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Abstract. In this paper we study the relation between module amenability of 6 - Lau product
AXxg B and that of Banach algebras A, B. We also discuss module biprojectivity of AxgyB. As
a consequent we will see that for an inverse semigroup S, I'(S) x4 1'(S) is module amenable
if and only if S is amenable.
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1. Introduction

Lau product of Banach algebras, were introduced by A. T- M. Lau [6], for a special class
of Banach algebras which are pre-duals of Von Numann algebras, such that the identity
of the dual algebra is a multiplicative linear functional on the predual. The #-Lau product
was introduced by M. Sangani-Monfared in [7]. He defined #-Lau product on A x B as

(a,b)(m,n) = (am + 6(b)m + 6(n)a, bn),

where 6 € o(B), and A, B are Banach algebras, and then studied amenability and weak
amenability of this Banach algebra. The norm on this space is as ||(a,b)|| = ||a|| + ||b]-
The Banach algebra generated by above multiplication on A x B, is denoted by A xg B.
In[4], it was studied some properties of A xy B, such as Character amenability, Gelfand
space. M. Amini in [1] introduce the concept of module amenability. In this paper we
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study the relation between module amenability and module biprojectivity, of 8 - Lau
product A x¢ B and module amenability and module biprojectivity of Banach algebras
A, B. By an example we will show that if [1(.S) is unital then I}(S) x4 [1(S) is module
amenable if and only if S is amenable. We also show that [*(Ny) x4 [1(Ny) is module
biprojective.

Let 3 be a Banach algebra and A be a Banach 4U-bimodule, with the compatible module
actions

a-(am) = (a-a)m,(af) -m=a-(8-m),(a,B € U,a,m € A).

A bounded map D : A — X with D(a +b) = D(a) + D(b), D(ab) = D(a).b + a.D(b)
and D(a-a) = a-D(a), D(a.ct) = D(a).cr, (o € 8, a,b € A) is called a module derivation.
If there exists € X such that D(a) = a.x —x.a = §;(a), (a € A) then D is called inner

derivation. The set of all module derivations D : A — X' is denoted by Z,(A, X’) and

Ro(a) is denoted by

the notation N, (A, X") for those which are inner. The quotient
H,(A X").

A Banach algebra A is module amenable if and only if H,(A, X') = {0}, for each
A-$l-module X. Note that X is called an A-{-module if X is a Banach algebra which is
at the same time a Banach A-bimodule and a Banach {-bimodule with compatibility of
actions

(a.x).a=a(z.a),a(az) = (aa)x, (el ac A x e X).

For such X, X' is also Banach module over A and {, with compatible actions under
canonical actions of A, U, a.(a.f) = (a.a).f, (a € A,a € 4, f € X'). In [2], it was defined
module biprojectivity for a Banach algebra which is a Banach module over another
Banach algebra.

Let X, Y be A-{l-modules, module homomorphism from X to Y is a norm continous
map ¢ : X — Y with o(z £y) = p(2) £ ¢(y), p(a.z) = a.p(x), p(z.a) = o(z).o,
pla.x) = a.p(x), p(x.a) = ¢(x).a, (z,y € X,a € U,a € A). If A is a commutative
$I-module and acts on itself by multiplication from both sides, then it is also a Banach
A-$l-module. Consider the projective tensor product A®A. It is well known that A®A is
a Banach algebra with respect to the canonical multiplication defined by (e ®b)(c®d) =
ac ® bd and extended by bi-linearity and continuity, [3]. Then A®A is a Banach A-§l-
module with canonical actions. Let I be the closed ideal of the projective tensor product
A®A generated by elements of the form a.a ® b — a ® b.a for a € §l, a,b € A. Consider
the map 74 : A®A — A defined by m4(a ® m) = am and extended by linearity and
continuity. Let J be the closed ideal of A generated by w4 (). Then the module projective
tensor product A®,A = A®A/I and Banach algebra A/J are Banach {-module. The
map 74 : A®,A — A/J defined by ma(a @ m + I) = ab+ J, extended to an t-module
morphism. If A®, A and A/.J are commutative {-module, then A®, A and A/.J are A/.J -
$I-module and 74 is A/J--module homomorphism. A Banach algebra A is called module
biprojective (as Y-module) if 74 has a bounded right inverse which is an A/J-Y-module
morphism[2].

