

Module amenability and module biprojectivity of θ -Lau product of Banach algebras

D. Ebrahimi Bagha^{a*}, H. Azaraien^b

a,b Department of Mathematics, Islamic Azad university, Central Tehran Branch, Tehran, Iran.

Received 2 October 2014; Revised 20 December 2014; Accepted 29 December 2014.

Abstract. In this paper we study the relation between module amenability of θ - Lau product $A \times_{\theta} B$ and that of Banach algebras A, B. We also discuss module biprojectivity of $A \times_{\theta} B$. As a consequent we will see that for an inverse semigroup S, $l^1(S) \times_{\theta} l^1(S)$ is module amenable if and only if S is amenable.

© 2014 IAUCTB. All rights reserved.

Keywords: Module amenability, module biprojectivity, θ -Lau product of Banach algebras, inverse semigroup.

1. Introduction

Lau product of Banach algebras, were introduced by A. T- M. Lau [6], for a special class of Banach algebras which are pre-duals of Von Numann algebras, such that the identity of the dual algebra is a multiplicative linear functional on the predual. The θ -Lau product was introduced by M. Sangani-Monfared in [7]. He defined θ -Lau product on $A \times B$ as

$$(a,b)(m,n) = (am + \theta(b)m + \theta(n)a,bn),$$

where $\theta \in \sigma(B)$, and A, B are Banach algebras, and then studied amenability and weak amenability of this Banach algebra. The norm on this space is as $\|(a,b)\| = \|a\| + \|b\|$. The Banach algebra generated by above multiplication on $A \times B$, is denoted by $A \times_{\theta} B$. In [4], it was studied some properties of $A \times_{\theta} B$, such as Character amenability, Gelfand space. M. Amini in [1] introduce the concept of module amenability. In this paper we

E-mail address: dav.ebrahimi-Bagha@iauctb.ac.ir (D. Ebrahimi Bagha).

^{*}Corresponding author.

study the relation between module amenability and module biprojectivity, of θ - Lau product $A \times_{\theta} B$ and module amenability and module biprojectivity of Banach algebras A, B. By an example we will show that if $l^1(S)$ is unital then $l^1(S) \times_{\theta} l^1(S)$ is module amenable if and only if S is amenable. We also show that $l^1(\mathbb{N}_{\vee}) \times_{\theta} l^1(\mathbb{N}_{\vee})$ is module biprojective.

Let $\mathfrak U$ be a Banach algebra and A be a Banach $\mathfrak U$ -bimodule, with the compatible module actions

$$\alpha \cdot (am) = (\alpha \cdot a)m, (\alpha\beta) \cdot m = \alpha \cdot (\beta \cdot m), (\alpha, \beta \in \mathfrak{U}, a, m \in A).$$

A bounded map $D: A \longrightarrow X$ with D(a+b) = D(a) + D(b), D(ab) = D(a).b + a.D(b) and $D(\alpha \cdot a) = \alpha \cdot D(a)$, $D(a \cdot a) = D(a).\alpha$, $(\alpha \in \mathfrak{U}, a, b \in A)$ is called a module derivation. If there exists $x \in X$ such that $D(a) = a.x - x.a = \delta_x(a)$, $(a \in A)$ then D is called inner derivation. The set of all module derivations $D: A \longrightarrow X'$ is denoted by $Z_u(A, X')$ and the notation $N_u(A, X')$ for those which are inner. The quotient $\frac{Z_u(A, X')}{N_u(A, X')}$ is denoted by $H_u(A, X')$.

A Banach algebra A is module amenable if and only if $H_u(A, X') = \{0\}$, for each A- \mathfrak{U} -module X. Note that X is called an A- \mathfrak{U} -module if X is a Banach algebra which is at the same time a Banach A-bimodule and a Banach \mathfrak{U} -bimodule with compatibility of actions

$$(a.x).\alpha = a.(x.\alpha), \alpha.(a.x) = (\alpha.a).x, (\alpha \in \mathfrak{U}, a \in A, x \in X).$$

For such X, X' is also Banach module over A and \mathfrak{U} , with compatible actions under canonical actions of A, \mathfrak{U} , $\alpha.(a.f)=(\alpha.a).f$, $(a\in A,\alpha\in\mathfrak{U},f\in X')$. In [2], it was defined module biprojectivity for a Banach algebra which is a Banach module over another Banach algebra.

Let X, Y be A- \mathfrak{U} -modules, module homomorphism from X to Y is a norm continous map $\varphi: X \longrightarrow Y$ with $\varphi(x \pm y) = \varphi(x) \pm \varphi(y), \ \varphi(\alpha.x) = \alpha.\varphi(x), \ \varphi(x.\alpha) = \varphi(x).\alpha$, $\varphi(a.x) = a.\varphi(x), \ \varphi(x.a) = \varphi(x).a, \ (x,y \in X, \alpha \in \mathfrak{U}, a \in A).$ If A is a commutative U-module and acts on itself by multiplication from both sides, then it is also a Banach A- \mathfrak{U} -module. Consider the projective tensor product $A\otimes A$. It is well known that $A\otimes A$ is a Banach algebra with respect to the canonical multiplication defined by $(a \otimes b)(c \otimes d) =$ $ac \otimes bd$ and extended by bi-linearity and continuity, [3]. Then $A \otimes A$ is a Banach A- \mathfrak{U} module with canonical actions. Let I be the closed ideal of the projective tensor product $A\widehat{\otimes}A$ generated by elements of the form $\alpha.a\otimes b-a\otimes b.\alpha$ for $\alpha\in\mathfrak{U},\ a,b\in A$. Consider the map $\pi_A: A \widehat{\otimes} A \longrightarrow A$ defined by $\pi_A(a \otimes m) = am$ and extended by linearity and continuity. Let J be the closed ideal of A generated by $\pi_A(I)$. Then the module projective tensor product $A \otimes_u A \cong A \otimes A/I$ and Banach algebra A/J are Banach \mathfrak{U} -module. The map $\widetilde{\pi_A}: A\widehat{\otimes}_u A \longrightarrow A/J$ defined by $\widetilde{\pi_A}(a \otimes m + I) = ab + J$, extended to an \mathfrak{U} -module morphism. If $A \widehat{\otimes}_u A$ and A/J are commutative \mathfrak{U} -module, then $A \widehat{\otimes}_u A$ and A/J are A/J- \mathfrak{U} -module and $\widetilde{\pi_A}$ is A/J- \mathfrak{U} -module homomorphism. A Banach algebra A is called module biprojective (as \mathfrak{U} -module) if $\widetilde{\pi_A}$ has a bounded right inverse which is an A/J- \mathfrak{U} -module morphism[2].

