ F,, then
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for every m > n and j € F,, we have

1A% (gng = gmp) Il < M| - AF(gni — gimi)|

i€k,
< M2H Z A:(gm - gmz)H
1€F,,
i€F, i€F,,

This shows that {A;gnj}neN is a Cauchy sequence in H. Since A; is onto hence by
Theorem 4.13 [2] the sequence {gn; }nen is a Cauchy sequence in W; and thus convergent.
Let g; € Wj such that g; = lim, o gnj, then f = ZJEJ 79 Now we show that this
representation is unique. If > Jg] = 0, then for any ﬁmte subset ' C J and j € F
we have

j€J

IA5g;ll < M| Afgi|| — 0.
=y

This shows that [[Ag;[| = 0. Since A} is one-to-one on Wj, hence g; = 0 which this
completes the proof. [ |

Corollary 2.3 Let {A;}jcs be a ov-basis for H with respect to {W;};ecs, with dual
ov-basis {I'j}jes. Then {I';};cs is a ov-basis for H with respect to {W;},c; and

=Y TiAf VfeEH
jed
Proof. First we prove that H = span{lj(W;)}jes. To see this, let f L
span{l;(W;)}jes. Then

IT;fII* =< £,I5T;f >=0,

which implies that I'; f = 0 for all j € J. We also have

f=) NT;f=0.

jed

Thus H = span{l";(W;)} es. We now prove that {I';} e is a ov-basis for H with respect
to {W;};ecs. For this, we show that Sj.f — f for all f € H. First assume that f is a finite
linear combination of {I'jg; : g; € W], jeJ} say f=23cqlig; and let 12 G be
a finite arbitrary set. Then by hypothesis for any 4, j € J we have I';A;T'; = d;;I'; hence
I‘;-kAiF;f = 0;;1'7. It follows that

Spf=Y SiT5g;=> > TiATGg; =) Tjg; =

jeG JjEGieF jeaG

Now if f € H, then given € > 0 we can find g = >, I'jg; such that || — gl < 377,
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where M = supo<iri<w ||Sp||. We also have
FCJ

1SEf = FIl < ISEf = Skgll + llg = £l < ISk +DIIf — gl <e

for every finite set F' O G. Thus every f € H has at least one representation of the form
f=22es;A;f. We show that this representation is unique. Assume that > ., I'7g

0 then by hypothesis for any i,j € J we have I';A7A; = d;;A; thus AJA; I‘* = (52]A* It
follows that

Argi = ASA( D Tig) =0

jeJ
Since A7 is one-to-one on W;, therefore g; = 0 for all ¢ € J. This completes the proof. B

Definition 2.4 Let {A;};cs and {I';};cs be sequences of operators for H with respect
to {W;}jes.
1) Let A; be onto for all 3 € J, then iticg 1s called a ov-biorthogonal sequence
) Let A; b for all j € J, th [}jes is called biorth 1
of {Aj}jGJa if FZA;QJ = 5ijgj for all i,j € J, gj € Wj.
(i1) {Aj}jes is called minimal, if for each j € J

A5(W;) N span{AL (W) bes = {0}

(i4i) We say that {A;}je;s is w-independent if whenever } . ;Ajg; = 0 for some
sequence {g; : g; € Wj}jes, then necessarily g, = 0 for all k£ € J.
Since AJA;I7 = 6;;A7 for all i, j € J and A is one-to-one on W hence if {I'j}e is
a ov-biorthogonal sequence of {A;};es, then {A;} e is also a ov-biorthogonal sequence
of {T'j}je-

Proposition 2.5 Let {A;};c; be a sequence of operators for H with respect to {W;};es
and let A; be onto for all j € J, then {A;},c; is minimal if and only if it is w-independent.

Proof. First assume that {A;}c; is not w-independent, then there is a sequence {g; :

g; € Wjtjes with gx # 0 for some k € J, such that >, ; ATg; = 0. It follows Ajgr =

> ses A¥(—g;) which implies that Aygr € Span{A}(W. )}JeJ That is, {Aj},ecs is not
Ak

minimal. The other implication is obvious. |

Proposition 2.6 Every ov-basis for a Hilbert space possesses a unique ov-biorthogonal
sequence.