2. Module amenability

Throughout we assume that A, B are Banach iU-bimodule with actions A x 4 —
A (a,a) — a.a, U x A — A/ (v,a) — aoa, Bx U — B, (bya) — b*q,
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U x B — B,(a,b) —> axb. and 0 € o(B) is such that (a x b)a = 0(b)a o a,
O(bxa)=0(b)aoa. Let M = A x¢ B.

Proposition 2.1 Let 4 be a Banach algebra and A, B be Banach i-bimodule. for
0 € o(B)

1) A xy B is a Banach A-bimodule,

2) A xg¢ B is a Banach B-bimodule,

3) A xy B is a Banach il-bimodule,

4) A x¢ B is a Banach B-{l-module.

Proof. 1) We define the module actions as

A x (A xy B) — A x¢ B by a.(m,n) = (a,0)(m,n) = (am + 6(n)a,0),

and (A Xy B) x A — A xy B by (m,n).a = (m,n)(a,0) = (ma+ 6(n)a,0). It is easy
to see that, with above actions, A xy B is an A-bimodule.

2)The module actions are defined as

B x (A xg B) — A x¢ B by b.(m,n) = (0,b)(m,n) = (
and (A X9 B) x B— A xy B by (m,n).b=(m,n)(0,b
that properties are satiesfied.

3) The module actions are defined as

U X (AxgB) — AxgBby a.(a,b) = (eoa,axb),
(AxypB) x U — AxgBhby (a,b) . = (a.a, bx )

4) By parts (2), (3), A xp B is at the same time B-module and {-module, thus it is
sufficient to check that actions are compatible.

6(bym,bn),
) = (6(b)m, nbd). It is easy to see

a.(b.(a,n)) = o <(0, b)(a,n)) = a.(6(b)a,bn)

_ <9(b)aoa,a* (bn)) - <0(b*a)a, (a*b)n) = (a*b).(a,n).

b.(cv.(m,n)) = b.(cv o m, % n)
- <9(b)(aom),b(a*n)> - (0(b*a)m, (b*a)n)
= (b*a).(m,n).
Also
(a.(m,n)).b = (0o m,a*n).b = (aom,an)0,b)
- (0(6)(aom),(a*n)b> = (ao (O(b)m), o = (bn))
— a.((m, n)(0,b)) = a.((m, n).b)

Proposition 2.2 Let i be a Banach algebra, A and B be Banach $-bimodules , and
0 € o(B). If X is a Banach A-{4-module and Y is a Banach B-if-module then X x Y is
a Banach A xg B-{-module.

Proof. Assume that module actions on X and Y , are as
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Ux X — X as (o,z) — ax, X x4 — X, as (z,a) —> zoa, U XY — Y as
(y) — a Ay, Y xU—las (y,a) — yVa. And A x X — X as (a,z) — a.x,
XxA— X as (r,a) —> zoa, BxXY — Y, (byy) —> bey, y x B — B, as
(y,b) — y « b. We define

Ux (X xY) — X xY by a.(z,y) = (ez,a A y)and (X xY) x U — X xY
by (z,y)+a = (zoa,yVa). Also (X xY) x (A xgB) — X xY by (z,y).(a,b) =
(xoa+0(b)x,y.b) and (AxgB)x (X xY) — X xY By (a,b).(z,y) = (a.x+60(b)z,bey).
We can see that by above actions X x Y is at the same time a Banach i-bimodule and
a Banach A xg B-bimodule. Only we prove that actions are compatible.

a. ((a, b).(z, y)) =a. <a.x +O(b)z,be y>

a(ax+00b)a.x),an (be y))

|
_ ((aoa).x—}—e(a*b)x, (axb) oy> _ (a.(a, b)).(x,y).

(a,b).(a.(z,y)) = (a,b).(a.x,a A y)

- (a.(a.x) +0(b)(c.z),be (o A y)>

((a.a).x +O0(b*xa)x,(bxa)e y) = ((a,b) « a).(z,y).