2. Module amenability

Throughout we assume that A, B are Banach \mathfrak{U} -bimodule with actions $A \times \mathfrak{U} \longrightarrow A$, $(a,\alpha) \longmapsto a.\alpha$, $\mathfrak{U} \times A \longrightarrow A$, $(\alpha,a) \longmapsto \alpha \circ a$, $B \times \mathfrak{U} \longrightarrow B$, $(b,\alpha) \longmapsto b \star \alpha$,

 $\mathfrak{U} \times B \longrightarrow B, (\alpha, b) \longmapsto \alpha * b.$ and $\theta \in \sigma(B)$ is such that $\theta(\alpha \star b)a = \theta(b)\alpha \circ a,$ $\theta(b * \alpha) = \theta(b)\alpha \circ a.$ Let $M = A \times_{\theta} B.$

Proposition 2.1 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U} -bimodule. for $\theta \in \sigma(B)$

- 1) $A \times_{\theta} B$ is a Banach A-bimodule,
- 2) $A \times_{\theta} B$ is a Banach B-bimodule,
- 3) $A \times_{\theta} B$ is a Banach \mathfrak{U} -bimodule,
- 4) $A \times_{\theta} B$ is a Banach B- \mathfrak{U} -module.

Proof. 1) We define the module actions as

$$A \times (A \times_{\theta} B) \longrightarrow A \times_{\theta} B$$
 by $a.(m,n) = (a,0)(m,n) = (am + \theta(n)a,0)$, and $(A \times_{\theta} B) \times A \longrightarrow A \times_{\theta} B$ by $(m,n) \cdot a = (m,n)(a,0) = (ma + \theta(n)a,0)$. It is easy to see that, with above actions, $A \times_{\theta} B$ is an A-bimodule.

2) The module actions are defined as

$$B \times (A \times_{\theta} B) \longrightarrow A \times_{\theta} B$$
 by $b.(m,n) = (0,b)(m,n) = (\theta(b)m,bn)$, and $(A \times_{\theta} B) \times B \longrightarrow A \times_{\theta} B$ by $(m,n) \cdot b = (m,n)(0,b) = (\theta(b)m,nb)$. It is easy to see that properties are satisfied.

3) The module actions are defined as

$$\mathfrak{U} \times (A \times_{\theta} B) \longrightarrow A \times_{\theta} B \text{ by } \alpha.(a,b) = (\alpha \circ a, \alpha * b),$$

 $(A \times_{\theta} B) \times \mathfrak{U} \longrightarrow A \times_{\theta} B \text{ by } (a,b) \cdot \alpha = (a.\alpha, b \star \alpha)$

4) By parts (2), (3), $A \times_{\theta} B$ is at the same time B-module and \mathfrak{U} -module, thus it is sufficient to check that actions are compatible.

$$\alpha. \big(b.(a,n) \big) = \alpha. \bigg((0,b)(a,n) \bigg) = \alpha. (\theta(b)a,bn)$$
$$= \bigg(\theta(b)\alpha \circ a, \alpha * (bn) \bigg) = \bigg(\theta(b \star \alpha)a, (\alpha * b)n \bigg) = (\alpha * b). (a,n).$$

$$b.(\alpha.(m,n)) = b.(\alpha \circ m, \alpha * n)$$

$$= \left(\theta(b)(\alpha \circ m), b(\alpha * n)\right) = \left(\theta(b \star \alpha)m, (b * \alpha)n\right)$$

$$= (b * \alpha).(m,n).$$

Also

$$(\alpha.(m,n)).b = (\alpha \circ m, \alpha * n).b = (\alpha \circ m, \alpha * n)(0,b)$$

$$= \left(\theta(b)(\alpha \circ m), (\alpha * n)b\right) = \left(\alpha \circ (\theta(b)m), \alpha * (bn)\right)$$

$$= \alpha.((m,n)(0,b)) = \alpha.((m,n).b)$$

Proposition 2.2 Let $\mathfrak U$ be a Banach algebra, A and B be Banach $\mathfrak U$ -bimodules , and $\theta \in \sigma(B)$. If X is a Banach A- $\mathfrak U$ -module and Y is a Banach B- $\mathfrak U$ -module then $X \times Y$ is a Banach $A \times_{\theta} B$ - $\mathfrak U$ -module.