Proof. By definition, the dual ov-basis of a ov-basis is a ov-biorthogonal sequence of
it. Moreover, if {I';};ec; and {V;};c; be ov-biorthogonal sequences of ov-basis {A;}e,
then for all f € H and ¢, j € J we have U, AZT'; f = §;;I'; f, which implies that

AU f =) CATTNT f = 6 AT; f = AT f.
jeJ jeJ
Since A} is one-to-one on W;, hence I'; = ;. [ |

Proposition 2.7 Let {A;},cs be a sequence of operators for H with respect to {W,};es,
and let A; be onto for all j € J. Then
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(i) {Aj}jcs has a ov-biorthogonal sequence, if and only if {A;};c; is minimal.
(i4) The ov-biorthogonal sequence of {A;}jc; is unique if and only if {A;}jes is
complete.

Proof. For the proof of (i) suppose that {F }jes is a ov-biorthogonal sequence of
{Aj}jes, and let f € Ap(Wy) N span{A}( )}Jez for any given k € J. Then there
itk

exists a sequence {g; : g; € Wj}jes such that f = Afgp =D jes A 795 We also have
i#k

gk =TrBfgr =D Trligi =Y Okig; =

Jjed, JEJ,
i#k i#k

which implies that f = 0. That is, {A;}cs is minimal. For the opposite implication in
(i), suppose that {A;};ec; is minimal, and let Ho = span{Aj(W;)} ;e . From Proposition
2.5 it follows that {A;};es is a ov-basis for Ho with respect to {W;}je,. Let {I';}jes be
dual ov-basis of {A;}jcs. If we define I'; = F;P for all j € J, where P is the orthogonal
projection from H onto Hg. Then {I';},c is a ov-biorthogonal sequence for {A;};c.

(1) Let {I';}cs be a ov-biorthogonal sequence of {A;};es. If {A;}es is not complete,
then the sequence {¥;};c; defined by ¥; = I'; + Aj(Idy — P) for all j € J is a ov-
biorthogonal sequence for {A;};c . For the other implication in (i7), assume that {A;};cs
is complete. If 37, ; AZg; = 0 for any given sequence {g; : g; € W;};ey, then for every
k € J we have

g =Y 0kigi = Tihigi =T(D>_ Aig;) =

jed jed jed

This shows that {A;};c is a ov-basis for H with respect to {W;};e.;. Now the conclusion
follows from Proposition 2.6. [ |

Theorem 2.8 Let {A;};c; be a ov-basis for H with respect to {W;};e; and let T' :
M — U be a bounded linear operator such that I'; = A; 7™ for all j € J. Then {I';};es
is a ov-basis for U with respect to {W;},c; if and only if T" is invertible.

Proof. Let T be invertible and let g € U, then we can write g = T'f for some f € H.
Since {A;}jes is a ov-basis for H with respect to {W;};es hence f € H has an unique

expansion of the form f =" jeJ AZgj where g; € Wj for all j € J. It follows that

9=Tf=3 Thjg; = Tjg

jedJ jeJ

which implies that {I';};c is a ov-basis for U with respect to {W;};c;. Now we assume
{A;}jes and {I'j};cs are ov-bases for H and U with respect to {W }jes respectively.
Since for every sequence {g; : g; € Wj}jes we have T(Z es Mg gj) = ZjEJF;gj.
Therefore T is invertible. u

Definition 2.9 Let {A;};c; and {I'j};c; be ov-bases for H and U with respect to
{W;}jes respectively. Then {A;};cs and {I';}c; are said to be equivalent if for any
given sequence {g; : g; € W;}jes the series Zje J A;'fgj is convergent if and only if the
series Y jed F;‘f g; 1s convergent.

Theorem 2.10 Two ov-bases {A;};e; and {I';}cs for H and U with respect to {W;};es
are equivalent if and only if there exists a bounded linear invertible operator T : H — U
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such that I'; = A;T™.