Also
(a.(z,y))« (a,b) = (v, a A y) .« (a,b)
= ((a.x)oa+0(b)(a.z), (ax A y) . b)
= (a.(xoa)+0(b)a.x,a & (y. b))
=a.(zoa+0(b)z,yeb)
= a.((z,y) .« (a,0))
So X xY is a A xy B-{-module. [ |

Proposition 2.3 Let U be a Banach algebra and A, B be Banach ${-bimodules, and let X
be a Banach A-{f-module and Y be a Banach B-{f-module then D € Z,(A xy B, X' xY")
if and only if 3Dy € Z,(A, X"), D2 € Z,(B,Y"), D3 € Z,(B,X') and a bounded linear
map R: A— Y’ with R(aoa) = a.R(a),(a € i) such that

1) D(a,b) = (D1(a) + D3(b), R(a) + D2(b)),
1(6(b)m) = D1(m) © 6(b) + D3(b).m
1(f(n)c ) Di(¢) ©0(n) + c.D3(n),
Ds(bn) = D3(b) © 0(n) + D3(n) © 0(b), where (D1(a) © 0(b))(x) = D1(a)(0(b)z).
R(O(b)m) = b.R(m),

R(m) = R(m)-b,
(am) =

Proof. Choose D € Z,(AxyB,X'xY") sothereared; : AxgB — X', dy: AxyB —

2) D
3) D
4)
5)
6) b.
R
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Y’ such that D = ( di,d2), Set

D1 A — X' as Dl(a) = dl(a,O), DQ :B—Y'as Dg(b) = dg(o, b),

D3 : B — X' as D3(b) = d1(0,b), R: A — Y’ as R(a) = da(a,0), Now
D(a7 b) = (dlde)((avo) + (O> b))

(d1,d2)(a,0) + (di,d2)(0,b)

(dl (a” 0)7 d2(aa 0)) + ((dl (07 b)7 d2(07 b))

<d1(a, 0) + dq (0, b)) + (dg(a, 0) + da(0, b)>

(Dl (a) + Dg(b), R(a) + Dg(b)) Since

D((a,b)(m,n)) = D(am + 6(n)a + 6(b)m, bn)
= (Dy(am) + D1(6(n)a) + D1(6(b)m)
+ D3(bn), R(am) + R(6(n)a) + R(O(b)m) + Da(bn)).

Also

(a,b).D(m,n) + D(a,b).(m,n) = (a,b).(Di(m) + D3(n), R(m) + D2(n))
+ (D1(a) + D3(b), R(a) + D2(b)).(m,n)

= <a.D1 (m) + a.D3(n) + D1(m) ® 6(b) + D3(n) ® 0(b),b.R(m) + b.Dg(n))

+ <D1(a).m + D3(b).m + D1(a) ® 6(n) + Ds(b) ® 0(n), R(a).n + Dg(b).n>

= <a.D1(m) + Di(a).m + a.D3(n) + D3(b).m + D1(a) ® 8(n) + D1(m) ® 6(b)
+ Ds(n) ® 0(b) + Ds(b) ® 0(n), R(a).n + b.R(m) + b.Da(n) + Dg(b).n> .

Since D is a derivation by taking a = n = 0 we get D1(6(b)m) = D3(b).m+ D1(m)©6(b)
and R(6(b)m) = b.R(m). Take b = m = 0 then D1(6(n)a) = a.D3(n) + Di(a) ® 6(n) and
R(0(b)a) = R(a).n. Take a = m = 0 then (D3(bn) = D3(n) ® 0(b) + D3(b) ® 6(n) and
Dy(bn) = b.Dy(n) + Do(b).n so Dy € Z(B,Y'), D3 € Z(B,X'). Take b = n = 0 to get
Di(am) = D1(a).m + a.D1(m) and R(am) = 0. Also