Proof. Assume that module actions on X and Y, are as

 $\mathfrak{U} \times X \longrightarrow X$ as $(\alpha, x) \longmapsto \alpha.x$, $X \times \mathfrak{U} \longrightarrow X$, as $(x, \alpha) \longmapsto x \circ \alpha$, $\mathfrak{U} \times Y \longrightarrow Y$ as $(\alpha, y) \longmapsto \alpha \vartriangle y$, $Y \times \mathfrak{U} \longrightarrow \mathfrak{U}$ as $(y, \alpha) \longmapsto y \triangledown \alpha$. And $A \times X \longrightarrow X$ as $(a, x) \longmapsto a.x$, $X \times A \longrightarrow X$ as $(x, a) \longmapsto x \circ a$, $B \times Y \longrightarrow Y$, $(b, y) \longmapsto b \bullet y$, $y \times B \longrightarrow B$, as $(y, b) \longmapsto y \bullet b$. We define

 $\mathfrak{U} \times (X \times Y) \longrightarrow X \times Y$ by $\alpha.(x,y) = (\alpha.x, \alpha \triangle y)$ and $(X \times Y) \times \mathfrak{U} \longrightarrow X \times Y$ by $(x,y) \cdot \alpha = (x \circ \alpha, y \nabla \alpha)$. Also $(X \times Y) \times (A \times_{\theta} B) \longrightarrow X \times Y$ by $(x,y) \cdot (a,b) = (x \circ a + \theta(b)x, y \cdot b)$ and $(A \times_{\theta} B) \times (X \times Y) \longrightarrow X \times Y$ By $(a,b).(x,y) = (a.x + \theta(b)x, b \cdot y)$. We can see that by above actions $X \times Y$ is at the same time a Banach \mathfrak{U} -bimodule and a Banach $A \times_{\theta} B$ -bimodule. Only we prove that actions are compatible.

$$\begin{split} \alpha.\bigg((a,b).(x,y)\bigg) &= \alpha.\bigg(a.x + \theta(b)x, b \bullet y\bigg) \\ &= \bigg(\alpha.(a.x + \theta(b)\alpha.x), \alpha \vartriangle (b \bullet y)\bigg) \\ &= \bigg((\alpha \circ a).x + \theta(\alpha * b)x, (\alpha * b) \bullet y\bigg) = \bigg(\alpha.(a,b)\bigg).(x,y). \end{split}$$

$$(a,b).(\alpha.(x,y)) = (a,b).(\alpha.x, \alpha \triangle y)$$

$$= \left(a.(\alpha.x) + \theta(b)(\alpha.x), b \bullet (\alpha \triangle y)\right)$$

$$= \left((a.\alpha).x + \theta(b \star \alpha)x, (b \star \alpha) \bullet y\right) = ((a,b) \cdot \alpha).(x,y).$$

Also

$$(\alpha.(x,y)) \cdot (a,b) = (\alpha.x, \alpha \triangle y) \cdot (a,b)$$

$$= ((\alpha.x) \circ a + \theta(b)(\alpha.x), (\alpha \triangle y) \cdot b)$$

$$= (\alpha.(x \circ a) + \theta(b)\alpha.x, \alpha \triangle (y \cdot b))$$

$$= \alpha.(x \circ a + \theta(b)x, y \bullet b)$$

$$= \alpha.((x,y) \cdot (a,b))$$

So $X \times Y$ is a $A \times_{\theta} B$ - \mathfrak{U} -module.

Proposition 2.3 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U} -bimodules, and let X be a Banach A- \mathfrak{U} -module and Y be a Banach B- \mathfrak{U} -module then $D \in Z_u(A \times_{\theta} B, X' \times Y')$ if and only if $\exists D_1 \in Z_u(A, X'), D_2 \in Z_u(B, Y'), D_3 \in Z_u(B, X')$ and a bounded linear map $R: A \longrightarrow Y'$ with $R(\alpha \circ a) = \alpha.R(a), (\alpha \in \mathfrak{U})$ such that

- 1) $D(a,b) = (D_1(a) + D_3(b), R(a) + D_2(b)),$
- 2) $D_1(\theta(b)m) = D_1(m) \odot \theta(b) + D_3(b).m$,
- 3) $D_1(\theta(n)c) = D_1(c) \odot \theta(n) + c.D_3(n)$,
- 4) $D_3(bn) = D_3(b) \odot \theta(n) + D_3(n) \odot \theta(b)$, where $(D_1(a) \odot \theta(b))(x) = D_1(a)(\theta(b)x)$.
- 5) $R(\theta(b)m) = b.R(m)$,
- 6) b.R(m) = R(m).b,
- 7)R(am) = 0.

Proof. Choose $D \in Z_u(A \times_{\theta} B, X' \times Y')$ so there are $d_1 : A \times_{\theta} B \longrightarrow X', d_2 : A \times_{\theta} B \longrightarrow X'$

$$Y'$$
 such that $D = (d_1, d_2)$, Set

$$D_1: A \longrightarrow X'$$
 as $D_1(a) = d_1(a,0)$, $D_2: B \longrightarrow Y'$ as $D_2(b) = d_2(0,b)$, $D_3: B \longrightarrow X'$ as $D_3(b) = d_1(0,b)$, $R: A \longrightarrow Y'$ as $R(a) = d_2(a,0)$, Now

$$D(a,b) = (d_1, d_2)((a,0) + (0,b))$$

$$= (d_1, d_2)(a,0) + (d_1, d_2)(0,b)$$

$$= (d_1(a,0), d_2(a,0)) + ((d_1(0,b), d_2(0,b))$$

$$= \left(d_1(a,0) + d_1(0,b)\right) + \left(d_2(a,0) + d_2(0,b)\right)$$

$$= (D_1(a) + D_3(b), R(a) + D_2(b)). Since$$

$$D((a,b)(m,n)) = D(am + \theta(n)a + \theta(b)m,bn)$$

$$= (D_1(am) + D_1(\theta(n)a) + D_1(\theta(b)m) + D_3(bn), R(am) + R(\theta(n)a) + R(\theta(b)m) + D_2(bn)).$$