Proof. Assume that T : H — U be the bounded linear invertible operator such that
I'; = A;T* for all j € J. Then the sufficiency follows from the fact that for every sequence
{95+ g € W} ej we have

ZF;gj:T<ZA;gj) and ZA;gj:T_1<ZF;gj>.

jeJ jed jeJ jeJ

Now suppose that {A;};cs and {I';};es are equivalent ov-bases for # and U with respect
to {W;}jes. If f € H with unique expansion f =3 .. ; A7g;, then the series >, ;I'g;
converges to an element T'f € U. Therefore, T'f is well defined. Since A;f is one-to-one
on W; for all j € J, hence it is easy to check that T is linear, bijective and I'; = A;T™.
To show that T is a bounded invertible operator, we define operators Tr by Trf =
Zje rLjg; for every non-empty finite subset F' C J. Then T'f = limp T [ for every
f € H. Since by Theorem 2.8 each TF is bounded thus the Banach-Steinhaus Theorem
implies that T is bounded. Moreover the open mapping Theorem guarantees that T is
invertible. |

Theorem 2.11 The ov-biorthogonal sequences associated with equivalent ov-bases are
equivalent.

Proof. Let {A;};cs and {I';},cs be equivalent ov-bases for # and U with respect to
{W;}jes and let, {V¥,};cs and {®;};c; be ov-biorthogonal sequences for them respec-
tively. By assumption there exists a bounded invertible operator 7' : H — U such that
I'; = A;T*. For any f € H we have

f=TTf =T (YT, ) = T (Y TR, TE) = SO Ae,TS

jeJ jeJ jeJ

By Proposition 2.6 it follows that W; = ®;T for all j € J. that is {U,};c; and {®;};es
are equivalent. [ |

For each sequence {W;} cs of closed subspaces of K, we define the Hilbert space
associated with {W;},cs by

(X em),, = {{ashiesla; € Wy and 3 lgjl1* < 0. (©)

JjeJ Jj€J
with inner product given by

< A{frtren {gtees >=D_ < fi, 95> (7)

JjeJ
Definition 2.12 Let {A;};c; be a ov-basis for H with respect to {W;};c;. We say
that {A;}jes is a Bessel ov-basis if whenever 3 .. ; Ajg; converges, then {g;};je; €
(Zje J EBW]-) 2 1t is called a Hilbert ov-basis, if the series Zje sAjgj is convergent
for all {g;}jes € (ZjeJ @Wj)z2'

Theorem 2.13 Let {A;};cs be a ov-basis for H with respect to {W;};cs. Then {A;}jes
is a Bessel ov-basis for H with respect to {W;};cs if and only if there exists a constant
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A > 0 such that
2
A gl <1 A
JEF JEF
for any finite subset ' C J and arbitrary vectors g; € Wj.

Proof. The sufficiency is trivial. Assume that {A;};c is a Bessel ov-basis and consider
the space

= {{gj}jeJ| g; € Wj, ZA;gj is convergent}.
j€J

Clearly A is a subspace of (Zje J EBW]-) - We show that A is closed. To see this, let

{9n;}jes be a sequence in A such that converges to some {g;}jcs € (Z]EJ EBW]-)ZQ, then
gnj — g; for all j € J. Let I’ be an arbitrary finite subset of J and n € N, then we have

1D 85051 < D2 A5 (s — gl + 1D A

JEF JEF jEF

It follows that ). jed ] *g; is Cauchy and hence convergent in H, which implies that A is
closed. Now define the operator T : A — H by

T({gj}jes) = Z A*g]

jeJ

Then, it is obvious that T is linear, one-to-one. To show that T' is a bounded operator, we
define the bounded operators Tr : A — H by Tr({g;}jes) = > jep Ajgj- Then Tp — T
pointwise. Since each Ty is bounded the Banach-Steinhaus Theorem follows that T is
bounded. Now by Theorems 4.13 and 4.15 of [2] there exists a constant A > 0 such that

w112
A llgill* <11 Ajasll
JEF JEF
for any finite subset ' C J and arbitrary vectors g; € Wj. [ ]

Theorem 2.14 Let {A;};cs be a ov-basis for H with respect to {W;};cs. Then {A;}jes
is a Hilbert ov-basis for H with respect to {W;};es if and only if there exists a constant
B > 0 such that

12
1> A5gill” < B llgs®
jEF jEF
for any finite subset ' C J and arbitrary vectors g; € Wj.