Di(aoa)=di(aca,0)=di(a.(a,0)) =a.di(a,0) =a.Di(a).
In the same way Dy(a % b) = a.Da(b), D3(a % b) = a.D3(b).
Note that since D € Z,(A x9 B, X' xY’) so
D((a,b) + (m,n)) = D(a,b) + D(m,n) and D(a.(a,b)) = a.D(a,b) thus

D(a.(a,b)) = D(aoa,a*b) = (di,d2)(aoa,ax*b)
= (di(aoa,axb),dy(aoa,axb)).
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On the other hand

a.D(a,b) = a.((d1,ds2)(a,b)) = a.(d1(a,b),d2(a,b))
= (a.dy(a,b), a.ds(a,b)).
So di(aoa,axb) = a.di(a,b), and da( o a,a xb) = a.da(a,b).
Also we can prove that di((a,b) + (m,n)) = di(a,b) + di(m,n) and da((a,b) + (m,n)) =
da(a,b) + da(m,n). So

Di(a+m) = di(a+m,0) = di((a,0) + (m,0))
= di(a,0) 4+ d1(m,0) = Di(a) + D1(m).
Consequently Dy € Z,(A,X"), Dy € Z,(B,Y"), D3 € Z,,(B, X') and properties of propo-
sition are satisfied.

Let Dy € Z,(A, X"), Dy € Z,(B,Y"), D3 € Z,(B, X') and bounded linear mapping R
be such that the statement of proposition are satisfy, then

D((a,b)(m,n)) = D(am + 0(n)a + 6(b)m, bn)
= (Di(am) + D1(0(n)a) + D1(0(b)m)
+ D3(bn), R(am) + R(6(n)a) + R(0(b)m) + D2(bn))

_ (a.Dl(m) + Dy(a).m + Di(a) © 6(n)

+ a.D3(n) + D3(b).m + D1(m) @ 6(b)
+ D3(n) ® 6(b) + D3(b) ® 6(n),n.R(a) + R(m).b

+ b.Do (n) + Dg(b)n) .

On the other hand

(a,b).D(m,n) + D(a,b).(m,n)
= (a,b).(D1(m) + D3(n), R(m) + D2(n))
+ (D1(a) + D3(b), R(a) + Dy(b)).(m,n)

= (a.Dl(m) +a.D3(n) + 6(b) © Di(m) + 6(b) © D3(n),b.R(m) + b.DQ(n)>

+ (Dl(a).m + D3(b).m + Dy(a) ® 8(n) + D3(b) ® 6(n), R(a).n + Dg(b).n>

- (a.Dl(m) + Dy(a).m + 6(n) ® D1 (a) + a.D3(n) + 6(n) ® D3 (b)

+ D3(b).m + 0(b) ® D1(m) + 6(b) ® D3(n),b.R(m) + R(a).n + b.Da(n) + Dg(b).n> .

So D((a,b)(m,n)) = D(a,b).(m,n) + (a,b).D(m,n),
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for all (a,b), (m,n) € A xg Bthus D € Z(A x¢9 B, X' xY").

D(a.(a,b)) = D(aoa,a*xb) = (Di(aoa)+ Ds(axb), R(awoa) + Do(a # b))
= (a.D1(a) + a.D3(b), a.R(a) + a.D2(b))
= a.(Di(a) + D3(b), R(a) + D2(b)) = a.D(a, b).

And

D((a,b) + (m,n)) = D(a +m, b+ n)
= (Di(a+m) + D3(b+n), R(a+m) + Da(b+n))
= (D1(a) + Di(m) + D3(b) + D3(n), R(a) + R(m) + Da(b) + Da(n))
— (Du(a) + Ds(b), R(a) + Da(B)) + (Ds(m) + Ds(n), Rm) + Da(n))
= D(a,b) + D(m,n).

Hence D € Z,(A xp B, X' x Y’) [ |

Corollary 2.4 By assumption of previous proposition, D = §(,, (¢ € X' ¢ eY')if
and only if (Dy = 8, Dy = 6y, D3 = 0, R(a) =0, for all a € A.)