Also

$$(a,b).D(m,n) + D(a,b).(m,n) = (a,b).(D_1(m) + D_3(n), R(m) + D_2(n))$$

$$+ (D_1(a) + D_3(b), R(a) + D_2(b)).(m,n)$$

$$= \left(a.D_1(m) + a.D_3(n) + D_1(m) \odot \theta(b) + D_3(n) \odot \theta(b), b.R(m) + b.D_2(n)\right)$$

$$+ \left(D_1(a).m + D_3(b).m + D_1(a) \odot \theta(n) + D_3(b) \odot \theta(n), R(a).n + D_2(b).n\right)$$

$$= \left(a.D_1(m) + D_1(a).m + a.D_3(n) + D_3(b).m + D_1(a) \odot \theta(n) + D_1(m) \odot \theta(b) + D_3(n) \odot \theta(b) + D_3(b) \odot \theta(n), R(a).n + b.R(m) + b.D_2(n) + D_2(b).n\right).$$

Since D is a derivation by taking a=n=0 we get $D_1(\theta(b)m)=D_3(b).m+D_1(m)\odot\theta(b)$ and $R(\theta(b)m)=b.R(m)$. Take b=m=0 then $D_1(\theta(n)a)=a.D_3(n)+D_1(a)\odot\theta(n)$ and $R(\theta(b)a)=R(a).n$. Take a=m=0 then $(D_3(bn)=D_3(n)\odot\theta(b)+D_3(b)\odot\theta(n)$ and $D_2(bn)=b.D_2(n)+D_2(b).n$ so $D_2\in Z(B,Y'),\ D_3\in Z(B,X')$. Take b=n=0 to get $D_1(am)=D_1(a).m+a.D_1(m)$ and R(am)=0. Also

$$D_1(\alpha \circ a) = d_1(\alpha \circ a, 0) = d_1(\alpha.(a, 0)) = \alpha.d_1(a, 0) = \alpha.D_1(a).$$

In the same way $D_2(\alpha * b) = \alpha.D_2(b)$, $D_3(\alpha * b) = \alpha.D_3(b)$. Note that since $D \in Z_u(A \times_{\theta} B, X' \times Y')$ so D((a,b) + (m,n)) = D(a,b) + D(m,n) and $D(\alpha.(a,b)) = \alpha.D(a,b)$ thus

$$D(\alpha.(a,b)) = D(\alpha \circ a, \alpha * b) = (d_1, d_2)(\alpha \circ a, \alpha * b)$$
$$= (d_1(\alpha \circ a, \alpha * b), d_2(\alpha \circ a, \alpha * b)).$$

On the other hand

$$\alpha.D(a,b) = \alpha.((d_1,d_2)(a,b)) = \alpha.(d_1(a,b),d_2(a,b))$$

= $(\alpha.d_1(a,b),\alpha.d_2(a,b)).$

So $d_1(\alpha \circ a, \alpha * b) = \alpha.d_1(a, b)$, and $d_2(\alpha \circ a, \alpha * b) = \alpha.d_2(a, b)$. Also we can prove that $d_1((a, b) + (m, n)) = d_1(a, b) + d_1(m, n)$ and $d_2((a, b) + (m, n)) = d_2(a, b) + d_2(m, n)$. So

$$D_1(a+m) = d_1(a+m,0) = d_1((a,0) + (m,0))$$

= $d_1(a,0) + d_1(m,0) = D_1(a) + D_1(m)$.

Similarly $D_2(b+n) = D_2(b) + D_2(n)$ and $D_3(b+d) = D_3(b) + D_3(d)$.

Consequently $D_1 \in Z_u(A, X'), D_2 \in Z_u(B, Y'), D_3 \in Z_u(B, X')$ and properties of proposition are satisfied.

Let $D_1 \in Z_u(A, X')$, $D_2 \in Z_u(B, Y')$, $D_3 \in Z_u(B, X')$ and bounded linear mapping R be such that the statement of proposition are satisfy, then

$$\begin{split} D((a,b)(m,n)) &= D(am + \theta(n)a + \theta(b)m,bn) \\ &= (D_1(am) + D_1(\theta(n)a) + D_1(\theta(b)m) \\ &+ D_3(bn), R(am) + R(\theta(n)a) + R(\theta(b)m) + D_2(bn)) \\ &= \left(a.D_1(m) + D_1(a).m + D_1(a) \odot \theta(n) \\ &+ a.D_3(n) + D_3(b).m + D_1(m) \odot \theta(b) \\ &+ D_3(n) \odot \theta(b) + D_3(b) \odot \theta(n), n.R(a) + R(m).b \\ &+ b.D_2(n) + D_2(b).n \right). \end{split}$$

On the other hand

$$(a,b).D(m,n) + D(a,b).(m,n)$$

$$= (a,b).(D_1(m) + D_3(n), R(m) + D_2(n))$$

$$+ (D_1(a) + D_3(b), R(a) + D_2(b)).(m,n)$$

$$= \left(a.D_1(m) + a.D_3(n) + \theta(b) \odot D_1(m) + \theta(b) \odot D_3(n), b.R(m) + b.D_2(n)\right)$$

$$+ \left(D_1(a).m + D_3(b).m + D_1(a) \odot \theta(n) + D_3(b) \odot \theta(n), R(a).n + D_2(b).n\right)$$

$$= \left(a.D_1(m) + D_1(a).m + \theta(n) \odot D_1(a) + a.D_3(n) + \theta(n) \odot D_3(b) + D_3(b).m + \theta(b) \odot D_1(m) + \theta(b) \odot D_3(n), b.R(m) + R(a).n + b.D_2(n) + D_2(b).n\right).$$