Proof. Suppose that {A;};cs is a Hilbert ov-basis then the Banach-Steinhaus Theo-
rem guarantees that the operator T : (ZjEJ @Wj)@ — H defined by T'({gj}jcs) =
>_jes Ajg; is bounded. Therefore there exists a constant B > 0 such that

1Y Agil? < BY llgs I

JEF JEF
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for any finite subset F' C J and arbitrary vectors g; € W;. The opposite conclusion is
trivial. |

Theorem 2.15 Let {A;};c; be a ov-basis for H with respect to {W;};c;, with dual
ov-basis {I';}jcs. Then {A;};cs is a Bessel ov-basis if and only if {I';};c is a Hilbert
ov-basis.

Proof. First suppose that {A;};c is a Bessel ov-basis, then {I'; f} ;e € (ZjeJ OW;) .
for all f € H. Fix F' C J with |F| < oo and let f =3, Ig;. Then we have

IS mig) = 1< £.3 Tig > P < (O IT fllllgs
JeF jeEF jeF

< (IR (S llgsl1?)-

jeJ JEF
This shows that {I';};cs is a Hilbert ov-basis. For the other implication, assume that

{L'j}jes is a Hilbert ov-basis. Fix F' C J with |F| < oo and let f = > .. AJg;, then
g; =1'jf for all j € F. By Theorem 2.14 there exists a constant B > 0 such that

ISP <BY DI =B < £, I f >

jEF jEF jeF

< B DT -

jJEF

Hence,

I>_Timifl < Bl > Ajgill-

jJEF jEF

We also have

Do llgill> =Y ITif I =< £ ) LTy f >

jeF jeF JEF
<o Malll YoTsrisll < BI Y- e
JEF JEF JEF
Now applying Theorem 2.13 the result follows at once. [ |

3. Orthonormal ov-bases and Riesz ov-bases

In this section we give some characterizations of orthonormal ov-bases and Riesz ov-
bases in Hilbert spaces. For more details about the theory and applications of orthonor-
mal ov-bases we refer the readers to [1].

Definition 3.1 Let {Z,},cs be a sequence of operators for # with respect to {W;};e.
Then
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(i) {E;}jes is called an orthonormal ov-system for H with respect to {W;} e, if:
EiE;gj = 6ijgj \V/’L,j c J, g; € Wj.
(#7) {Ej}jes is called an orthonormal ov-basis for H with respect to {W;},cs if it is

a complete orthonormal ov-system for H with respect to {W;};e.

Corollary 3.2 Let {Z;};cs be an orthonormal ov-system for H with respect to {W;};e.s,
then =Z; is onto and ||Z;|| = 1 for all j € J.

Proof. For any j € J and g € W}, we have =;=E7g = g which implies that =; is onto.
We further have Z;=7=; = E;. This shows that Z7Z; is an orthogonal projection from
H onto Rz: and hence ||=Z7Z;[| = 1. This yields

=k

IZ517 = sup |=5fI* = sup <E;f,5;f >= sup ||=5;f]* =1
e e I1£1=1

Ezample 3.3 Let H =K = C¥*! and let {e;}; ' be the standard basis of CVF1. For
each 1 < j < N + 1 define the subspace W; C K and the operator Z; : H — W; by

N+1 5 N+1
Wi =span{»_er}, Zi({z}i) === e
k=1 , ' \/N k=t
kot e

Then {=; }jV: ! is an orthonormal ov-basis for H with respect to {TV; };V: .
Corollary 3.4 Orthonormal ov-systems are w-independent.
Proof. This follows immediately from the definition. |

Theorem 3.5 Let {Z;}cs be an orthonormal ov-system for H with respect to {W;} e,
then the series . ; E%g; converges if and only if {g;};es € (ZjeJ ®Wj),. and in that
case

3ET N

jeJ jeJ

Proof. For any finite subset F C J we have || dier E;ngQ =D ier llg;||?. From this
the result follows. u

Theorem 3.6 (Bessel’s inequality) Let {Z;};c; be an orthonormal ov-system for H
with respect to {W;};cs. Then