Proof. Let D = 5(%@ so for each a € A and b € B we have

D(a,b) = 6,.4)(a,b)
= (¢,9).(a,b) = (a,b).(¢, ¥)
= (p.a+ ¢ ®0(b),1.b) — (a.p + 6(b) ® ¢, b.1))
= (p.a+¢@®0(b) —a.p—0(b) ®¢,1.b—b.a)).

Take a = 0, so D3(b) = ¢ ©® 0(b) — 0(b) © ¢ =0, Da(b) = 1p.b — b.1p = 6(b). Take b =0,
so Di(a) = p.a — a.p = d,(a) and R(a) = 0.
For the converse let Dy = d,, Dy = 0y, D3 =0, R =0, so

D(a,b) = (D1(a) + D3(b), R(a) + D2(b))
a.p—@p.a+pO0(0b) —ap—0(b)®p,p.b—>ba)

(
5(%11,) (a, b)

Theorem 2.5 Let i be a Banach algebra and A, B be Banach i{-bimodules. If A is
unital Banach algebra then A xg¢ B is module amenable if and only if both A, B are
module amenable.

Proof. Assume that X is a Banach A-{-module and Y is a Banach B-i{l-module, by
proposition 2.2, X x Y is a Banach A xy B-$f-module, and let Dy € Z,(A, X’), Dy €
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Zu(B,Y"). Define D3 : B —s X' by Ds(b) = D1(8(b)1) then

Ds(bn) = Dy(8(bn)1) = Dy(8(b)8(n)1)

Also

D1(6(n)a) = D1((6(n)1)a) = D1(68(n)1).a + (6(n)1).D1(a)
= D3(n).a+ Di(a) ® 0(n).

Dy(6(b)m) = D1(0(b)1)m) = D1(0(b)1).m + (6(b)1).D1(m)
= D3(b).m + D1(m) © 6(b).

Since D; € Z,(A, X') so D3 € Z, (B, X"). Now define D: AxgB — X' xY" as D(a,b) =
(D1(a)+ D3(b), Da(b)). So by above proposition D € Z,(AxgB, X' xY"). Since AxyB is
module amenable, D is inner so 3(p, 1) € X’ x Y’ such that D = §,, 4,y thus by corollary
Dy = d,, Dy = 6y, this means that A, B are module amenable. For the converse let A,
B are module amenable. Let X x Y be a Banach A xy B-I-module and D € Z, (A x4 B,
X' xY").

Define ¢x : X xY — X, by ¢gx(z,y) =z, and ¢y : X XY — Y, by ¢v(z,y) = v.
It is easy to check that X is a Banach A-i-module and Y is B-{l-module with module
multiplications

X x A — X defined by z.a = gx( (x,0).(a, 0
A x X — X defined by a.x = gx( (2,0 ).(x,0
Y x B —Y defined by y.b = qy( (0,y ).
B xY — Y defined by b.y = ¢y( (0, b ).
X x b — X with z o = gx((2,0) . ), U
Y x 4 — Y with yVa = ¢y ((0,y) . ), U
compatible actions.

Now Since D € Z,(A xg B, X' x Y'), by proposition 2.3, there are D; € Z,(A, X’),
Ds € Z,(B,X'), Dy € Z,(B,Y') and R : A — Y, such that D(a,b) = (Di(a) +
Dj3(b), R(a) 4+ D2(b)).

Since Dy € Z,(A,X’) and A is module amenable so 3¢ € X’ such that D; = J,, also
since Dy € Z,(B,Y') and B is module amenable so 31 € Y’ such that Dy = 4. Since
D1(6(b)1) = D1(1) ® 6(b) + D3(b).1, then D3(b).1 = D1(6(b)1) for all b € B, so

X — X with a.x = qX(Oé-(UUa ))

Y — Y with a A y = ¢y (a.(0,y)) with

Dy(8).1 = 6,(8(b)1) = @.(8(B)1) — (B(B)1)-0 = (5 © B(B)).1 — (B(b) © p).1 = .