So
$$D((a,b)(m,n)) = D(a,b).(m,n) + (a,b).D(m,n)$$
,

for all $(a, b), (m, n) \in A \times_{\theta} B$ thus $D \in Z(A \times_{\theta} B, X' \times Y')$.

$$D(\alpha.(a,b)) = D(\alpha \circ a, \alpha * b) = (D_1(\alpha \circ a) + D_3(\alpha * b), R(\alpha \circ a) + D_2(\alpha * b))$$

= $(\alpha.D_1(a) + \alpha.D_3(b), \alpha.R(a) + \alpha.D_2(b))$
= $\alpha.(D_1(a) + D_3(b), R(a) + D_2(b)) = \alpha.D(a,b).$

And

$$D((a,b) + (m,n)) = D(a+m,b+n)$$

$$= (D_1(a+m) + D_3(b+n), R(a+m) + D_2(b+n))$$

$$= (D_1(a) + D_1(m) + D_3(b) + D_3(n), R(a) + R(m) + D_2(b) + D_2(n))$$

$$= (D_1(a) + D_3(b), R(a) + D_2(b)) + (D_1(m) + D_3(n), R(m) + D_2(n))$$

$$= D(a,b) + D(m,n).$$

Hence
$$D \in Z_u(A \times_{\theta} B, X' \times Y')$$

Corollary 2.4 By assumption of previous proposition, $D = \delta_{(\varphi,\psi)}(\varphi \in X', \psi \in Y')$ if and only if $(D_1 = \delta_{\varphi}, D_2 = \delta_{\psi}, D_3 = 0, R(a) = 0, \text{ for all } a \in A.)$

Proof. Let $D = \delta_{(\varphi,\psi)}$ so for each $a \in A$ and $b \in B$ we have

$$D(a,b) = \delta_{(\varphi,\psi)}(a,b)$$

$$= (\varphi,\psi).(a,b) - (a,b).(\varphi,\psi)$$

$$= (\varphi.a + \varphi \odot \theta(b), \psi.b) - (a.\varphi + \theta(b) \odot \varphi, b.\psi)$$

$$= (\varphi.a + \varphi \odot \theta(b) - a.\varphi - \theta(b) \odot \varphi, \psi.b - b.\psi).$$

Take a=0, so $D_3(b)=\varphi\odot\theta(b)-\theta(b)\odot\varphi=0$, $D_2(b)=\psi.b-b.\psi=\delta_{\psi}(b)$. Take b=0, so $D_1(a)=\varphi.a-a.\varphi=\delta_{\varphi}(a)$ and R(a)=0. For the converse let $D_1=\delta_{\varphi},\ D_2=\delta_{\psi},\ D_3=0,\ R=0$, so

$$D(a,b) = (D_1(a) + D_3(b), R(a) + D_2(b))$$

$$= (a \cdot \varphi - \varphi \cdot a + \varphi \odot \theta(b) - a \cdot \varphi - \theta(b) \odot \varphi, \psi \cdot b - b \cdot \psi)$$

$$= \delta_{(\varphi,\psi)}(a,b).$$

Theorem 2.5 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U} -bimodules. If A is unital Banach algebra then $A \times_{\theta} B$ is module amenable if and only if both A, B are module amenable.

Proof. Assume that X is a Banach A- \mathfrak{U} -module and Y is a Banach B- \mathfrak{U} -module, by proposition 2.2, $X \times Y$ is a Banach $A \times_{\theta} B$ - \mathfrak{U} -module, and let $D_1 \in Z_u(A, X'), D_2 \in \mathcal{U}$

$$Z_u(B,Y')$$
. Define $D_3: B \longrightarrow X'$ by $D_3(b) = D_1(\theta(b)1)$ then

$$D_3(bn) = D_1(\theta(bn)1) = D_1(\theta(b)\theta(n)1)$$

= $D_3(b) \cdot (\theta(n)1) + D_1(\theta(n)1) \odot \theta(b)$
= $D_3(b) \odot \theta(n) + D_3(n) \odot \theta(b)$.

Also

$$D_1(\theta(n)a) = D_1((\theta(n)1)a) = D_1(\theta(n)1).a + (\theta(n)1).D_1(a)$$

= $D_3(n).a + D_1(a) \odot \theta(n)$.

$$D_1(\theta(b)m) = D_1(\theta(b)1)m) = D_1(\theta(b)1).m + (\theta(b)1).D_1(m)$$

= $D_3(b).m + D_1(m) \odot \theta(b)$.

Since $D_1 \in Z_u(A, X')$ so $D_3 \in Z_u(B, X')$. Now define D: $A \times_{\theta} B \longrightarrow X' \times Y'$ as $D(a, b) = (D_1(a) + D_3(b), D_2(b))$. So by above proposition $D \in Z_u(A \times_{\theta} B, X' \times Y')$. Since $A \times_{\theta} B$ is module amenable, D is inner so $\exists (\varphi, \psi) \in X' \times Y'$ such that $D = \delta_{(\varphi, \psi)}$ thus by corollary $D_1 = \delta_{\varphi}$, $D_2 = \delta_{\psi}$, this means that A, B are module amenable. For the converse let A, B are module amenable. Let $X \times Y$ be a Banach $A \times_{\theta} B$ - \mathfrak{U} -module and $D \in Z_u(A \times_{\theta} B, X' \times Y')$.