OIEFIP <1

jeJ

for all f € H.
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Proof. Let f € H. Fix F' C J with |F| < co. Then By Theorem 3.5 we have

=S =al =1 - <50 > - <057 > + X ol

JEF JEF jeEF jeEF
=P =D NS I+ D IE f — g5l
JEF jeF

for arbitrary vectors {g; : g; € W;} er. In particular, if g; = Z; f, then

17 =S =58 = 112 = S II= £

JEF JEF

From this we have } - 1=, f1I? < ||f]?, which implies that > e lIE SiflIP<|IfI?. =

Corollary 3.7 Let {Z;};c; be an orthonormal ov-system for H with respect to {W;};c,
then for all f € H the series ) Ejf convergent and

JGJ“J
Ir => == < 1f =D =al’
jed jeJ

for every {g;}jes € (Zjej @Wj)p'

Theorem 3.8 Let = = {=;},cs be an orthonormal ov-system for H with respect to
{W;};cs. Then the following conditions are equivalent:

(i) = is an orthonormal ov-basis for H with respect to {W;};c .

(@) =255 f VfeH.
(@i) IfI* = Xjes IEEfIP Vf e
() I = ;e H~;f\|2 Vfen.

(v) < f,g>= Z]EJ <E;f,Z59> Vf,geH.

(vi) If = f =0 for all j € J, then f = 0.

Proof. The implication (i) = (i¢) follows immediately from Corollary 3.7. To prove
(79) = (i79) assume that f € H. Since = is an orthonormal ov-system, hence (E’;-Ej)zf =
EJE;f for all j € J. This yields

IFIP =< D E5Eif f >= Y = P

JjeJ jeJ

which implies (i7¢). The implications (¢i7) = (iv) = (v) are clear. To prove (v) = (vi)
assume that Z;f = 0 for all j € J, then we have ||f||* = died |Z,fI|* = 0. Tt follows
that f = 0. To prove (vi) = (i) suppose that f L span{Z;(W;)};es, then for every
j € J we have ||Z;f|* =< f,EjE;f >= 0 which implies that f = 0. Therefore H =
Span{u (Wj)}jer- u

Theorem 3.9 Let {Z;},c; be an orthonormal ov-basis for H with respect to {W;};es
and let T': H — U be a bounded linear operator such that E; = E;T" for all j € J.
Then {=’};e; is an orthonormal ov-basis for ¢ with respect to {W;};e, if and only if T'
is unitary.
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Proof. First suppose that {E;}je 7 is an orthonormal ov-basis for H with respect to
{W;}jcs. Then by Theorem 3.8 for every g € U we have

IT*gl* =D IET*ll* = D I=590* = lgll*.

jeJ JjeJ

Hence T' is co-isometry. We also see from Theorem 2.10 that T is unitary. Now if 7T is
unitary then we have

lgll* = 1T*gll* = > I=;T*gl* = > II=)9)®

jeJ JjeJ
for all g € U. From this follows that {Z};c; is an orthonormal ov-basis for U with
respect to {W;}jes. [ |

Corollary 3.10 Let {Z;};c be an orthonormal ov-basis for # with respect to {W;};es.
Then the orthonormal ov-bases for H with respect to {W;};c; are precisely the sets
{E;T}jes, where T : H — H is an unitary operator.

Corollary 3.11 Let {W,};cs be a family of closed subspaces of H such that

Do lmw fIP =517V eH,

Jje€J
where 7y, is the orthogonal projections from H onto W;. Then {7, }jc is an orthonor-
mal ov-basis for H with respect to {W;};e.
Proof. For each j € J and g; € W, we have

lgi1” =" lrwagi* = Ngll* + D llmw.g511?

1e€J ieJ
i#g

which shows that my,g; = dsj9;. It follows that {my,};cs is an orthonormal ov-system
for H with respect to {W;};e;. Now the result follows from the Theorem 3.8. [ |

In the following, we give some characterizations of Riesz ov-bases in Hilbert spaces.