Thus D3 = 0. Also since R(am) = 0, let m = 1, so R(a) = 0, for all a € A. Hence by
corollarly A xg¢ B is module amenable. |

Example 2.6 Let S be an amenable inverse semigroup with idempotent F, such that
I1(S) be unital. Since I1(S) is I}(E)-bimodule with the multiplication, right action and
trivial left action by [1, theorem 3.1], [*(S) is module amenable if and only if S is amenable
s0 I1(S) x¢ 11(S) is module amenable if and only if I!(S) is module amenable if and only
if S is amenable, (0 € o(I'(9)).
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3. Module biprojectivity

From now on we use the following maps:

Py : A — M, with Py(a) = (a,0), g4 : M — A, as qa(a,b) = a, 14 : M — A,
ra(a,b) = a+0(b)l, Sp : B — M, Sg(b) = (—0(b)1,b) where 1 is the unit of A.
and Pg: B — M, b+~ (0,b), gg : M — B, (a,b) — b, Sp @ Sp(b@n + I1) =
(—=0(b)1,b) ® (—0(n)1,n)+1I, PA® Ps(a®@m+1;) = (a,0) ® (m,0) + I, g ® ¢((a,b) ®
(m,n) +1)=b®&n+ I, where I, I} and I are introduce bellow.

Let A and B are commutative Banach i-bimodules. Let I be the closed ideal of the
projective tensor product M&M generated by elements of the form a.(a,b) ® (m,n) —
(a,b) ® (m,n).a, (a € U, (a,b),(m,n) € M). And J be the closed ideal of M generated
by mar(I). Let I; be the closed ideal of the projective tensor product AR A generated by
elements of the form acoca®@m —a®@m.a for a € U, a,m € A, and I, be the closed ideal of
the projective tensor product BB generated by elements of the form axb®@n —b@nx o
for « € U, by,n € B and j1, jo be the closed ideals of A, B(respectively) generated by
wA(l1) and wp(I2). Let A and B be commutative {i-bimodules then

T (a.(a,b) @ (m,n) — (a,b) ® (m,n).c)

=7y ((oa,axb) ® (m,n) — (a,b) @ (M., n *))
= (a0 a)ym + O(b)a o m + B(n)a o a, (o x b)n)

— (a(m.a) + 0(b) (m.a) + O(n)a o a, b(n+ a)) = (0,0).

So mar(I) = {(0,0)} thus J = {(0,0)}. In a same way j; = {0} and j» = {0}.

Proposition 3.1 For Banach $-bimodule M = A xy B, M®,M is a commutative
$l-module.

Proof. Since a.(a,b) ® (m,n) — (a,b) ® (m,n).a € I, so for x = > 7" (a;, b;) ® (m;,n;)
we have a.x —z.aa € [ so ax + [ = z.a + I that is M®,M is always a commutative
$-module. [ |

Lemma 3.2 With the above notations, the following statements hold.
1) (¢ ® gB)(ev.(a,b) ® (m,n)) = a.(¢ ® qp)((a,b) ® (m,n))

2) mar 0 (Pa ® Py) = Pyoma,

3) o (¢B ® qB) = 4B © T,

4) P4 ®@ Py(cca®@m+ 1) = a.P4 @ Pa(a®@ m+ I),

5) g8 ® qB((a,b).(m,n) ® (c,d)) = b.qp ® gg((m,n) ® (¢, d)),
when A is unital with unit 1 then
6) mar 0 (Sp® Sp) = Spomg,
7) (a,0).P4 @ PA(m®c+ 1) = P4 ® Po((a+6(b)1)m @ c+ 1),
8) PA® Py(m®c+ I).(a,b) = P4 ® PA(m® c(a+6(b)1) + I),
9) (a,b).(Sp® Sp)(d®@n+I2) = (Sp® SB)(bd @ n + I2),
10) (Sp® Sp)(d®@n+ I3).(a,b) = (Sp @ Sp)(d @ nb+ 1),
11) Sp® Sp(a.b®@n+ ) = a.Sp ® Sp(b@n + Is).
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Proof. We only prove 2, 9. The others are in a similar way.