Define $q_X: X \times Y \longrightarrow X$, by $q_X(x,y) = x$, and $q_Y: X \times Y \longrightarrow Y$, by $q_Y(x,y) = y$. It is easy to check that X is a Banach A- \mathfrak{U} -module and Y is B- \mathfrak{U} -module with module multiplications

 $X \times A \longrightarrow X$ defined by $x.a = q_X((x, 0).(a, 0)),$

 $A \times X \longrightarrow X$ defined by $a.x = q_X((a, 0).(x, 0)),$

 $Y \times B \longrightarrow Y$ defined by $y.b = q_Y((0, y).(0, b)),$

 $B \times Y \longrightarrow Y$ defined by $b.y = q_Y((0, b).(0, y))$, and

 $X \times \mathfrak{U} \longrightarrow X$ with $x \circ \alpha = q_X((x,0) \cdot \alpha), \, \mathfrak{U} \times X \longrightarrow X$ with $\alpha.x = q_X(\alpha.(x,0)),$

 $Y \times \mathfrak{U} \longrightarrow Y$ with $y \nabla \alpha = q_Y((0,y) \cdot \alpha), \, \mathfrak{U} \times Y \longrightarrow Y$ with $\alpha \triangle y = q_Y(\alpha.(0,y))$ with compatible actions.

Now Since $D \in Z_u(A \times_{\theta} B, X' \times Y')$, by proposition 2.3, there are $D_1 \in Z_u(A, X')$, $D_3 \in Z_u(B, X')$, $D_2 \in Z_u(B, Y')$ and $R : A \longrightarrow Y'$, such that $D(a, b) = (D_1(a) + D_3(b), R(a) + D_2(b))$.

Since $D_1 \in Z_u(A, X')$ and A is module amenable so $\exists \varphi \in X'$ such that $D_1 = \delta_{\varphi}$, also since $D_2 \in Z_u(B, Y')$ and B is module amenable so $\exists \psi \in Y'$ such that $D_2 = \delta_{\psi}$. Since $D_1(\theta(b)1) = D_1(1) \odot \theta(b) + D_3(b).1$, then $D_3(b).1 = D_1(\theta(b)1)$ for all $b \in B$, so

$$D_3(b).1 = \delta_{\varphi}(\theta(b)1) = \varphi.(\theta(b)1) - (\theta(b)1).\varphi = (\varphi \odot \theta(b)).1 - (\theta(b) \odot \varphi).1 = 0.$$

Thus $D_3 = 0$. Also since R(am) = 0, let m = 1, so R(a) = 0, for all $a \in A$. Hence by corollarly $A \times_{\theta} B$ is module amenable.

Example 2.6 Let S be an amenable inverse semigroup with idempotent E, such that $l^1(S)$ be unital. Since $l^1(S)$ is $l^1(E)$ -bimodule with the multiplication, right action and trivial left action by $[1, \text{theorem } 3.1], l^1(S)$ is module amenable if and only if S is amenable so $l^1(S) \times_{\theta} l^1(S)$ is module amenable if and only if S is amenable, S is amenable if and only if S is amenable.

3. Module biprojectivity

From now on we use the following maps:

 $P_A: A \longrightarrow M$, with $P_A(a) = (a,0)$, $q_A: M \longrightarrow A$, as $q_A(a,b) = a$, $r_A: M \longrightarrow A$, $r_A(a,b) = a + \theta(b)1$, $S_B: B \longrightarrow M$, $S_B(b) = (-\theta(b)1,b)$ where 1 is the unit of A. and $P_B: B \longrightarrow M$, $b \longmapsto (0,b)$, $q_B: M \longrightarrow B$, $(a,b) \longmapsto b$, $S_B \otimes S_B(b \otimes n + I_2) = (-\theta(b)1,b) \otimes (-\theta(n)1,n) + I$, $P_A \otimes P_A(a \otimes m + I_1) = (a,0) \otimes (m,0) + I$, $q_B \otimes q_B((a,b) \otimes (m,n) + I) = b \otimes n + I_2$, where I, I_1 and I_2 are introduce bellow.

Let A and B are commutative Banach \mathfrak{U} -bimodules. Let I be the closed ideal of the projective tensor product $M \widehat{\otimes} M$ generated by elements of the form $\alpha.(a,b) \otimes (m,n) - (a,b) \otimes (m,n).\alpha$, $(\alpha \in \mathfrak{U}, (a,b), (m,n) \in M)$. And J be the closed ideal of M generated by $\pi_M(I)$. Let I_1 be the closed ideal of the projective tensor product $A \widehat{\otimes} A$ generated by elements of the form $\alpha \circ a \otimes m - a \otimes m.\alpha$ for $\alpha \in \mathfrak{U}$, $a,m \in A$, and I_2 be the closed ideal of the projective tensor product $B \widehat{\otimes} B$ generated by elements of the form $\alpha * b \otimes n - b \otimes n * \alpha$ for $\alpha \in \mathfrak{U}$, $b,n \in B$ and j_1,j_2 be the closed ideals of A, B(respectively) generated by $\pi_A(I_1)$ and $\pi_B(I_2)$. Let A and B be commutative \mathfrak{U} -bimodules then

$$\pi_{M}(\alpha.(a,b) \otimes (m,n) - (a,b) \otimes (m,n).\alpha)$$

$$= \pi_{M}((\alpha \circ a, \alpha * b) \otimes (m,n) - (a,b) \otimes (m.\alpha, n * \alpha))$$

$$= ((\alpha \circ a)m + \theta(b)\alpha \circ m + \theta(n)\alpha \circ a, (\alpha * b)n)$$

$$- (a(m.\alpha) + \theta(b)(m.\alpha) + \theta(n)\alpha \circ a, b(n * \alpha)) = (0,0).$$

So $\pi_M(I) = \{(0,0)\}$ thus $J = \{(0,0)\}$. In a same way $j_1 = \{0\}$ and $j_2 = \{0\}$.