Definition 3.12 A sequence of operators {A; € B(H,W;) : j € J} is called a Riesz
ov-basis for H with respect to {W;};c; if there is an orthonormal ov-basis {=Z;};c; for
M with respect to {W;};e; and a bounded invertible linear operator T' on #H such that
A; =E;T* for all j € J.

Corollary 3.13 If {A;};cs is a Riesz ov-basis for H with respect to {W}},cs. Then
0 < inf 1A, < sup A < oo.
jed jeJ
Proof. According to the definition we can write {A;};e; = {E;7%}jcs, where T is a

bounded bijective operator and {Z;}c is an orthonormal ov-basis. By Corollary 3.2 for
every j € J we have

1T~ < gl < T
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From this the result follows. [ ]

Theorem 3.14 If {A;}jc; = {E;7"}cs is a Riesz ov-basis for H with respect to
{W;}jcs. Then {m}jej is also a Riesz ov-basis for H with respect to {W;};e..

Proof. Define a mapping S : H — H by Sf = deJ EHE”f By Theorem 3.8 and

Corollary 3.13 we have

ITI=HLA < USF< 1T HIIAL

which implies that S is bounded and injective. Since S is self-adjoint hence S is invertible.
Moreover, the operator ® = T'S is also bounded, invertible and we have

—

= =k
507 =587 = (Y T )T
=% 2 a,]

(Z ]Z‘_‘Z>T* _ EJT* _ Aj
1Al A1 (1Al

for any j € J. Consequently {”j\\—fH}jGJ is a Riesz ov-basis for H with respect to {W;};c .
J
|

Corollary 3.15 Let {A;};cs be a ov-basis for H with respect to {W;};cs, with dual
ov-basis {I'j } jcs. Then {A;},c; is a Riesz ov-basis for H with respect to {W;},c; if and
only if {I';}jes is a Riesz ov-basis for H with respect to {W;}cs.

Proof. This follows immediately from the definition and Theorem 2.11. [ |

To check Riesz ov-baseness of a family of operators {A;};c; for H with respect to
{W;}jecs, we derive the following useful characterization.

Theorem 3.16 Let {A;};c; be a ov-basis for H with respect to {W;};c;, with dual
ov-basis {I'j } jes. Then the following conditions are equivalent:

(i) The sequence {A;};cs is a Riesz ov-basis for H with respect to {W;},c;.
(7i) There is an equivalent inner product on H, with respect to which the sequence
{T';}jes becomes an orthonormal ov-basis for H with respect to {W;};c.

Proof. (i) = (i) Assume that {A;};cs is a Riesz ov-basis for H, and write it in the
form {E;7*},c as in the definition. Define a new inner product < .,. >7 on H by

< fog>r=<T"f,T"g> Vf,geH.
If |||z is the norm generated by this inner product, then for all f € % we have

1T < flle < ITAL,

which implies that the new inner product is equivalent to the original one. By Theorem
2.11 for any g € K and arbitrary vector g; € Wj,4,j € J we have

<Iiljgj,9 > =<159;,179 >r=<T"15g;, T"T';g >

=< Ejg;, Big >=< EiEjgj,9 >=<dijgj,9 > .
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Now the Corollary 3.15 follows that {I';}c is an orthonormal ov-basis for # with inner
product < .,. >7 with respect to {W;};c;.

(7i) = (i) Suppose that < .,. >1 is an equivalent inner product on H with respect
to which {I';}c is an orthonormal ov-basis for # with respect to {W;};cs. Therefore
there exist positive constants m, M such that

m|[fI < [[fllr < M[[f]| VfeH

By Theorem 3.5 we obtain

1 1 .
s Y il = 5l Tl < I S w?

JEF jEF jEF
1 2 1 9
<zl 2 Tailli = 5 2 il

jeF jeF

for any finite subset F' C J and arbitrary vectors g; € W;. Now let {Z;},c; be an
arbitrary orthonormal ov-basis for H with respect to {W,};c; and define the mapping

T:H—H, with  TZ:g; =15g9; Vg €W;, jeJ

Let f € H with f = ZjeJ Ejg;, then we have

1
MszH2 MQZHQJHZ IT(HI* < QZHggHz — 1%

jed jeJ

It follows that T'is invertible and TZ7E; = I';=;, which from this Z;7* = I'; holds for
all j € J. Thus {I'; }jc is a Riesz ov-basis for 1 with respect to {W;};c;. From this the
result follows at once. |

The next theorem was proved by Sun in [3] we prove this theorem with another way.