D70 (Pa® Pa)la®m+ 1) =7a((a,0) ® (m,0) + 1)
= (a,0)(m,0) = (am,0)
= Ps(am) = Pa(ma(a®@ m+ Ip))
= Promala®@m+ 1)

6)(a,b).(S5 ® Sp)(d ®n+ Ir) = (a,b).((—0(d)1,d) ® (—6(n)1,n) + I)
0(d)a — 0(0)0(d)1 + 0(d)a, bd) @ (—O(n)1,n) + I
0(bd)1,bd) @ (—0(n)1,n) + I

Sp ® Sp)(bd @n + 1)

(
(=
(=
=

Theorem 3.3 Let A and B be commutative 4-bimodules. Then module biprojectivity
of M = A xy B implies module biprojectivity of B.

Proof. Suppose that M be module biprojective and I, Is,J and jo, be as above. Since
M is module biprojective, so for 7y there exist wy; : M — M®M such that myowy =
Idyy.

Consider B 12 M “ M&M 22 BSB.
Now set wp = (¢ ® qB) o wyr © Pp, then

mpowg(b) =7 o (¢ ®qp) own o Pa(b)
=gpoma own(0,0)
=qp(0,b) = b.

Also

wp(a*xb) = (¢ ® gp) ownr o Pp(a x b)

= (¢ ® qB) o wpr(0, v % b)

= (g ® qB) o wpr(.(0,0))

= (¢ @ qB)(a.wpr(0,b)
= a.(gB ® qB)(wrm(0,b) by (lemma,partl))
= a.(qs ® qB) 0wy o Pp(b)

= a.wp(b)
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And

wB(bd) = O Wpr OPB(bd)

o wpr(0,bd)

o WM((O’ b)(ov d))
((0,0)war (0, d))

= bwp(d). by (lemma,part5)

9B ®qB

qB ® 4B

qB ® 4B

~—~
~— — ~— ~—

qB ® 4B

Similar for right side. So wp is a right inverse for 75 : BB — B/j, = B which is an
B/ js-$-module. Hence B is module biprojective. u

Theorem 3.4 Let A and B be commutative {-bimodules. If both A and B are module
biprojective and A is unital, then M = A x4 B is module biprojective.

Proof. Since A, B are module biprojective so there exists w4 and wpg such that T 4owy =

Idy and w5 owp = Idg. Define

wy =Pa®Prowgorg+Sp® Spowpoqgp since

7 o wpr(a,b) = P4 @ Prowyorg(a,b) + Sp® Spowpoqp(a,b)
=mp 0Py ®@Pypowala+0(b)l)+7mar0Sp® Spowp(b)
=Pyjompows(a+6(b)1)+ Spompowp(b)
= (a+0(b)1,0) + (—60(b)1,b) = (a,b).

Also

wir(a.(a,b)) = wp(aoa,ax*b)
=Py®Pyowgorg(aoa,axb)+Sp® Spowpoqp(aoca,axb)
=Pys®@Ppows(aoa+0(axb)l)+ Sp®Spowp(axb)
=Pys® Pypows(aoa+0(b)aol)+ Sp® Spowp(axb)
=a.Py®Pyows(a+6(b)1) + a.Sp® Sp owp(b)

= a.wpr(a,b).
And

wiy((a,b)(m,n)) = P4 ® Paowaora((a,b)(m,n)) +Sp®Spowpoqp((a,b)(m,n))
=Py @ Paows((a+60(b)1)(m+60(n)l)) +Sp® Spowg(bn)
= (a,b).P4 @ Pyows(m+6(n)l) + (a,b).Sp ® Sp owp(n)
= (a,b).(P4® Pyowygora(m,n)+ Sp® Spowpoqp(m,n))

= (a,b).wpr(m,n).
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Similarly for right actions. So wy; : M/J = M — M®M is a right inverse for m; :
MM —s M/J = M, thus M is module biprojective. [ |

Exzample 3.5 Let S = N with product N x N — N as (m,n) — m Vn = max{m,n},
then S is a countable, abelian inverse semigroup with the identity 1. Clearly Fg = S. This
semigroup is denoted by Ny. I}(Ny) is unital with unit d; and is module biprojective(as
an [1(Ny)) thus I}(Ny) x4 I}(Ny), (8 € o(I*(Ny)))is module biprojective.
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