Proposition 3.1 For Banach \mathfrak{U} -bimodule $M = A \times_{\theta} B$, $M \widehat{\otimes}_{u} M$ is a commutative \mathfrak{U} -module.

Proof. Since $\alpha.(a,b)\otimes(m,n)-(a,b)\otimes(m,n).\alpha\in I$, so for $x=\sum_{i=1}^n(a_i,b_i)\otimes(m_i,n_i)$ we have $\alpha.x-x.\alpha\in I$ so $\alpha.x+I=x.\alpha+I$, that is $M\widehat{\otimes}_u M$ is always a commutative \mathfrak{U} -module.

Lemma 3.2 With the above notations, the following statements hold.

```
1) (q_B \otimes q_B)(\alpha.(a,b) \otimes (m,n)) = \alpha.(q_B \otimes q_B)((a,b) \otimes (m,n))
```

- 2) $\widetilde{\pi_M} \circ (P_A \otimes P_A) = P_A \circ \widetilde{\pi_A}$,
- 3) $\widetilde{\pi_B} \circ (q_B \otimes q_B) = q_B \circ \widetilde{\pi_M}$,
- 4) $P_A \otimes P_A(\alpha.a \otimes m + I_1) = \alpha.P_A \otimes P_A(a \otimes m + I_1),$
- 5) $q_B \otimes q_B((a,b).(m,n) \otimes (c,d)) = b.q_B \otimes q_B((m,n) \otimes (c,d)),$
- when A is unital with unit 1 then
- 6) $\widetilde{\pi_M} \circ (S_B \otimes S_B) = S_B \circ \widetilde{\pi_B}$,
- 7) $(a,b).P_A \otimes P_A(m \otimes c + I_1) = P_A \otimes P_A((a + \theta(b)1)m \otimes c + I_1),$
- 8) $P_A \otimes P_A(m \otimes c + I_1).(a,b) = P_A \otimes P_A(m \otimes c(a + \theta(b)1) + I_1),$
- 9) $(a,b).(S_B \otimes S_B)(d \otimes n + I_2) = (S_B \otimes S_B)(bd \otimes n + I_2),$
- 10) $(S_B \otimes S_B)(d \otimes n + I_2).(a,b) = (S_B \otimes S_B)(d \otimes nb + I_2),$
- 11) $S_B \otimes S_B(\alpha.b \otimes n + I_2) = \alpha.S_B \otimes S_B(b \otimes n + I_2).$

Proof. We only prove 2, 9. The others are in a similar way.

$$2)\widetilde{\pi_M} \circ (P_A \otimes P_A)(a \otimes m + I_1) = \widetilde{\pi_M}((a, 0) \otimes (m, 0) + I)$$

$$= (a, 0)(m, 0) = (am, 0)$$

$$= P_A(am) = P_A(\widetilde{\pi_A}(a \otimes m + I_1))$$

$$= P_A \circ \widetilde{\pi_A}(a \otimes m + I_1)$$

$$6)(a,b).(S_B \otimes S_B)(d \otimes n + I_2) = (a,b).((-\theta(d)1,d) \otimes (-\theta(n)1,n) + I)$$

$$= (-\theta(d)a - \theta(b)\theta(d)1 + \theta(d)a,bd) \otimes (-\theta(n)1,n) + I$$

$$= (-\theta(bd)1,bd) \otimes (-\theta(n)1,n) + I$$

$$= (S_B \otimes S_B)(bd \otimes n + I_2)$$

Theorem 3.3 Let A and B be commutative \mathfrak{U} -bimodules. Then module biprojectivity of $M = A \times_{\theta} B$ implies module biprojectivity of B.

Proof. Suppose that M be module biprojective and I, I_2 , J and j_2 , be as above. Since M is module biprojective, so for $\widetilde{\pi_M}$ there exist $\omega_M: M \longrightarrow M \widehat{\otimes} M$ such that $\widetilde{\pi_M} \circ \omega_M = Id_M$.

Consider
$$B \xrightarrow{P_B} M \xrightarrow{\omega_M} M \widehat{\otimes} M \xrightarrow{q_B \otimes q_B} B \widehat{\otimes} B$$
.