Theorem 3.17 Let {A;};cs be a sequence of operators for H with respect to {W;};es,
then the following conditions are equivalent:

(i) The sequence {A;};es is a Riesz ov-basis for H with respect to {W;}cs.

(#4) The family {A;};cs is a complete sequence for H with respect to {W,};c; and
there exist positive constants A, B such that for any finite subset F' C J and
arbitrary vectors g; € W;, we have

AN NglP < I Mg P < BY llgsl.
JeEF JjeEF JjeEF

Proof. (i) = (i) Assume that {A;};cs is a Riesz ov-basis for H, and write it in the
form {Z;7*},cs as in the definition. Then for any finite subset F' C J and arbitrary
vectors g; € W, we have

e 2 ol = el Dol < I 50 < T 3o

JjEF JjeF jeF
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(i1) = (i) Let {E;}jes be an arbitrary orthonormal ov-basis for H with respect to
{W;};cs and define the mapping

T:H—H, with  TE%g; = Ajg; Vg €W, jeJ

Suppose that f € H with f = ZjeJ E7g;, then we have

AlIFIP =AY llgs 1> < ITNIP < BY llgsl* = BIFIP.
jeJ jeJ
From this and completeness of {A;};e; follows that 7' is invertible and TZ}E; = A*E;,
which implies that Z;7* = A, for all j € J. [ ]

Let A = {A;}jes be a ov-basis for H with respect to {W;}jes. If f=3_.c;Ajg;, then
the coordinate representation of f € H relative to the ov-basis A is [f]a = {g;}jes-

Let = = {E;}jes, 2 = {El}icr be orthonormal ov-bases for H and U respectively.
Then the matrix representation of the linear map 71" : H — U relative to the orthonormal
ov-bases =, =’ is the matrix [T] = {T};}ies jes whose (i,7) entry is Tj; = E{TE] for all
i1€1,5€ J. For any f € H we also have

m

[Tfl= = [T][/]

Moreover, if S, T are linear maps on H represented by matrices [S], [T] respectively, then
S+ T and ST is represented by the matrices [S]+ [T] and [S][T] respectively. Further T’
is a invertible operator if and only if [T] is invertible.

Let A = {Aj}je;r = {E;T77}jes be a Riesz ov-basis for H with respect to {W;},cs.
Then the analysis operator O of A is defined by

Or:H = (D eW,), with Onf={A;f}jes VfEN

jeJ

It can easily be shown that ©, is linear, bounded and ||©,] < ||T|. The synthesis
operator ©} which is the adjoint operator of ©, is given by

O} : (Z@Wj)ﬁ —H with Ojg= ZA;fgj Vg = {gj}jej € (Z@Wj)ﬁ'
jeJ jeJ jeJ

Example 3.18 For every sequence of closed subspaces {W;}jc; of K the sequence
{E;}jes defined by

%g:gj\ﬁeJ;g:{whae(Ez@Wﬁp
jeJ

is an orthonormal ov-basis for (ZjeJ EBVVJ-)Z2 with respect to {W;};e; which is called
the standard orthonormal ov-basis of it.

Let A = {A;},cs be a Riesz ov-basis for H with respect to {W;};es. Then the matrix
representing of the linear operator ©, 07} relative to the standard orthonormal ov-basis
of (ZjeJ EBWJ')Z? is the matrix [©20}]| = {A;A] }ier,jes which is called the Gram matrix
associated with A.



M. S. Asgari / J. Linear. Topological. Algebra. 02(04) (2013) 201-218. 217

Theorem 3.19 Let {A;};cs be a sequence of operators for H with respect to {W,};cs,
then the following conditions are equivalent:

(i) The sequence {A;};cs is a Riesz ov-basis for H with respect to {W;}c.
(¢7) The family {A;}jes is complete sequence for H with respect to {W;}jcs
and its Gram matrix {AiA;}ie[,je J defines a bounded, invertible operator on

(Xjes @W)) -

Proof. (i) = (i) Assume that {A;};e; = {E;7"}jes is a Riesz ov-basis for H with
respect to {W;}jes. If G = {Gy;}i jes denotes the matrix of the invertible operator T*T
relative to {Z;};es, then

— E3 —k *
Gij = .:iT ‘:'j = AZA]

Therefore the Gram matrix of {A;};es is G.

(i1) = (i) Suppose that Gram matrix of {A;},cs defines a bounded, invertible operator
on (Y jeJ oW;) 2 Let {Z;}jes be an arbitrary orthonormal ov-basis for H with respect
to {W;}jes and define the mapping

T:H M, with TEig =Y EfANjg; Vg €W, je
icJ

It is straightforward that 7" is linear, bounded and invertible. Suppose that f € H with
f=2>,csEj9j, then we have

<Tff>=) Y <TS5g;Eigi>=>» > Y <EEiMAig g >

jeJied jeJ ied ke
2
* *
=D > < Aibg 0 >= D Mg
jedJ ied jedJ

Thus T is positive and self-adjoint. Since 7" is positive, it has a unique positive square-
root. Let P denote the square-root of T', then the above calculation follows that

1 —_—
e 2ol < 28501 = 1P o) < ITIP 3 ool
JjeJ JjeJ JjEJ JjEJ

Now the result follows from Theorem 3.17. [ ]

4. Stability of ov-bases under perturbations

Stability of bases is important in practice and is therefore studied widely by many
authors, e.g., see [4]. In this section we study the stability of ov-bases for a Hilbert space
H. First we generalized a result of Paley-Wiener [4] to the situation of ov-basis.

Theorem 4.1 Let {A;};cs be a ov-basis for H with respect to {W;};c; and let {I';}jes
be a sequence of operators for # with respect to {W;};es such that

1Y (595 = Tgn)|| <A D Adgy|

JEF JEF
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for some constant 0 < A < 1 and each finite subset F' C J and arbitrary vectors g; € Wj.
Then {I';};cs is a ov-basis for H with respect to {W;};ec.

Proof. By assumption the series ) je J(A; 9; — 175 g;j) is convergent whenever the series
> jed A;‘- g; is convergent for all arbitrary vectors g; € W;. If we define the mapping

T:H—H, with TAjg;=Ag —T59, VgeW; jel

Then T is a bounded operator and ||T'|| < A < 1. Thus the operator Idy — T is invertible
and we have (Idy —T)A;A; = I';A;, consequently ATA;(Idy —T") = AJL';. Since A is
one-to-one on Wj, thus A;(Idy —T*) = I';. Now the conclusion follows from Theorem
2.8. |

Corollary 4.2 Let {A;};c; be a ov-basis for H with respect to {W;};cs, with dual ov-
basis {W¥;};es and let {I';};c; be a sequence of operators for H with respect to {W;};es
such that

D IIA; = Ty < 1.
jeJ

Then {I';};cs is a ov-basis for H with respect to {W;};e.

Proof. If A =3, IA; — I'j|[[|¥;]], then 0 < A < 1. Fix F' C J with [F| < co and let
f=> jeF A;f g; for arbitrary vectors g; € W;. Then we compute

1> (A5g; = Tig5)|| = | D (A =15, f|
JEF JEF
< Z (A = T5)¥; £l
JEF

ST IA =T Al = A D Al

Jj€J jeF
From this the result follows by Theorem 4.1. [ |

In the following we generalized a result of Krein-Milman-Rutman [4] to the situation
of ov-basis.

Theorem 4.3 Let {A;};cs be a ov-basis for H with respect to {W;};cs and let {I';};es
be a sequence of operators for H with respect to {W;};c. If there exists a sequence
{ej}jes of positive numbers, such that [|[A; — I';|| < g; for all j € J. Then {I';};c; is a
ov-basis for H with respect to {W;};c.

Proof. If {¥;};cs is the dual ov-basis of {A;};cs. Then the result follows from Corollary

4.2, to choose ¢; small enough such that >, ;&;[|¥;[| < 1. [ |
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