Now set $\omega_B = (q_B \otimes q_B) \circ \omega_M \circ P_B$, then

$$\widetilde{\pi_B} \circ \omega_B(b) = \widetilde{\pi_B} \circ (q_B \otimes q_B) \circ \omega_M \circ P_B(b)$$

$$= q_B \circ \widetilde{\pi_M} \circ \omega_M(0, b)$$

$$= q_B(0, b) = b.$$

Also

$$\omega_{B}(\alpha * b) = (q_{B} \otimes q_{B}) \circ \omega_{M} \circ P_{B}(\alpha * b)$$

$$= (q_{B} \otimes q_{B}) \circ \omega_{M}(0, \alpha * b)$$

$$= (q_{B} \otimes q_{B}) \circ \omega_{M}(\alpha.(0, b))$$

$$= (q_{B} \otimes q_{B})(\alpha.\omega_{M}(0, b)$$

$$= \alpha.(q_{B} \otimes q_{B})(\omega_{M}(0, b) \quad by \ (lemma, part1))$$

$$= \alpha.(q_{B} \otimes q_{B}) \circ \omega_{M} \circ P_{B}(b)$$

$$= \alpha.\omega_{B}(b)$$

And

$$\omega_B(bd) = (q_B \otimes q_B) \circ \omega_M \circ P_B(bd)$$

$$= (q_B \otimes q_B) \circ \omega_M(0, bd)$$

$$= (q_B \otimes q_B) \circ \omega_M((0, b)(0, d))$$

$$= (q_B \otimes q_B)((0, b)\omega_M(0, d))$$

$$= b.\omega_B(d). \quad by \ (lemma, part5)$$

Similar for right side. So ω_B is a right inverse for $\widetilde{\pi_B}: B \widehat{\otimes} B \longrightarrow B/j_2 = B$ which is an B/j_2 - \mathfrak{U} -module. Hence B is module biprojective.

Theorem 3.4 Let A and B be commutative \mathfrak{U} -bimodules. If both A and B are module biprojective and A is unital, then $M = A \times_{\theta} B$ is module biprojective.

Proof. Since A, B are module biprojective so there exists ω_A and ω_B such that $\widetilde{\pi_A} \circ \omega_A = Id_A$ and $\widetilde{\pi_B} \circ \omega_B = Id_B$. Define

$$\omega_M = P_A \otimes P_A \circ \omega_A \circ r_A + S_B \otimes S_B \circ \omega_B \circ q_B$$
 since

.

$$\widetilde{\pi_M} \circ \omega_M(a,b) = P_A \otimes P_A \circ \omega_A \circ r_A(a,b) + S_B \otimes S_B \circ \omega_B \circ q_B(a,b)$$

$$= \widetilde{\pi_M} \circ P_A \otimes P_A \circ \omega_A(a+\theta(b)1) + \widetilde{\pi_M} \circ S_B \otimes S_B \circ \omega_B(b)$$

$$= P_A \circ \widetilde{\pi_A} \circ \omega_A(a+\theta(b)1) + S_B \circ \widetilde{\pi_B} \circ \omega_B(b)$$

$$= (a+\theta(b)1,0) + (-\theta(b)1,b) = (a,b).$$

Also

$$\omega_{M}(\alpha.(a,b)) = \omega_{M}(\alpha \circ a, \alpha * b)$$

$$= P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}(\alpha \circ a, \alpha * b) + S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}(\alpha \circ a, \alpha * b)$$

$$= P_{A} \otimes P_{A} \circ \omega_{A}(\alpha \circ a + \theta(\alpha * b)1) + S_{B} \otimes S_{B} \circ \omega_{B}(\alpha * b)$$

$$= P_{A} \otimes P_{A} \circ \omega_{A}(\alpha \circ a + \theta(b)\alpha \circ 1) + S_{B} \otimes S_{B} \circ \omega_{B}(\alpha * b)$$

$$= \alpha.P_{A} \otimes P_{A} \circ \omega_{A}(\alpha + \theta(b)1) + \alpha.S_{B} \otimes S_{B} \circ \omega_{B}(b)$$

$$= \alpha.\omega_{M}(a,b).$$

And

$$\omega_{M}((a,b)(m,n)) = P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}((a,b)(m,n)) + S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}((a,b)(m,n))$$

$$= P_{A} \otimes P_{A} \circ \omega_{A}((a+\theta(b)1)(m+\theta(n)1)) + S_{B} \otimes S_{B} \circ \omega_{B}(bn)$$

$$= (a,b).P_{A} \otimes P_{A} \circ \omega_{A}(m+\theta(n)1) + (a,b).S_{B} \otimes S_{B} \circ \omega_{B}(n)$$

$$= (a,b).(P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}(m,n) + S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}(m,n))$$

$$= (a,b).\omega_{M}(m,n).$$

Similarly for right actions. So $\omega_M: M/J = M \longrightarrow M \widehat{\otimes} M$ is a right inverse for $\widetilde{\pi_M}: M \widehat{\otimes} M \longrightarrow M/J = M$, thus M is module biprojective.

Example 3.5 Let $S = \mathbb{N}$ with product $\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ as $(m, n) \longmapsto m \vee n = \max\{m, n\}$, then S is a countable, abelian inverse semigroup with the identity 1. Clearly $E_S = S$. This semigroup is denoted by \mathbb{N}_{\vee} . $l^1(\mathbb{N}_{\vee})$ is unital with unit δ_1 and is module biprojective(as an $l^1(\mathbb{N}_{\vee})$) thus $l^1(\mathbb{N}_{\vee}) \times_{\theta} l^1(\mathbb{N}_{\vee})$, $(\theta \in \sigma(l^1(\mathbb{N}_{\vee})))$ is module biprojective.

Acknowledgement

This research was supported by Islamic Azad University Central Tehran Branch and the authors acknowledge it with thanks.

References

- [1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.
- [2] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algebras, U. P. B. Sci. Bull. Series A, Vol. 75, Iss.3, (2013)
- [3] H. G. Dales, Banach algebras and Automatic continuty, London Mathematical Society Monographs new series, 24 Oxford university Press, Oxford, (2000)
- [4] H. R. Ebrahimi Vishki and A. R. Khodami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2011), 225-232.
- [5] B. E. Johson, cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127 (1972).
- [6] A. T. M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
- [7] M. Sangani-Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (3) (2007), 277-294.